首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent in vivo studies have identified specific sequences between 56 and 93 nucleotides upstream of a polyadenylation [poly(A)] consensus sequence, AAUAAA, in human immunodeficiency virus type 1 (HIV-1) that affect the efficiency of 3'-end processing at this site (A. Valsamakis, S. Zeichner, S. Carswell, and J. C. Alwine, Proc. Natl. Acad. Sci. USA 88:2108-2112, 1991). We have used HeLa cell nuclear extracts and precursor RNAs bearing the HIV-1 poly(A) signal to study the role of upstream sequences in vitro. Precursor RNAs containing the HIV-1 AAUAAA and necessary upstream (U3 region) and downstream (U5 region) sequences directed accurate cleavage and polyadenylation in vitro. The in vitro requirement for upstream sequences was demonstrated by using deletion and linker substitution mutations. The data showed that sequences between 56 and 93 nucleotides upstream of AAUAAA, which were required for efficient polyadenylation in vivo, were also required for efficient cleavage and polyadenylation in vitro. This is the first demonstration of the function of upstream sequences in vitro. Previous in vivo studies suggested that efficient polyadenylation at the HIV-1 poly(A) signal requires a spacing of at least 250 nucleotides between the 5' cap site and the AAUAAA. Our in vitro analyses indicated that a precursor containing the defined upstream and downstream sequences was efficiently cleaved at the polyadenylation site when the distance between the 5' cap and the AAUAAA was reduced to at least 140 nucleotides, which is less than the distance predicted from in vivo studies. This cleavage was dependent on the presence of the upstream element.  相似文献   

2.
Sequence conservation among mammalian poly(A) sites is limited to the sequence AAUAAA, coupled with an amorphous downstream U- or GU-rich region. Since these sequences may also occur within the coding region of mRNAs, additional information must be required to define authentic poly(A) sites. Several poly(A) sites have been shown to contain sequences outside the core elements that enhance the efficiency of 3' processing in vivo and in vitro. The human immunodeficiency virus type 1, equine infectious anemia virus, and adenovirus L1 3' processing enhancers have been shown to promote the binding of cleavage and polyadenylation specificity factor (CPSF), the factor responsible for recognition of AAUAAA, to the pre-mRNA, thereby facilitating the assembly of a stable 3' processing complex. We have used in vitro selection to examine the mechanism by which the human immunodeficiency virus type 1 3' processing enhancer promotes the interaction of CPSF with the AAUAAA hexamer. Surprisingly, RNAs selected for efficient polyadenylation were related by structure rather than sequence. Therefore, in the absence of extensive sequence conservation, our results strongly suggest that RNA structure is a critical determinant of poly(A) site recognition by CPSF and may play a key role in poly(A) site definition.  相似文献   

3.
Extracts from HeLa cell nuclei assemble RNAs containing the adenovirus type 2 L3 polyadenylation site into a number of rapidly sedimenting heterodisperse complexes. Briefly treating reaction mixtures prior to sedimentation with heparin reveals a core 25S assembly formed with substrate RNA but not an inactive RNA containing a U----C mutation in the AAUAAA hexanucleotide sequence. The requirements for assembly of this heparin-stable core complex parallel those for cleavage and polyadenylation in vitro, including a functional hexanucleotide, ATP, and a uridylate-rich tract downstream of the cleavage site. The AAUAAA and a downstream U-rich element are resistant in the assembly to attack by RNase H. The poly(A) site between the two protected elements is accessible, but is attacked more slowly than in naked RNA, suggesting that a specific factor or secondary structure is located nearby. The presence of a factor bound to the AAUAAA in the complex is independently demonstrated by immunoprecipitation of a specific T1 oligonucleotide containing the element from the 25S fraction. Precipitation of this fragment from reaction mixtures is blocked by the U----C mutation. However, neither ATP nor the downstream sequence element is required for binding of this factor in the nuclear extract, suggesting that recognition of the AAUAAA is an initial event in complex assembly.  相似文献   

4.
We developed a two-step purification of mammalian polyadenylation complexes assembled in vitro. Biotinylated pre-mRNAs containing viral or immunoglobulin poly(A) sites were incubated with nuclear extracts prepared from mouse myeloma cells under conditions permissive for in vitro cleavage and polyadenylation and the mixture was fractionated by gel filtration; complexes containing biotinylated pre-mRNA and bound proteins were affinity purified on avidin-agarose resin. Western analysis of known components of the polyadenylation complex demonstrated copurification of polyadenylation factors with poly(A) site-containing RNA but not with control RNA substrates containing either no polyadenylation signals or a point mutation of the AAUAAA polyadenylation signal. Polyadenylation complexes that were assembled on exogenous RNA eluted from the Sephacryl column in fractions consistent with their size range extending from 2 to 4 x 10(6) Mr. Complexes endogenous to the extract were of approximately the same apparent size, but more heterogeneous in distribution. This method can be used to study polyadenylation/cleavage complexes that may form upon a number of different RNA sequences, an important step towards defining which factors might differentially associate with specific RNAs.  相似文献   

5.
Complexes form between processing factors present in a crude nuclear extract from HeLa cells and a simian virus 40 (SV40) late pre-mRNA which spans the polyadenylation [poly(A)] site. A specific 'pre-cleavage complex' forms on the pre-mRNA before cleavage. Formation of this complex requires the highly conserved sequence AAUAAA: it is prevented by mutations in AAUAAA, and by annealing DNA oligonucleotides to that sequence. After cleavage, the 5' half-molecule is found in a distinct 'post-cleavage complex'. In contrast, the 3' half-molecule is released. After cleavage and polyadenylation, polyadenylated RNA also is released. De novo formation of the post-cleavage complex requires AAUAAA and a nearby 3' terminus. Competition experiments suggest that a component which recognizes AAUAAA is required for formation of both pre- and post-cleavage complexes.  相似文献   

6.
7.
In mammals, polyadenylation of mRNA precursors (pre-mRNAs) by poly(A) polymerase (PAP) depends on cleavage and polyadenylation specificity factor (CPSF). CPSF is a multisubunit complex that binds to the canonical AAUAAA hexamer and to U-rich upstream sequence elements on the pre-mRNA, thereby stimulating the otherwise weakly active and nonspecific polymerase to elongate efficiently RNAs containing a poly(A) signal. Based on sequence similarity to the Saccharomyces cerevisiae polyadenylation factor Fip1p, we have identified human Fip1 (hFip1) and found that the protein is an integral subunit of CPSF. hFip1 interacts with PAP and has an arginine-rich RNA-binding motif that preferentially binds to U-rich sequence elements on the pre-mRNA. Recombinant hFip1 is sufficient to stimulate the in vitro polyadenylation activity of PAP in a U-rich element-dependent manner. hFip1, CPSF160 and PAP form a ternary complex in vitro, suggesting that hFip1 and CPSF160 act together in poly(A) site recognition and in cooperative recruitment of PAP to the RNA. These results show that hFip1 significantly contributes to CPSF-mediated stimulation of PAP activity.  相似文献   

8.
9.
A Abe  Y Hiraoka    T Fukasawa 《The EMBO journal》1990,9(11):3691-3697
We have identified a signal sequence (designated core signal) necessary to specify formation of mRNA 3' end of the GAL7 gene in Saccharomyces cerevisiae within a DNA segment 26 bp long. The sequence was located 4-5 nucleotides upstream from the 3' end, i.e. the polyadenylation site, of the GAL7 mRNA. Replacement of a DNA segment encompassing the polyadenylation site with a pBR322 DNA, leaving the core signal intact, resulted in alteration of the mRNA 3' end by several nucleotides, suggesting the existence of an additional signal (designated end signal) at or near the polyadenylation site. The normal end formation was abolished when the core signal was placed in the reverse orientation. A considerable fraction of pre-mRNA synthesized in vitro with SP6 RNA polymerase on the template of a DNA fragment containing these signals was cleaved and polyadenylated presumably at the in vitro 3' end during incubation in a cell-free system of yeast. By contrast pre-mRNA synthesized on the template with the core signal alone was processed but much less efficiently. No such processing was seen when the pre-mRNA either lacked the core signal or contained it in the reverse orientation.  相似文献   

10.
A study of the cis-acting elements involved in the 3' end formation of the RNAs from the major late L4 family of adenovirus-2 was undertaken. Series of 5' or 3' end deletion mutants and mutants harboring either internal deletions or substitutions were prepared and assayed for in vitro cleavage. This first allowed the demonstration of a sequence, located at -6 to -29, relative to AAUAAA, whose deletion or substitution reduces cleavage efficiency at the L4 polyadenylation site two to three fold. This upstream efficiency element 5' AUCUUUGUUGUC/AUCUCUGUGCUG 3' is constituted of a partially repeated 12 nucleotide long, UCG rich sequence. The activities of the 2 sequence elements in cleavage are additive. We also searched for regulatory sequences downstream of the L4 polyadenylation site. We found that the deletion or substitution of a 30 nucleotide long UCG rich sequence, between nucleotides +7 and +35 relative to the cleavage site and harboring a UCCUGU repeat reduces cleavage efficiency at least ten fold. A GUUUUU sequence, starting at +35 had no influence. Thus, the usage of the L4 polyadenylation site requires down-stream sequences different from the canonical GU or U boxes and is regulated by upstream sequence elements.  相似文献   

11.
Spatial constraints on polyadenylation signal function   总被引:11,自引:0,他引:11  
Efficient cleavage and polyadenylation of eukaryotic messenger RNAs require at least two signal elements: an AAUAAA or closely related sequence located 7-30 base pairs (bp) upstream of the site of processing, and a G/U- or U-rich sequence located 3' to the cleavage site. The herpes simplex virus type 1 thymidine kinase (tk) gene contains two copies of the AATAAA hexanucleotide and a GT-rich region. We have shown that the first AATAAA and the GT-rich region are essential for efficient processing, both in vivo and in vitro, whereas the second AATAAA does not appear to play any role in the formation of tk mRNA 3' ends. The failure of a signal containing only the second AATAAA and the GT-rich element to signal cleavage and polyadenylation suggested that these two elements might be too close together to constitute a functional polyadenylation signal. The experiments described in this report were directed at determining the effects on mRNA 3' end formation of alterations in spacing between signal elements. Wild-type tk contains 19 bp between these two elements. Constructs were made in which an AATAAA and the GT-rich region were separated by various distances ranging from 7 to 43 bp. The quantity and location of 3' ends of the tk mRNA produced by these constructs in Cos-1 cells were measured by S1 nuclease protection analysis. Signal efficiency was gradually reduced as the separation between the two signal elements was increased; with a separation of 43 bp, the signal functioned at approximately one-eighth the efficiency of the parental construction. Bringing the two signals closer together resulted in decreased signal efficiency; with a separation of 7 or 9 bp, no tk mRNA polyadenylated within the normal region was produced. Altering the sequences between these two elements without changing the distance had small effects on processing efficiency.  相似文献   

12.
Regulation of polyadenylation efficiency at the secretory poly(A) site plays an essential role in gene expression at the immunoglobulin (IgM) locus. At this poly(A) site the consensus AAUAAA hexanucleotide sequence is embedded in an extended AU-rich region and there are two downstream GU-rich regions which are suboptimally placed. As these sequences are involved in formation of the polyadenylation pre-initiation complex, we examined their function in vivo and in vitro . We show that the upstream AU-rich region can function in the absence of the consensus hexanucleotide sequence both in vivo and in vitro and that both GU-rich regions are necessary for full polyadenylation activity in vivo and for formation of polyadenylation-specific complexes in vitro . Sequence comparisons reveal that: (i) the dual structure is distinct for the IgM secretory poly(A) site compared with other immunoglobulin isotype secretory poly(A) sites; (ii) the presence of an AU-rich region close to the consensus hexanucleotide is evolutionarily conserved for IgM secretory poly(A) sites. We propose that the dual structure of the IgM secretory poly(A) site provides a flexibility to accommodate changes in polyadenylation complex components during regulation of polyadenylation efficiency.  相似文献   

13.
Sedimentation analysis of polyadenylation-specific complexes.   总被引:21,自引:11,他引:10  
Precursor RNA containing the adenovirus L3 polyadenylation site is assembled into a 50S complex upon incubation with HeLa nuclear extract at 30 degrees C. The cofactor and sequence requirements for 50S complex formation are similar to those of the in vitro polyadenylation reaction. Assembly of this complex requires ATP but is not dependent upon synthesis of a poly(A) tract. In addition, a 50S complex does not form on substrate RNA in which the AAUAAA hexanucleotide upstream of the poly(A) site has been mutated to AAGAAA or on RNA in which sequences between +5 and +48 nucleotides downstream of the site have been removed. These mutations also prevent in vitro processing of substrate RNA. Kinetic studies suggest that the 50S complex is an intermediate in the polyadenylation reaction. It forms at an early stage in the reaction and at later times contains both poly(A)+ RNA as well as unreacted precursor. U-type small nuclear ribonucleoprotein particles are components of the 50S complex, as shown by immunoprecipitation with antiserum specific to the trimethyl cap of these small nuclear RNAs.  相似文献   

14.
The sequence AAUAAA is found near the polyadenylation site of eucaryotic mRNAs. This sequence is required for accurate and efficient cleavage and polyadenylation of pre-mRNAs in vivo. In this study we show that synthetic simian virus 40 late pre-mRNAs are cleaved and polyadenylated in vitro in a HeLa cell nuclear extract, and that cleavage in vitro is abolished by each of four different single-base changes in AAUAAA. In this same extract, precleaved RNAs (RNAs with 3' termini at the polyadenylation site) are efficiently polyadenylated. This in vitro polyadenylation reaction also requires the AAUAAA sequence.  相似文献   

15.
16.
The structure of the highly efficient simian virus 40 late polyadenylation signal (LPA signal) is more complex than those of most known mammalian polyadenylation signals. It contains efficiency elements both upstream and downstream of the AAUAAA region, and the downstream region contains three defined elements (two U-rich elements and one G-rich element) instead of the single U- or GU-rich element found in most polyadenylation signals. Since many reports have indicated that the secondary structure in RNA may play a significant role in RNA processing, we have used nuclease structure analysis techniques to determine the secondary structure of the LPA signal. We find that the LPA signal has a functionally significant secondary structure. Much of the region upstream of AAUAAA is sensitive to single-strand-specific nucleases. The region downstream of AAUAAA has both double- and single-stranded characteristics. Both U-rich elements are predominately sensitive to the double-strand-specific nuclease RNase V(1), while the G-rich element is primarily single stranded. The U-rich element closest to AAUAAA contains four distinct RNase V(1)-sensitive regions, which we have designated structural region 1 (SR1), SR2, SR3, and SR4. Linker scanning mutants in the downstream region were analyzed both for structure and for function by in vitro cleavage analyses. These data show that the ability of the downstream region, particularly SR3, to form double-stranded structures correlates with efficient in vitro cleavage. We discuss the possibility that secondary structure downstream of the AAUAAA may be important for the functions of polyadenylation signals in general.  相似文献   

17.
We have conducted an extensive linker substitution analysis of the polyadenylation signal from a pea rbcS gene. From these studies, we can identify at least two, and perhaps three, distinct classes of cis element involved in mRNA 3' end formation in this gene. One of these, termed the far-upstream element, is located between 60 and 120 nt upstream from its associated polyadenylation sites and appears to be largely composed of a series of UG motifs. A second, termed the near-upstream element, is more proximate to poly(A) sites and may be functionally analogous to the mammalian polyadenylation signal AAUAAA, even though the actual sequences involved may not be AAUAAA. The third possible class is the putative cleavage and polyadenylation site itself. We find that the rbcS-E9 far-upstream element can replace the analogous element in another plant polyadenylation signal, that from cauliflower mosaic virus, and that one near-upstream element can function with either of two poly(A) sites. Thus, these different cis elements are largely interchangeable. Our studies indicate that a cellular plant gene possesses upstream elements distinct from AAUAAA that are involved in mRNA 3' end formation and that plant genes probably have modular, multicomponent polyadenylation signals.  相似文献   

18.
19.
20.
H M Rothnie  J Reid    T Hohn 《The EMBO journal》1994,13(9):2200-2210
The requirement for sequence specificity in the AAUAAA motif of the cauliflower mosaic virus (CaMV) polyadenylation signal was examined by saturation mutagenesis. While deletion of AAUAAA almost abolished processing at the CaMV polyadenylation site, none of the 18 possible single base mutations had a dramatic effect on processing efficiency. The effect of replacing all six nucleotides simultaneously varied depending on the sequence used, but some replacements were as detrimental as the deletion mutant. Taken together, these results confirm that AAUAAA is an essential component of the CaMV polyadenylation signal, but indicate that a high degree of sequence variation can be tolerated. A repeated UUUGUA motif was identified as an important upstream accessory element of the CaMV polyadenylation signal. This sequence was able to induce processing at a heterologous polyadenylation site in a sequence-specific and additive manner. The effect of altering the spacing between this upstream element and the AAUAAA was examined; moving these two elements closer together or further apart reduces the processing efficiency. The upstream element does not function to signal processing at the CaMV polyadenylation site if placed downstream of the cleavage site. Analysis of further upstream sequences revealed that almost all of the 200 nt fragment required for maximal processing contributes positively to processing efficiency. Furthermore, isolated far upstream sequences distinct from UUUGUA were also able to induce processing at a heterologous polyadenylation site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号