首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An enzyme catalyzing homologous pairing of DNA chains has been extensively purified from mitotic yeast. The most highly purified fractions are enriched for a polypeptide with a molecular mass of approximately 120 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Protein-dependent pairing of single-stranded DNAs requires a divalent cation (Mg2+ or Ca2+) but proceeds rapidly in the absence of any nucleoside triphosphates. The kinetics of reassociation are extremely rapid, with more than 60% of the single-stranded DNA becoming resistant to S1 nuclease within 1 min at a ratio of 1 protein monomer/50 nucleotides. The results of enzyme titration and DNA challenge experiments suggest that this protein does not act catalytically during renaturation but is required stoichiometrically. The protein promotes formation of joint molecules between linear M13 replicative form DNA (form III) containing short single-stranded tails and homologous single-stranded M13 viral DNA. Removal of approximately 50 nucleotides from the ends of the linear duplex using either exonuclease III (5' ends) or T7 gene 6 exonuclease (3' ends) activates the duplex for extensive strand exchange. Electron microscopic analysis of product molecules suggests that the homologous circular DNA initially associates with the single-stranded tails of the duplexes, and the heteroduplex region is extended with displacement of the noncomplementary strand. The ability of this protein to pair and to promote strand transfer using either exonuclease III or T7 gene 6 exonuclease-treated duplex substrates suggests that this activity promotes heteroduplex extension in a nonpolar fashion. The biochemical properties of the transferase are consistent with a role for this protein in heteroduplex joint formation during mitotic recombination in Saccharomyces cerevisiae.  相似文献   

2.
DNA strand transfer protein alpha (STP alpha) from meiotic Saccharomyces cerevisiae cells promotes homologous pairing of DNA without any nucleotide cofactor in the presence of yeast single-stranded DNA binding protein. This gene (DNA strand transferase 1, DST1) encodes a 309-amino-acid protein with a predicted molecular mass of 34,800 Da. The STP alpha protein level is constant in both mitotic and meiotic cells, but during meiosis the polypeptide is activated by an unknown mechanism, resulting in a large increase in its specific activity. A dst1::URA3/dst1::URA3 mutant grows normally in mitotic media; however, meiotic cells exhibit a greatly reduced induction of both DNA strand transfer activity and intragenic recombination between his1 heteroalleles. Spore viability is normal. These results suggest that DST1 is required for much of the observed induction of homologous recombination in S. cerevisiae during meiosis but not for normal sporulation.  相似文献   

3.
A group of low molecular weight protein substrates was found to co-purify with casein kinase II from broccoli (Brassica oleracea var italica). These substrates showed very high affinity toward casein kinase II and were efficiently phosphorylated even in the presence of an excess of exogenous substrates. The broccoli substrates were purified from cytosolic extracts as a double band of related proteins migrating at 18.7 and 20 kD. Further microheterogeneity was revealed by anion-exchange high-performance liquid chromatography and mass spectroscopy. The actual molecular masses of the three major components identified by mass spectroscopy were determined to be 12,691, 13,256, and 14,128 D. The substrates showed characteristic amino acid composition with a high content of polar amino acids, including about 20% each of acidic and basic amino acids. They were soluble in 2% trichloroacetic acid. The substrates cross-reacted with an antibody against wheat high-mobility group protein d (HMGd) but not HMGa. The isolated broccoli HMGs showed general DNA-binding activity without preference for AT-rich DNA. The presence of these HMG proteins in the cytosolic fraction is similar to the distribution characteristics of the animal HMG-1 subgroup. On the basis of amino acid composition and DNA-binding specificity, the isolated broccoli HMGs resemble other plant HMGs homologous to the HMG-1 subgroup.  相似文献   

4.
5.
The purification of a Drosophila strand transfer protein is described, which involves Bio-Rex 70, Superose 6, Mono S, and single-stranded DNA-agarose chromatography. A 105,000-dalton polypeptide copurifies with the strand transfer activity on the last two column steps. The strand transferase carries out strand transfer at an unusually low protein:single-stranded DNA ratio and requires neither a nucleotide cofactor nor exogenous single-strand DNA binding protein to form heteroduplex DNA. Biochemical analysis of the reaction products has established that one strand of the DNA duplex is displaced during the reaction. Several properties, including the kinetics and stoichiometry of strand transfer, differentiate this activity from previously characterized strand transferases.  相似文献   

6.
DNA Strand-Transfer Activity in Pea (Pisum sativum L.) Chloroplasts   总被引:3,自引:2,他引:1       下载免费PDF全文
The occurrence of DNA recombination in plastids of higher plants is well documented. However, little is known at the enzymic level. To begin dissecting the biochemical mechanism(s) involved we focused on a key step: strand transfer between homologous parental DNAs. We detected a RecA-like strand transfer activity in stromal extracts from pea (Pisum sativum L.) chloroplasts. Formation of joint molecules requires Mg2+, ATP, and homologous substrates. This activity is inhibited by excess single-stranded DNA (ssDNA), suggesting a necessary stoichiometric relation between enzyme and ssDNA. In a novel assay with Triton X-100-permeabilized chloroplasts, we also detected strand invasion of the endogenous chloroplast DNA by 32P-labeled ssDNA complementary to the 16S rRNA gene. Joint molecules, analyzed by electron microscopy, contained the expected displacement loops.  相似文献   

7.
The multiple activities of the RecA protein in DNA metabolism have inspired over a decade of research in dozens of laboratories around the world. This effort has nevertheless failed to yield an understanding of the mechanism of several RecA protein-mediated processes, the DNA strand exchange reactions prominent among them. The major factors impeding progress are the invalid constraints placed upon the problem by attempting to understand RecA protein-mediated DNA strand exchange within the context of an inappropriate biological paradigm – namely, homologous genetic recombination as a mechanism for generating genetic diversity. In this essay I summarize genetic and biochemical data demonstrating that RecA protein evolved as the central component of a recombinational DNA repair system, with the generation of genetic diversity being a sometimes useful byproduct, and review the major in vitro activities of RecA protein from a repair perspective. While models proposed for both recombination and recombinational repair often make use of DNA strand cleavage and transfer steps that appear to be quite similar, the molecular and thermodynamic requirements of the two processes are very different. The recombinational repair function provides a much more logical and informative framework for thinking about the biochemical properties of RecA and the strand exchange reactions it facilitates.  相似文献   

8.
MmeI is an unusual Type II restriction enzyme that is useful for generating long sequence tags. We have cloned the MmeI restriction-modification (R-M) system and found it to consist of a single protein having both endonuclease and DNA methyltransferase activities. The protein comprises an amino-terminal endonuclease domain, a central DNA methyltransferase domain and C-terminal DNA recognition domain. The endonuclease cuts the two DNA strands at one site simultaneously, with enzyme bound at two sites interacting to accomplish scission. Cleavage occurs more rapidly than methyl transfer on unmodified DNA. MmeI modifies only the adenine in the top strand, 5′-TCCRAC-3′. MmeI endonuclease activity is blocked by this top strand adenine methylation and is unaffected by methylation of the adenine in the complementary strand, 5′-GTYGGA-3′. There is no additional DNA modification associated with the MmeI R-M system, as is required for previously characterized Type IIG R-M systems. The MmeI R-M system thus uses modification on only one of the two DNA strands for host protection. The MmeI architecture represents a minimal approach to assembling a restriction-modification system wherein a single DNA recognition domain targets both the endonuclease and DNA methyltransferase activities.  相似文献   

9.
Purification of a RecA protein analogue from Bacillus subtilis   总被引:29,自引:0,他引:29  
We have identified in Bacillus subtilis an analogue of the Escherichia coli RecA protein. Its activities suggest that it has a corresponding role in general genetic recombination and in regulation of SOS (DNA repair) functions. The B. subtilis protein (B. subtilis Rec) has a Mr of 42,000 and cross-reacts with antisera raised against E. coli RecA protein. Its level is significantly reduced in the recombination-deficient recE4 mutant. B. subtilis Rec is induced 10- to 20-fold in rec+ strains following treatment with mitomycin C, whereas it is not induced in the recombination-deficient mutants recE4, recE45, and recA1. We have purified B. subtilis Rec about 2000-fold to near homogeneity and we describe its activities. It catalyzes DNA-dependent hydrolysis of dATP at a rate comparable to that of E. coli RecA protein. However, B. subtilis Rec has a negligible ATPase activity, although ATP effectively inhibits dATP hydrolysis. In the presence of dATP, B. subtilis Rec catalyzes DNA strand transfer, assayed by the conversion of phi X174 linear duplex DNA and homologous circular single-stranded DNA to replicative form II (circular double-stranded DNA with a discontinuity in one strand). ATP does not support strand transfer by this protein. B. subtilis Rec catalyzes proteolytic cleavage of E. coli LexA repressor in a reaction that requires single-stranded DNA and nucleoside triphosphate. This result suggests that an SOS regulatory system like the E. coli system is present in B. subtilis. The B. subtilis enzyme does not promote any detectable cleavage of the E. coli bacteriophage lambda repressor.  相似文献   

10.
The RecA protein is a central homologous recombination enzyme in the bacterial cell. Forming a right-handed filament on ssDNA, RecA provides for a homology search between two DNA molecules and homologous strand exchange. RecA protects the cell from ionizing radiation and UV light and is capable of completing recombination during normal cell growth. Several mutant and natural RecA forms have a higher recombination potential in vitro and in vivo as compared with the wild-type Escherichia coli RecA, causing hyperrecombination. Recombinational hyperactivity of RecA depends to a great extent on the filamentation dynamics and DNA transferase properties, which may depend not only on specific amino acid substitutions in RecA, but also by defects in cell enzymatic machinery, including RecO, RecR, RecF, RecX, DinI, SSB, and PsiB. The functions of these proteins are currently known at the molecular level, while their roles in hyperrecombination are still incompletely understood. An increase in recombination in vivo is not always advantageous for the cell and is therefore limited by various mechanisms. In addition to the limitations imposed by cell enzymatic machinery, genomic rearrangements aimed at inhibiting the expression of hyperactive RecA are fixed through cell generations via selection against hyperrecombination. The mechanisms regulating hyperactive RecA forms in several model systems are considered.  相似文献   

11.
We have purified to homogeneity an activity from mitotic cell extracts of the yeast Saccharomyces cerevisiae, which promotes the transfer of a strand from a duplex linear DNA molecule to a complementary circular single strand. This activity does not require any nucleotide cofactor and is greatly stimulated by yeast single-stranded DNA-binding protein. It consists of a single polypeptide of an apparent molecular mass of 180 kDa as determined by SDS-polyacrylamide gel electrophoresis. This activity, which we call DNA strand transfer protein beta (STP beta), has reaction properties similar to those of DNA strand transfer protein alpha (STP alpha) purified from crude extracts of yeast meiotic cells (Sugino, A., Nitiss, J., and Resnick, M. A. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 3683-3687). However, STP beta differs from STP alpha in its molecular weight and column chromatographic behavior as well as by immunological comparison. Furthermore, the STP beta polypeptide remains in cells in which the STP alpha gene has been disrupted. Thus, we conclude the STP beta activity is encoded by a gene different from that for STP alpha. Although STP beta was isolated from mitotic cells, the amount of STP beta increases severalfold during meiosis. STP beta also appears to differ in molecular weight from similar activities described by other groups and may be an intact form of their activities.  相似文献   

12.
13.
Hel308 is a superfamily 2 helicase conserved in eukaryotes and archaea. It is thought to function in the early stages of recombination following replication fork arrest and has a specificity for removal of the lagging strand in model replication forks. A homologous helicase constitutes the N-terminal domain of human DNA polymerase Q. The Drosophila homologue mus301 is implicated in double strand break repair and meiotic recombination. We have solved the high resolution crystal structure of Hel308 from the crenarchaeon Sulfolobus solfataricus, revealing a five-domain structure with a central pore lined with essential DNA binding residues. The fifth domain is shown to act as an autoinhibitory domain or molecular brake, clamping the single-stranded DNA extruded through the central pore of the helicase structure to limit the helicase activity of the enzyme. This provides an elegant mechanism to tune the processivity of the enzyme to its functional role. Hel308 can displace streptavidin from a biotinylated DNA molecule, and this activity is only partially inhibited when the DNA is pre-bound with abundant DNA-binding proteins RPA or Alba1, whereas pre-binding with the recombinase RadA has no effect on activity. These data suggest that one function of the enzyme may be in the removal of bound proteins at stalled replication forks and recombination intermediates.  相似文献   

14.
15.
A DNA helicase from human cells.   总被引:8,自引:6,他引:2       下载免费PDF全文
We have initiated the characterization of the DNA helicases from HeLa cells, and we have observed at least 4 molecular species as judged by their different fractionation properties. One of these only, DNA helicase I, has been purified to homogeneity and characterized. Helicase activity was measured by assaying the unwinding of a radioactively labelled oligodeoxynucleotide (17 mer) annealed to M13 DNA. The apparent molecular weight of helicase I on SDS polyacrylamide gel electrophoresis is 65 kDa. Helicase I reaction requires a divalent cation for activity (Mg2+ greater than Mn2+ greater than Ca2+) and is dependent on hydrolysis of ATP or dATP. CTP, GTP, UTP, dCTP, dGTP, dTTP, ADP, AMP and non-hydrolyzable ATP analogues such as ATP gamma S are unable to sustain helicase activity. The helicase activity has an optimal pH range between pH8.0 to pH9.0, is stimulated by KCl or NaCl up to 200mM, is inhibited by potassium phosphate (100mM) and by EDTA (5mM), and is abolished by trypsin. The unwinding is also inhibited competitively by the coaddition of single stranded DNA. The purified fraction was free of DNA topoisomerase, DNA ligase and nuclease activities. The direction of unwinding reaction is 3' to 5' with respect to the strand of DNA on which the enzyme is bound. The enzyme also catalyses the ATP-dependent unwinding of a DNA:RNA hybrid consisting of a radioactively labelled single stranded oligodeoxynucleotide (18 mer) annealed on a longer RNA strand. The enzyme does not require a single stranded DNA tail on the displaced strand at the border of duplex regions; i.e. a replication fork-like structure is not required to perform DNA unwinding. The purification of the other helicases is in progress.  相似文献   

16.
MobA is a DNA strand transferase encoded by the plasmid R1162 and required for plasmid DNA processing during conjugal transfer. The smallest active fragment was identified using phage display and partial enzymatic digestion of the purified protein. This fragment, consisting of approximately the first 184 amino acids, is able to bind and cleave its normal DNA substrate, the origin of transfer (oriT). Smaller fragments having one of these activities were not obtained. An active intermediate consisting of MobA linked to DNA was isolated and used to show that a single molecule of MobA is sufficient to carry out all of the DNA processing steps during transfer. These results, along with those obtained earlier, point to a single large, active site in MobA that makes several different contacts along the oriT DNA strand.  相似文献   

17.
D Schmitt  K Callan    W Gruissem 《Plant physiology》1996,112(2):767-777
The prenylation of membrane-associated proteins involved in the regulation of eukaryotic cell growth and signal transduction is critically important for their subcellular localization and biological activity. In contrast to mammalian cells and yeast, however, the function of protein prenylation in plants is not well understood and only a few prenylated proteins have been identified. We partially purified and characterized farnesyl-protein transferase from tomato (Lycopersicon esculentum, LeFTase) to analyze its biochemical and molecular properties. Using Ras- and G gamma-specific peptide substrates and competition assays we showed that tomato protein extracts have both farnesyl-protein transferase and geranylgeranyl-protein transferase 1 activities. Compared with the heterologous synthetic peptide substrates, the plant-specific CaaX sequence of the ANJ1 protein is a less efficient substrate for LeFTase in vitro. LeFTase activity profiles and LeFTase beta-subunit protein (LeFTB) levels differ significantly in various tissues and are regulated during fruit development. Partially purified LeFTase requires Zn2+ and Mg2+ for enzymatic activity and has an apparent molecular mass of 100 kD Immunoprecipitation experiments using anti-alpha LeFTB antibodies confirmed that LeFTB is a component of LeFTase but not of tomato geranylgeranyl-protein transferase 1. Based on their conserved bio-chemical activities, we expect that prenyltransferases are likely integrated with the sterol biosynthesis pathway in the control of plant cell growth.  相似文献   

18.
Bacteriophage T7-induced DNA polymerase has been isolated by a procedure suitable for large scale use and which yields near homogeneous enzyme. In addition to previously described DNA polymerase activity and 3' to 5' exonucleolytic activity on single stranded DNA (Grippo, P., and Richardson, C. C. (1971) J. Biol. Chem. 246, 6867-6873), the enzyme also possesses a highly active exonuclease which hydrolyzes duplex substrates with 3' to 5' directionality. The native polymerase has been dissociated using 6 M guanidine HCl and resolved into biologically active subunits: T7 gene 5 protein and Escherichia coli thioredoxin. The phage-specified subunit obtained by this procedure is deficient in DNA polymerase and double strand exonuclease activities, with deficiencies in these activities being apparent at the level of a single turnover. However, it possesses near normal levels of a single strand hydrolytic activity which is identical to that associated with the native polymerase with respect to substrate specificity and suppression of hydrolysis by low levels of deoxyribonucleoside 5'-triphosphates. Thioredoxin forms a molecular complex with the T7 gene 5 protein, and addition of the host protein restores restores DNA polymerase and double strand exonuclease activities to near normal levels.  相似文献   

19.
Two proteins encoded by bacteriophage T7, the gene 2.5 single-stranded DNA binding protein and the gene 4 helicase, mediate homologous DNA strand exchange. Gene 2.5 protein stimulates homologous base pairing of two DNA molecules containing complementary single-stranded regions. The formation of a joint molecule consisting of circular, single-stranded M13 DNA, annealed to homologous linear, duplex DNA having 3'- or 5'-single-stranded termini of approximately 100 nucleotides requires stoichiometric amounts of gene 2.5 protein. In the presence of gene 4 helicase, strand transfer proceeds at a rate of > 120 nucleotides/s in a polar 5' to 3' direction with respect to the invading strand, resulting in the production of circular duplex M13 DNA. Strand transfer is coupled to the hydrolysis of a nucleoside 5'-triphosphate. The reaction is dependent on specific interactions between gene 2.5 protein and gene 4 protein.  相似文献   

20.
We have examined whether DNA strand exchange activities from nuclear extracts of HeLa cells or Drosophila melanogaster embryos have detectable helicase or melting activities. The partially purified recombinases have been shown to recognize homologous single strand and double strand DNA molecules and form joint molecules in a DNA strand exchange reaction. The joint molecule product consists of a linear duplex joined at one end by a region of DNA heteroduplex to a homologous single strand circular DNA. Using two different partially duplex helicase substrates, we are unable to detect any melting of duplex regions under conditions that promote joint molecule formation. One substrate consists of a 32P-labeled oligonucleotide 20 or 30 bases long annealed to M13mp18 circular single strand DNA. The second substrate consists of a linear single strand region flanked at each end by short duplex regions. We observe that even in the presence of excess recombinase protein or after prolonged incubation no helicase activity is apparent. Control experiments rule out the possibility that a helicase is masked by reannealing of displaced single strand fragments. Based on these findings and other data, we conclude that the human and D. melanogaster recombinases recognize and pair homologous sequences without significant melting of duplex DNA prior to strand exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号