首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
果蝇体细胞的性别决定   总被引:1,自引:0,他引:1  
对两性生物体而言,一个基本的发育分化是对性别的决定,或成为雌性,或成为雄性。这不仅是个体正常发育、生存不可缺少的一环,也是种族繁衍得以延续的物质基础。雌性和雄性在形态、生理和行为的许多特征及基因产物上都有很大的差异,然而它们的遗传信息的绝大部分却是一致的。因此性别发育是一个有关分化的基因调控事件,是对两套可轮换的遗传程序之一的精确决定和执行。近年来,随着不同的果蝇性别决定基因相继被发现,果蝇性别分化的调控机制也逐渐被揭示。 本世纪初,一系列遗传学实验的结果导致了“果蝇的性别由X染色体和常染色体套数的  相似文献   

2.
性别决定的分子机制复杂多样,但是处于动物性别决定的基因调控网络底部的一些调控基因具有相当高的保守性。doublesex(dsx)基因和male abnomal-3(mab-3)基因分别是果蝇(Drosophila melanogaster)和线虫(Caenorhabditis elegans)性别决定调控途径末端的重要基因,对这两个基因序列的比较导致了DM结构域的发现,它是已知在性别发育过程中最为保守的DNA结合结构域。目前,已  相似文献   

3.
性别决定和性别分化是最基本的发育事件之一,也是生殖生物学研究的重要领域之一。性别决定是一个复杂的发育调控并涉及了进化时空的多基因多因素多层次的级联网络体系共同决定的活动过程。对性别决定的研究涉及遗传、发育与进化等学科的交叉研究领域,是生命科学中遗传一发育一进化主线条研究的极好模式。该领域的研究对生命活动规律等理论问题的认识具有借鉴和指导意义,并有助于认识性别决定机制。同时,性别决定的研究不仅有助于对动物性别的人为控制,而且利于人类性别分化异常的研究,包括分析病因、寻找可行性治疗方案。  相似文献   

4.
寻找人类性别决定基因的历程   总被引:1,自引:0,他引:1  
动物和人类性别决定机制的探讨是生命科学中一个重要研究领域,性决定和性分化过程决定着雌性和雄性两种性别的存在。性别决定是在受精的瞬间就确定了的,是性分化的遗传基础;而性分化则是一个由早期胚胎至性成熟分化发育的复杂调控过程。该项研究不仅有益于对人类性别相关疾病的诊断治疗,而且对于动物性别的人为控制和个体性别鉴定,以及对于从低等脊椎动物到人类性别决定机制进化的探讨都具有重大价值。1 人类中存在性别决定基因对于哺乳动物的早期研究结果已使人们认识到精子有两种类型:“X精子”和“Y精子”,受精时哪种类型的精…  相似文献   

5.
果蝇(Drosophila)的求偶行为受多个基因调控,例如fruitless(fru)、dissatisfaction(dsf)和retained(retn)等。它们通过不同的剪切方式产生特异性产物,利用这些产物来控制雌雄果蝇的求偶行为,它们的剪切方式是雌雄果蝇求偶行为和性别决定所必需的。主要阐述了这些基因在果蝇求偶行为方面的分子调控机制,为进一步研究果蝇的求偶行为和性别决定提供理论依据。  相似文献   

6.
哺乳动物的性别决定相关基因的作用机理   总被引:1,自引:0,他引:1  
哺乳动物的性别决定是以Sry基因为主导,其它多个基因参与的级联调控的机制。近年来的研究表明,Sry、Sox9、Wt1、Sf1、Amh、Dax1、Dmrt1、Wnt4等基因都参与性别决定的级联过程。哺育动物性别决定相关基因的研究,对性分化与生殖发育过程的了解具有十分重要的意义。主要论述了参与哺乳动物性别决定与调控的相关基因、可能作用机制及其研究进展等。  相似文献   

7.
性别决定是发育和进化生物学研究的一个重大问题。已知大多数昆虫的性别决定级联为:初级信号因子→性别决定关键基因→双性基因→性别分化基因。尽管遵循这样的模式,但不同昆虫的性别决定基因和调控机制各不相同,特别是性别决定初级信号因子存在较大分歧。自黑腹果蝇Drosophila melanogaster的初级信号被发现以来,人们陆续确定了蚊子、蜜蜂、丽蝇蛹集金小蜂Nasonia vitripennis、家蚕Bombyx mori等模式昆虫的初级信号。初级信号的种类复杂多样,包括性染色体的剂量、雄性化因子(male-determining factors, M factors)、等位基因的杂合度、母代印记等,这在一定程度上增加了非模式昆虫的研究难度。尽管如此,昆虫性别决定级联的下游调控机制仍相对保守,特别是transformer(tra)+transformer2(tra2)→doublesex(dsx)/fruitless(fru)的调控模式在大多数昆虫中存在共性。tra通过感知初级信号而发生选择性可变剪接,并在tra2的帮助下实现其对自身及下游dsx和fru的剪接调控,从而维持性别发育。dsx...  相似文献   

8.
欧俊  郑思春  冯启理  刘琳 《昆虫学报》2013,56(8):917-924
翅原基发育分化与昆虫的个体发育紧密联系, 对昆虫翅发育的研究有助于阐述昆虫的发育过程。另外, 翅的形成是一些农林害虫泛滥的主要原因之一, 研究翅发育分化有助于我们从翅发育的角度控制农林害虫。目前, 翅发育分化在果蝇Drosophila中研究已较为深入详细。果蝇翅发育分化主要包括4个阶段: 翅原基(wing disc)的确定, 前-后(antero-posterior, A-P)和背-腹(dorso-ventral, D-V)组织中心(organizing center)的建立, 翅区(wing region)的确定, 以及翅区的进一步分化。具有homeobox序列的基因(homeobox 基因)如Engrailed (En)、 Apterous (Ap)和Ultrabithorax (Ubx), 分泌蛋白如Wnt家族成员Wingless (Wg)及TGF-β超家族成员Decapentaplegic (Dpp)和Hedgehog (Hh), 以及翅原基特有的核蛋白编码基因Vestigial (Vg), 共同调控了翅原基的正常发育分化。本文综述了果蝇翅原基发育分化的过程及分子机理方面的研究发现, 为翅原基的研究提供了参考。  相似文献   

9.
10.
果蝇(Drosophila melanogaster)作为最早用于研究心脏发育基因调控的模式生物,已经走过三十年的历程。果蝇心脏发育过程经历了胚胎期、幼虫期和成虫期三大阶段。在胚胎早期, Tinman、Dorsocross和Pannier等基因是关键的调控因子。Tinman参与最早的心脏前体细胞分化和心脏细胞形成,而Dorsocross和Pannier则影响心脏前体细胞的定向分化和心脏管腔的形成。进入胚胎晚期和幼虫期,果蝇的心管经历进一步的发展和重塑,该过程主要受到转录因子Hand、Mef2以及Hox基因家族的调控。在成虫期, Hox基因家族和Tinman依旧发挥重要作用。虽然果蝇心脏与脊椎动物成熟心脏存在形态上的差异,但两者心脏的早期发育过程以及调控基因和信号通路都有保守性。本文综述了果蝇心脏发育基因调控研究的三十年进展以及利用果蝇模型研究人类心脏相关疾病的潜在希望。  相似文献   

11.
Transformer基因与果蝇和线虫的性别决定   总被引:1,自引:0,他引:1  
刘辉  陈思礼  王国秀 《遗传》2005,27(1):150-154
黑腹果蝇(Drosophila melanogaster)和秀丽隐杆线虫(Caeborhabditis elegans)的性别决定的问题已研究得比较详细,且transformer基因是这两种生物性别决定中最重要的基因之一,其有关的性别决定研究在近几年取得了很大的进展。本文就线虫和果蝇的transformer基因及其相关基因的特性与功能进行了特别介绍,并在此基础上对其性别决定的分子机制进行初步的比较和分析。Abstract : Sex determination of Drosophila melanogaster and Caeborhabditis elegans has been known in detail. Great progress, is achieved in recent years, is the research of transformer genes, which are those of most important genes in sex determination in both species. In this paper, molecular character, genetic function and the relative genes of transformer genes are particularly described. On the basis,a primary compariso and analysis between the molecular mechanism of sex determination in C.elegans and D. melanogaster are presented.  相似文献   

12.
Sex determination in Drosophila melanogaster is regulated by a cascade of splicing factors which direct the sex-specific expression of gene products needed for male and female differentiation. The splicing factor TRA-2 affects sex-specific splicing of multiple pre-mRNAs involved in sexual differentiation. The tra-2 gene itself expresses a complex set of mRNAs generated through alternative processing that collectively encode three distinct protein isoforms. The expression of these isoforms differs in the soma and germ line. In the male germ line the ratio of two isoforms present is governed by autoregulation of splicing. However, the functional significance of multiple TRA-2 isoforms has remained uncertain. Here we have examined whether the structure, function, and regulation of tra-2 are conserved in Drosophila virilis, a species diverged from D. melanogaster by over 60 million years. We find that the D. virilis homolog of tra-2 produces alternatively spliced RNAs encoding a set of protein isoforms analogous to those found in D. melanogaster. When introduced into the genome of D. melanogaster, this homolog can functionally replace the endogenous tra-2 gene for both normal female sexual differentiation and spermatogenesis. Examination of alternative mRNAs produced in D. virilis testes suggests that germ line-specific autoregulation of tra-2 function is accomplished by a strategy similar to that used in D. melanogaster. The similarity in structure and function of the tra-2 genes in these divergent Drosophila species supports the idea that sexual differentiation in D. melanogaster and D. virilis is accomplished under the control of similar regulatory pathways.  相似文献   

13.
Sex Determination in Reptiles: An Update   总被引:1,自引:1,他引:0  
Sex determination and sex differentiation are two separate butrelated phenomena. Sex differentiation is a programmed cascadeof events in which the indifferent gonad develops as a testisor an ovary with the appropriate urogenital and secondary sexcharacters. Sex determination is the event that sets this cascadein motion. In placental mammals, there is good evidence thatsex is determined by a gene on the Y chromosome (SRY) that initiatestestis formation. In the absence of SRY an ovary develops. Thereare, however, examples of placental mammal that develop as normalmales with no detectable SRY. In reptiles, sex differentiationappears to be similar to mammals (i.e., the same genes and hormonesact ina similar manner), but sex determination is clearly verydifferent. Ovarian differentiation in placental mammals canoccur in the absence of estrogen or an estrogen receptor. Ovariandifferentiation in reptiles requires the presence of estrogen.In the absence of estrogen a testis develops. In TSD reptiles,embryos will develop as females when treated with estrogen evenif eggs are incubated at male-inducing temperatures, and conversely,will develop as males when estrogen synthesis is blocked ineggs incubated at female-inducing temperatures. A number ofother genes have also been shown to be important in mammaliansex determination. One of these genes, Sox9, which is expressedin differentiating mouse testis, has recently been found tobe expressed in embryonic reptile testis. Other genes that appearto be common to both mammals and reptiles in the sex determiningcascade are SF- 1, MIH, and possibly DAX-1. Current researchis now focused on how the gene that produces the enzyme necessaryfor estrogen synthesis (aromatase) is regulated in the embryosof reptiles with genetic or environmental sex determination.Controversial issues in reptilian sex determination are 1) therole of the brain in gonadal sex determination, and 2) the roleof steroid hormones in the yolk prior to sex determination  相似文献   

14.
Floral biology and sex determination are reviewed in cucumber, one of the best studied monoecious plant systems. Sexual differentiation is controlled by genotypic and environmental factors. Sex conversion has been achieved by a variety of chemical treatments, some of which being extensively used for commercial purposes. Sex expression can be shifted in either direction: femaleness is promoted by ethylene, auxines and ethylene releasing compounds, while maleness is induced by gibberellins and chemicals counteracting ethylene action. Agrobacterium transformation affects, albeit rather nonspecifically, sex expression. An important collection of sex and floral mutants has been developed. The expression of sex genes has been shown to be under the control of modifier genes or the environment. Cloning strategies can take profit of the fact that sex conversion can be modulated alone or in combination by genetical, chemical and/or environmental parameters.  相似文献   

15.
李萌  贺竹梅 《遗传》2014,36(6):611-617
有性生殖的出现是生物进化中的重大事件。性别作为生物的一种重要而又复杂的表型, 由基因和环境因素共同控制, 其中遗传因素即基因起到非常关键的作用。 然而, 并不是每个相关基因对于生物的性别都具有相同的作用, 性别决定关键基因对生物性别的决定和性别的分化具有重要作用, 因而研究和理解性别决定的关键基因具有重要意义。随着现代遗传学的发展, 目前关于生物性别决定方式以及性别决定关键基因的研究已取得了很大的进展。文章就生物的基因性别决定机制以及基因性别决定机制的研究策略进行了综述, 以期在遗传学教学中能更好地理解和阐述。  相似文献   

16.
鱼类性别决定的影响因素   总被引:2,自引:0,他引:2  
田佳  陈芸  王艺磊  张雅芝 《生命科学》2010,(10):971-977
鱼类的性别决定机制极其复杂,受到外源性激素、外界环境因素和遗传因素等多方面的影响。因此,鱼类性别决定机制的研究不仅对我们控制鱼类的性别有帮助,也将使我们对脊椎动物性别决定的可塑性有一个全面的了解。该文对影响鱼类性别决定的各种因素及其研究前景和发展趋势进行综述。  相似文献   

17.
18.
高等植物性别分化研究进展   总被引:5,自引:0,他引:5  
寿森炎  汪俏梅 《植物学报》2000,17(6):528-535
高等植物性别分化研究主要包括三个方面:性别分化特异大分子标记物的鉴定(分化程序);诱导信号(如植物激素)的分析和性决定基因的分离与分析。近年来,植物性别分化研究取得了较大进展,本文主要介绍这一研究在分化程序、诱导信号和性决定基因等方面的研究进展。  相似文献   

19.
Sex determination and differentiation are inherently fascinating to both layperson and geneticist. Major advances have accelerated interest in the molecular genetic events mediating these processes in nematodes, flies, mice and humans. Far less attention has been paid to those organisms, particularly reptiles, where sex is determined by environmental cues. However, recent experimental evidence suggests that the two modes of sex determination may not only share common genetic elements, but may also be regulated by similar mechanisms. We argue that the ability to manipulate sex by temperature provides a particularly suitable model for exploring the molecular basis of this fundamental biological process.  相似文献   

20.
Masters change,slaves remain   总被引:1,自引:0,他引:1  
Sex determination offers an opportunity to address many classic questions of developmental biology. In addition, because sex determination evolves rapidly, it offers an opportunity to investigate the evolution of genetic hierarchies. Sex determination in Drosophila melanogaster is controlled by the master regulatory gene, Sex lethal (Sxl). DmSxl controls the alternative splicing of a downstream gene, transformer (tra), which acts with tra2 to control alternative splicing of doublesex (dsx). DmSxl also controls its own splicing, creating an autoregulatory feedback loop that ensures expression of Sxl in females, but not males. A recent paper has shown that in the dipteran Ceratitis capitata later (downstream) steps in the regulatory hierarchy are conserved, while earlier (upstream) steps are not. Cctra is regulated by alternative splicing and apparently controls the alternative splicing of Ccdsx. However, Cctra is not regulated by CcSxl. Instead it appears to autoregulate in a manner similar to the autoregulation seen with DmSxl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号