首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In trypanosomes all mRNAs are generated through trans mRNA splicing, requiring the functions of the small nuclear RNAs U2, U4 and U6. In the absence of conventional cis mRNA splicing, the structure and function of a U5-analogous snRNP in trypanosomes has remained an open question. In cis splicing, a U5 snRNP-specific protein component called PRP8 in yeast and p220 in man is a highly conserved, essential splicing factor involved in splice-site recognition and selection. We have cloned and sequenced a genomic region from Trypanosoma brucei, that contains a PRP8/p220-homologous gene (p277) coding for a 277 kDa protein. Using an antibody against a C-terminal region of the trypanosomal p277 protein, a small RNA of approximately 65 nucleotides could be specifically co-immunoprecipitated that appears to be identical with a U5 RNA (SLA2 RNA) recently identified by Dungan et al. (1996). Based on sedimentation, immunoprecipitation and Western blot analyses we conclude that this RNA is part of a stable ribonucleoprotein (RNP) complex and associated not only with the p277 protein, but also with the common proteins present in the other trans-spliceosomal snRNPs. Together these results demonstrate that a U5-analogous RNP exists in trypanosomes and suggest that basic functions of the U5 snRNP are conserved between cis and trans splicing.  相似文献   

2.
3.
Antibodies against naked U1RNA can be found in sera from patients with overlap syndromes of systemic lupus erythematosus (SLE) in addition to antibodies directed to the proteins of U1 ribonucleoproteins (U1RNP). We investigated the reactivity of these U1RNA specific autoantibodies with the native U1RNP particle both in vitro and inside the cell. For this purpose a method was developed to purify human autoantibodies directed to specific regions of U1RNA. The antibodies are specifically directed to either stemloop II or stemloop IV of U1RNA and do not crossreact with protein components of U1RNP. Both types of antibody are able to precipitate from cell extracts native U1snRNPs containing most, if not all, protein components. Immunofluorescence patterns indicate that the antigenic sites on the RNA, i.e. the stem of stemloop II and the loop of stemloop IV, are also available after fixation of the cells. Immunoelectron microscopy employing anti-stemloop IV antibodies and purified, complete U1snRNP particles showed that stemloop IV is located within the body of the U1RNP complex, which also comprises the Sm site and the common Sm proteins. The anti-U1RNA autoantibodies described in this paper recognize native U1RNP particles within the cell and can therefore be used as tools to study mechanisms involved in splicing of pre-mRNA.  相似文献   

4.
5.
We have previously shown that the yeast PRP19 protein is associated with the spliceosome during the splicing reaction by immunoprecipitation studies with anti-PRP19 antibody. We have extended such studies by using extracts depleted of specific splicing factors to investigate the step of the spliceosome assembly process that PRP19 is involved in. PRP19 was not associated with the splicing complexes formed in U2- or U6-depleted extracts but was associated with the splicing complex formed in heat-inactivated prp2 extracts. This finding indicates that PRP19 becomes associated with the splicing complexes after or concomitant with binding of the U6 small nuclear ribonucleoprotein particle (snRNP) to the precursor RNA and before formation of the functional spliceosome. We further analyzed whether PRP19 is an integral component of snRNPs. We have constructed a strain in which an epitope of nine amino acid residues recognized by a well-characterized monoclonal antibody, 12CA5, is linked to the carboxyl terminus of the wild-type PRP19 protein. Immunoprecipitation of the splicing extracts with anti-PRP19 antibody or precipitation of the extracts prepared from the epitope-tagged strain with the 12CA5 antibody did not precipitate significant amounts of snRNAs. Addition of micrococcal nuclease-treated extracts to the PRP19-depleted extract restored its splicing activity. These results indicate that PRP19 is not tightly associated with any of the snRNAs required for the splicing reaction. No non-snRNP protein factor has been demonstrated to participate in either step of the spliceosome assembly pathway that PRP19 might be involved in. Thus, PRP19 represents a novel splicing factor.  相似文献   

6.
Assembly of splicing precursor RNAs into ribonucleoprotein particle (RNP) complexes during incubation in in vitro splicing extracts was monitored by a new system of RNP gel electrophoresis. The temporal pattern of assembly observed by our system was identical to that obtained by other gel and gradient methodologies. In contrast to the results obtained by other systems, however, we observed requirements of U1 small nuclear RNPs (snRNPs) and 5' splice junction sequences for formation of specific complexes and retention of U1 snRNPs within gel-fractionated complexes. Single-intron substrate RNAs rapidly assembled into slow-migrating complexes. The first specific complex (A) appeared within a minute of incubation and required ATP, 5' and 3' precursor RNA consensus sequences, and intact U1 and U2 RNAs for formation. A second complex (B) containing precursor RNA appeared after 15 min of incubation. Lariat-exon 2 and exon 1 intermediates first appeared in this complex, operationally defining it as the active spliceosome. U4 RNA was required for appearance of complex B. Released lariat first appeared in a complex of intermediate mobility (A') and subsequently in rapidly migrating diffuse complexes. Ligated product RNA was observed only in fast-migrating complexes. U1 snRNPs were detected as components of gel-isolated complexes. Radiolabeled RNA within the A and B complexes was immunoprecipitated by U1-specific antibodies under gel-loading conditions and from gel-isolated complexes. Therefore, the RNP antigen remained associated with assembled complexes during gel electrophoresis. In addition, 5' splice junction sequences within gel-isolated A and B complexes were inaccessible to RNase H cleavage in the presence of a complementary oligonucleotide. Therefore, nuclear factors that bind 5' splice junctions also remained associated with 5' splice junctions under our gel conditions.  相似文献   

7.
8.
9.
S H Kim  J Smith  A Claude    R J Lin 《The EMBO journal》1992,11(6):2319-2326
Unlike autocatalyzed self-splicing reactions, nuclear pre-mRNA splicing requires transacting macromolecules and ATP. A protein encoded by the PRP2 gene of Saccharomyces cerevisiae is required, in conjunction with ATP, for the first cleavage-ligation reaction of pre-mRNA splicing. In this study, we have purified two forms of the PRP2 gene product with apparent molecular weights of 100 kDa and 92 kDa, from a yeast strain overproducing the protein. Both proteins were indistinguishable in their ability to complement extracts derived from a heat-sensitive prp2 mutant. Furthermore, we show that the PRP2 protein is capable of hydrolyzing nucleoside triphosphates in the presence of single-stranded RNAs such as poly(U). However, purified PRP2 by itself did not unwind double-stranded RNA substrates. The fact that an RNA-dependent NTPase activity is intrinsic to PRP2 may account for the ATP requirement in the first catalytic reaction of pre-mRNA splicing.  相似文献   

10.
H Hohjoh  M F Singer 《The EMBO journal》1997,16(19):6034-6043
Previous experiments using human teratocarcinoma cells indicated that p40, the protein encoded by the first open reading frame (ORF) of the human LINE-1 (L1Hs) retrotransposon, occurs in a large cytoplasmic ribonucleoprotein complex in direct association with L1Hs RNA(s), the p40 RNP complex. We have now investigated the interaction between partially purified p40 and L1Hs RNA in vitro using an RNA binding assay dependent on co-immunoprecipitation of p40 and bound RNA. These experiments identified two p40 binding sites on the full-length sense strand L1Hs RNA. Both sites are in the second ORF of the 6000 nt RNA: site A between residues 1999 and 2039 and site B between residues 4839 and 4875. The two RNA segments share homologous regions. Experiments involving UV cross-linking followed by immunoprecipitation indicate that p40 in the in vitro complex is directly associated with L1Hs RNA, as it is in the p40 RNP complex found in teratocarcinoma cells. Binding and competition experiments demonstrate that p40 binds to single-stranded RNA containing a p40 binding site, but not to single-stranded or double-stranded DNA, double-stranded RNA or a DNA-RNA hybrid containing a binding site sequence. Thus, p40 appears to be a sequence-specific, single-strand RNA binding protein.  相似文献   

11.
P P Lau  S H Chen  J C Wang    L Chan 《Nucleic acids research》1990,18(19):5817-5821
Apolipoprotein (apo) B-48 mRNA is the product of RNA editing which consists of a C----U conversion changing a CAA codon encoding Gln-2153 in apoB-100 mRNA to a UAA stop codon in apoB-48 mRNA. In the adult rat, RNA editing occurs both in the small intestine and the liver. We have studied the ability of rat liver nuclear extracts to bind to synthetic apoB mRNA segments spanning the editing site. Using an RNA gel mobility shift assay, we found the sequence-specific binding of a protein(s) to a 65-nucleotide apoB-100 mRNA. UV crosslinking followed by T1 ribonuclease digestion and SDS-polyacrylamide gel electrophoresis demonstrated the formation of a 40 kDa protein-RNA complex when 32P-labeled apoB-100 mRNA was incubated with a rat liver nuclear extract but not with HeLa nuclear extract. Binding was specific for the sense strand of apoB mRNA, and was not demonstrated with single-stranded apoB DNA, or antisense apoB RNA. The complex also failed to form if SDS was present during the UV light exposure. Binding experiments using synthetic apoB mRNAs indicate that the 40 kDa protein would also bind to apoB-48 mRNA but not apoA-I, apoA-IV, apoC-II or apoE mRNA. Experiments using deletion mutants of apoB-100 mRNA indicate efficient binding of wildtype 65-nucleotide (W65), 40-nucleotide (W40) and 26-nucleotide (W26) apoB-100 mRNA segments, but not 10-nucleotide (or smaller) segments of apoB-100 mRNA to the 40 kDa protein. In contrast, two other regions of apoB-100 mRNA, B-5' (bases 1128-3003) and B-3' (bases 11310-11390), failed to bind to the protein. The 40 kDa sequence-specific binding protein in rat liver nuclear extract may play a role in apoB-100 mRNA editing.  相似文献   

12.
Messenger RNA maturation in trypanosomes involves an RNA trans-splicing reaction in which a 39 nucleotide 5'-spliced leader (SL), derived from an independently transcribed 139 nucleotide SL RNA, is joined to pre-mRNAs. Trans-splicing intermediates are structurally consistent with a mechanism of SL addition which is similar to that of cis-splicing of nuclear pre-mRNAs; homologous components (e.g. the U small nuclear RNAs) exist in both cis- and trans-splicing systems, suggesting that these also participate in the two types of splicing reactions. In this study, ribonucleoprotein (RNP) complexes containing the trypanosome SL and U2 RNAs were purified and characterized. Although present at low levels in cellular extracts, the SL and U2 RNPs are the two most abundant of the several non-ribosomal small RNP complexes in these cells. The purification scheme utilizes ion-exchange chromatography, equilibrium density centrifugation, and gel filtration chromatography and reveals that the SL RNP shares biophysical properties with U RNPs of trypanosomes and other eukaryotes; its sedimentation coefficient in sucrose gradients is approximately 10 S, and it is resistant to dissociation during Cs2SO4 equilibrium density centrifugation. Complete separation of the SL and U2 RNPs was achieved by non-denaturing polyacrylamide gel electrophoresis. Proteins purifying with the SL and U2 RNPs were identified by 125I-labeling of tyrosine residues. Four SL RNP proteins with approximate molecular masses of 36, 32, 30, and 27 kDa and one U2 RNP protein of 31 kDa were identified, suggesting that different polypeptides are associated with these two RNAs. These particles are not immunoprecipitated by anti-Sm sera which recognizes U snRNP proteins of other eukaryotes including humans plants and yeast.  相似文献   

13.
A Kumar  S H Wilson 《Biochemistry》1990,29(48):10717-10722
A1 is a major core protein of the mammalian hnRNP complex, and as a purified protein of approximately 34 kDa, A1 is a strong single-stranded nucleic acid binding protein. Several lines of evidence suggest that the protein is organized in discrete domains consisting of an N-terminal segment of approximately 22 kDa and a C-terminal segment of approximately 12 kDa. Each of these domains as a purified fragment is capable of binding to both ssDNA and RNA. We report here that A1 and its C-terminal domain fragment are capable of potent strand-annealing activity for base-pair complementary single-stranded polynucleotides of both RNA and DNA. This effect is not stimulated by ATP. Compared with A1 and the C-terminal fragment, the N-terminal domain fragment has negligible annealing activity. These results indicate that A1 has biochemical activity consistent with a strand-annealing role in relevant reactions, such as pre-mRNA splicing.  相似文献   

14.
An immunoaffinity chromatographic procedure was developed to purify DNA polymerase-DNA primase complex from crude soluble extracts of yeast cells. The immunoabsorbent column is made of mouse monoclonal antibody to yeast DNA polymerase I covalently linked to Protein A-Sepharose. Purification of the complex involves binding of the complex to the immunoabsorbent column and elution with concentrated MgCl2 solutions. After rebinding to the monoclonal antibody column free primase activity is selectively eluted with a lower concentration of MgCl2. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed the presence of five major peptides, p180, p140, p74, p58, and p48 in the immunoaffinity-purified DNA polymerase-DNA primase complex. Free primase and free polymerase fractions obtained by fractionation on the immunoabsorbent column were analyzed on activity gels and immunoblots. These analyses showed that p180 and p140 are DNA polymerase peptides. Two polypeptides of 58 and 48 kDa co-fractionated with the free yeast DNA primase. From sucrose gradient analysis we estimate a molecular weight of 110 kDa for the native DNA primase.  相似文献   

15.
Two structurally distinct RNP complexes (MI and MII), each with a sedimentation value of approx. 40S, were isolated from rat liver nuclear extracts by sucrose gradient centrifugation and subsequent native gel electrophoresis of the 40S hnRNP-containing fractions. MII RNP contained the bulk of hnRNA and hnRNP proteins (i.e. the 32-45KD core proteins and polypeptides of 60-80 and 110-130KD). MI RNP was characterized by the exclusive presence of U-snRNAs (U1, U2, U4, U5 and U6), their well known snRNP polypeptides and a number of Sm-associated proteins in the range of 50-210KD. Immunoselection experiments employing a monoclonal antibody with an established specificity for the U2-snRNP-specific B" polypeptide proved that the RNA and protein components characteristic of MI were part of a single multi-snRNP unit. The prominent 200/210KD protein doublet of MI was identified immunochemically as the rat homologue of the yeast PRP8 protein, a known U5-associated splicing component. Based on the major biochemical and immunochemical features of MI and MII RNP complexes, we conclude that MII represents the monomeric 40S hnRNP structure, whereas MI defines a novel multi-snRNP entity.  相似文献   

16.
17.
大肠杆菌单链结合蛋白SSB在DNA复制、重组和修复中起着重要作用。为研究单链结合蛋白SSB的体外生物功能构建了融合蛋白SSB的表达载体并使其高效表达及易于纯化。ssb基因片段是以E.coli K-12基因组为模板经PCR扩增获得,并通过基因的体外拼接成功构建了表达载体pQE30-ssb。重组菌株M15/ pQE30-ssb经过IPTG的诱导表达了蛋白SSB。收集菌体细胞、超声波破碎后离心取上清进行SDS-PAGE分析,结果表明有一与预期分子量(20.6 kD)相应的诱导表达条带出现,其表达量约占全细胞蛋白的30%且以可溶形式存在。利用固定化金属离子(Ni2+)配体亲和层析柱纯化融合蛋白SSB,其纯度达到90%。通过凝胶层析和等离子共振技术对SSB的生物功能进行了系统研究分析。结果表明,SSB蛋白以四聚体形式与单链DNA分子结合,其亲和力常数(KD)为4.79×10-7 M。  相似文献   

18.
The regulation of the c-src N1 exon is mediated by an intronic splicing enhancer downstream of the N1 5′ splice site. Previous experiments showed that a set of proteins assembles onto the most conserved core of this enhancer sequence specifically in neuronal WERI-1 cell extracts. The most prominent components of this enhancer complex are the proteins hnRNP F, KSRP, and an unidentified protein of 58 kDa (p58). This p58 protein was purified from the WERI-1 cell nuclear extract by ammonium sulfate precipitation, Mono Q chromatography, and immunoprecipitation with anti-Sm antibody Y12. Peptide sequence analysis of purified p58 protein identified it as hnRNP H. Immunoprecipitation of hnRNP H cross-linked to the N1 enhancer RNA, as well as gel mobility shift analysis of the enhancer complex in the presence of hnRNP H-specific antibodies, confirmed that hnRNP H is a protein component of the splicing enhancer complex. Immunoprecipitation of splicing intermediates from in vitro splicing reactions with anti-hnRNP H antibody indicated that hnRNP H remains bound to the src pre-mRNA after the assembly of spliceosome. Partial immunodepletion of hnRNP H from the nuclear extract partially inactivated the splicing of the N1 exon in vitro. This inhibition of splicing can be restored by the addition of recombinant hnRNP H, indicating that hnRNP H is an important factor for N1 splicing. Finally, in vitro binding assays demonstrate that hnRNP H can interact with the related protein hnRNP F, suggesting that hnRNPs H and F may exist as a heterodimer in a single enhancer complex. These two proteins presumably cooperate with each other and with other enhancer complex proteins to direct splicing to the N1 exon upstream.  相似文献   

19.
Pakhomova ON  Yeh LC  Monette J  Lee JC 《Biochimie》1999,81(11):1015-1023
Binding of yeast ribosomal protein L5 with 5S rRNA has long been considered a promising model for studying molecular mechanisms of protein-RNA interactions. However, in vitro assembly of a ribonucleoprotein (RNP) complex from purified yeast ribosomal protein L5 (also known as L1, L1a, or YL3) and 5S rRNA proved to be difficult, thus limiting the utility of this model. In the present report, we present data on the successful in vitro assembly of a RNP complex using a fusion (MBP-L5) protein consisting of the yeast ribosomal protein L5 fused to the carboxyl terminus of the E. coli maltose-binding protein (MBP). We demonstrated that: 1) the MBP-L5 protein binds yeast 5S rRNA but not 5.8S rRNA in vitro; 2) the MBP protein itself does not bind yeast 5S rRNA; 3) formation of the RNP complex is proportional to the concentration of MBP-L5 protein and 5S rRNA; and 4) the MBP moiety of the fusion protein in the RNP complex can be removed with factor Xa. The electrophoretic mobility of the resultant RNP complex is indistinguishable from that of L5-5S rRNA complex isolated from the ribosome. Using this new experimental approach, we further showed that the RNA binding capability of a mutant L5 protein is decreased by 60% compared to the wild-type protein. Additionally, the mutant RNP complex migrates slower than the wild-type RNP complex suggesting that the mutant RNP complex has a less compact conformation. The finding provides a probable explanation for an earlier observation that the 60S ribosomal subunit containing the mutant protein is unstable.  相似文献   

20.
The yeast rna mutations (rna2 through rna10/11) are a set of temperature-sensitive mutations that result in the accumulation of pre-mRNAs at the nonpermissive temperature. Most of the yeast RNA gene products are involved in and essential for mRNA splicing in vitro, suggesting that they code for components of the splicing machinery. We tested this proposal by using an in vitro-synthesized RNA11 protein to complement the temperature-sensitive defect of the rna11 extract. During the in vitro complementation, the input RNA11 protein was associated with the 40S spliceosome and a 30S complex, suggesting that the RNA11 protein is indeed a component of the spliceosome. The formation of the RNA11-associated 30S complex did not require any exogenous RNA substrate, suggesting that this 30S particle is likely to be a preassembled complex involved in splicing. The RNA11-specific antibody inhibited the mRNA splicing in vitro, confirming the essential role of the RNA11 protein in mRNA splicing. Finally, using the anti-RNA11 antibody, we localized the RNA11 protein to the periphery of the yeast nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号