首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
阻断大鼠杏仁中央核AMPA受体对臂旁核味觉反应的影响   总被引:1,自引:0,他引:1  
Kang Y  Yan JQ  Huang T 《生理学报》2004,56(6):671-677
以往的研究表明,电刺激或损毁杏仁中央核明显改变臂旁核味觉神经元的活动。为了研究杏仁中央核内的兴奋性受体是否参与此调节,本实验应用细胞外记录方法,在乌拉坦麻醉的大鼠观察了杏仁中央核内微量注射6-氰基-7-硝基喹喔啉-2,3- 二酮(CNQX)前后臂旁核味觉神经元对四种基本味觉刺激反应的变化。结果表明,杏仁中央核内注射 CNQX 对 30% 的臂旁核神经元产生时间依赖性的抑制作用,此抑制作用以对盐酸和盐酸奎宁刺激引起的反应尤为明显(P<0.05)。根据对味觉刺激的优势反应,40% 的NaCl优势、30% 的HCl优势和20% 的奎宁优势反应神经元在注射CNQX 后对至少一种味觉刺激的反应降低;盐酸优势和奎宁优势反应神经元对各自的优势反应在杏仁中央核内注药后均明显降低(P<0.01)。相关性分析表明,在注射 CNQX 后,臂旁核味觉神经元对 NaCl 和其它三种味觉刺激物之间的分辨能力降低。以上结果表明,杏仁中央核内的AMPA 受体可能参与杏仁核对臂旁核味觉神经元的下行调控。  相似文献   

2.
目的:研究大鼠杏仁中央核在味觉欣快感受中的作用,以探讨其在味觉指导下进行摄食行为调节的可能机制.方法:采用双瓶选择实验(味觉溶液vs水),观察电解损毁大鼠双侧CeA后对四种基本味觉溶液摄入的影响.结果:与对照组相比,CeA损毁明显降低了大鼠对0.03、0.1和0.3 mol/L氯化钠溶液,0.01、0.1和1.0 mmol/L柠檬酸溶液及10、20和50 μmol/L盐酸奎宁溶液的摄入,且其对相邻浓度的氯化钠、柠檬酸和盐酸奎宁的分辨能力也明显降低.但两组动物总的摄入量(味觉溶液和水)在各组实验中均无显著性差异.结论:CeA损毁可降低大鼠对味觉溶液的摄入,但对不同浓度溶液的影响不同.结果提示CeA可能通过影响中枢味觉评估机制,改变大鼠对不同味觉刺激的欣快阈值,从而参与摄食行为的调控.  相似文献   

3.
Lei Q  Yan JQ  Shi JH  Yang XJ  Chen K 《生理学报》2007,59(3):260-266
本研究以轻度麻醉的大鼠为对象,应用细胞外微电极记录技术,观察并分析了脑桥臂旁核抑制性味觉神经元的自发活动及其对NaCl、HCl、盐酸奎宁(quinine HCl,QHCl))和蔗糖等四种基本味觉刺激的反应。共分析了18个具有自发活动的抑制性味觉神经元,自发放电频率分布在0.2~5.5Hz之间,平均放电频率(2.15±0.31)Hz。18个神经元中,1个神经元对单一味觉刺激呈抑制性反应,其余17个神经元对两种或两种以上的基本味觉刺激发生抑制性反应,且抑制具有潜伏期短、持续时间较长等特征。抑制持续时间5~80S,部分神经元表现为后抑制效应。根据神经元对四种基本味觉刺激呈抑制性反应的程度,将其分为NaCl优势神经元(n=8),HCl优势神经元(n=3),QHCl优势神经元n=3)和蔗糖优势神经元n=4)。其中NaCl优势神经元的反应谐宽最高(0.945)。这些神经元对欣快或厌恶刺激的区别能力较低。结果提示,在脑桥臂旁核存在对味觉刺激起抑制性反应的神经元,这些味觉神经元可能在味觉的调制及对欣快和厌恶刺激的编码中发挥重要的作用。  相似文献   

4.
【目的】为了筛选有效的草地贪夜蛾Spodoptera frugiperda幼虫取食激食素和抑制剂并探究其味觉感受机理,为生态防治草地贪夜蛾提供理论和实践上的依据。【方法】利用单感受器记录法测定草地贪夜蛾5龄第2天幼虫下颚外颚叶上中栓锥感器和侧栓锥感器对不同浓度的蔗糖、黑芥子苷、单宁酸和盐酸奎宁4种刺激物质的电生理反应,并采用二项叶碟法测定草地贪夜蛾幼虫对这些刺激物质的取食选择行为。【结果】草地贪夜蛾幼虫中栓锥感器和侧栓锥感器内均存在对蔗糖、黑芥子苷和单宁酸敏感的味觉受体神经元,但是神经元的活性随着刺激物的种类及浓度而变化。其中,两类感器内神经元对蔗糖和黑芥子苷的反应均呈现典型的浓度梯度反应。中栓锥感器内存在对盐酸奎宁敏感的味觉受体神经元,但是呈现逆浓度梯度的反应模式,侧栓锥感器内不存在对盐酸奎宁敏感的神经元。蔗糖显著诱导幼虫的取食行为,而盐酸奎宁、黑芥子苷和单宁酸均抑制幼虫的取食行为,且都呈现浓度梯度的抑制活性。【结论】草地贪夜蛾幼虫中栓锥感器和侧栓锥感器内均存在对取食激食素和抑制剂敏感的味觉受体神经元,但是两类感器不论在反应谱上还是敏感性上均存在差异。蔗糖可以作为取食激食素,盐酸奎宁、黑芥子苷和单宁酸可以作为取食抑制剂的有效候选物质。幼虫对蔗糖、黑芥子苷和单宁酸的味觉反应在一定程度上解释了其取食选择行为的味觉基础。本研究为草地贪夜蛾的生态防治提供了味觉信息。  相似文献   

5.
目的:阐明电刺激腓深神经(DPN)对下丘脑室旁核(PVN)兴奋后的心血管反应的调节作用及杏仁中央核(CeA)在此作用中的地位。方法:电刺激SD大鼠中枢核团PVN,或用核团(CeA)内微量注射法注射L-谷氨酸钠(L-Glu)或红藻氨酸(KA)。同时记录大鼠股动脉血压、平均动脉压(MAP)、心电图及心率(HR)曲线。结果:电刺激一侧PVN后,MAP升高,HR变化不一,以下降为主。电刺激腓深神经对PVN兴奋诱发的升压反应有抑制作用。在同侧CeA微量注射0.02mol/L的KA100nl,10min后刺激PVN,血压升高(13.8±3.2)mmHg,较注射KA前削弱了(6.6±1.6)mmHg(P<0.05),DPN对刺激PVN的升压反应的抑制百分比也从51.5%降为32.0%。结论:杏仁中央核部分介导了PVN兴奋后引起的升压反应。DPN传入冲动对PVN中枢性升压反应有抑制作用,其机制可能与杏仁中央核有关。  相似文献   

6.
目的 :研究经口腔味觉刺激后 ,大鼠血清瘦素水平和脑瘦素受体表达情况。方法 :给大鼠口腔味觉刺激 ,味觉刺激物包括 3mol/L蔗糖 ,5mmol/L糖精钠 ,0 .1mol/LNaCl,0 .0 1mol/LHCl,1mmol/L奎宁H2 SO4和 0 .1mol/L谷氨酸钠 ,采用大鼠瘦素放免试剂盒测定血清瘦素水平。应用免疫组织化学ABC法对大脑切片进行染色 ,一抗为特异性羊抗瘦素受体IgG。 结果 :与对照组 (以蒸馏水代替味觉刺激物 )相比 ,仅甜味组 (包括蔗糖和糖精钠 )血清瘦素水平升高 (P <0 .0 5 )。杏仁核、下丘脑、臂旁核和孤束核等与味觉和摄食明显相关的核团均存在瘦素受体免疫反应 (LR IR)阳性细胞 ,但是阳性细胞数目在味觉刺激组和对照组间无显著性差异。结论 :给大鼠甜味觉刺激后 ,血清瘦素水平升高。并且杏仁核这个在摄食的发动和引导中起重要作用的核团存在LR IR阳性细胞。这些结果提示瘦素可能通过调节味觉感受而影响摄食 ,有必要对瘦素在味觉感受方面的作用进一步研究  相似文献   

7.
目的:探讨杏仁中央核(CeA)损毁对缺钠大鼠钠欲行为启动和表达的影响。方法:将18只成年雄性SD大鼠随机分为3组(n=6):双侧Ce A损毁组、假损毁组和不损毁组,手术恢复后给予大鼠14 d低钠饲料摄食以建立缺钠大鼠模型,运用单笼双瓶选择测试方法观察缺钠大鼠在24 h内5个不同时间段对0.3 mol/L NaCl和自由饮水的摄入情况。应用免疫荧光化学染色方法观察杏仁中央核损毁与否对缺钠或正常大鼠孤束核内醛固酮敏感神经元活动的影响。结果:低钠饮食14 d后,大鼠对0.3 mol/L NaCl 24 h内饮用量和偏爱率比低钠饮食前明显增加(P<0.01);杏仁中央核损毁后缺钠大鼠对0.3 mol/L Na Cl溶液的摄入量和偏爱率显著下降(P<0.01)。杏仁中央核损毁对低钠饮食诱发的大鼠孤束核内醛固酮敏感神经元活动增加没有影响。结论:低钠饮食诱导大鼠钠欲行为表达增加;杏仁中央核损毁压抑缺钠大鼠钠欲行为的表达,而对缺钠大鼠的钠欲行为的启动没有影响。  相似文献   

8.
缰核介导刺激岛叶、杏仁中央核引起的升压反应   总被引:2,自引:0,他引:2  
目的:证明缰核(Hb)是刺激岛叶(INS)、杏仁中央核(CeA)所引起的升压效应下行通路的主要中继站之一。方法:分别电刺激INS、CeA均可引起升压反应,在刺激电极的同侧及双侧Hb内微量注射盐酸利多卡因,再电刺激INS、CeA观察升压效应。结果:单侧Hb内注射利多卡因,电刺激INS、CeA所引起的升压反应分别降低36.9%、39.6%。双侧Hb内注射利多卡因,电刺激INS、CeA所引起的升压反应分别降低41.7%、46.1%。单侧或双侧Hb内微量注射生理盐水或人工脑脊液均不能降低电刺激INS、CeA引起的升压反应。结论:缰核是介导电刺激岛叶、杏仁中央核引起升压效应下行通路的主要中继站之一。  相似文献   

9.
大鼠前庭内侧核在前庭—交感反应中的作用   总被引:1,自引:1,他引:0  
潘培森  张义声 《生理学报》1991,43(2):184-188
实验在氯醛糖和尿酯混合麻醉的大鼠上进行。在内脏大神经上记录刺激同侧前庭神经进入脑干处的交感反应。电刺激前庭神经可在同侧内脏大神经引出—明确的叠加反应,其平均潜伏期为45.8±6.98ms,时程为55.21±5.35ms。增加刺激强度,反应幅度也增加,但潜伏期不变。用前庭内侧核(NVM)的片层场电位作为指标并选择其相位倒转处作刺激点,可在同侧内脏大神经记录到潜伏期为32ms 的叠加反应,而同一动物刺激前庭神经入脑处时内脏大神经反应的潜伏期为43ms。在 NVM 头端损毁后,此前庭-交感反应明显减小,再损毁尾端 NVM 后,此反应消失。损毁 Deiters 核对前庭-交感反应无影响。这些结果表明 NVM在内脏大神经记录到的前庭-交感反应中是一重要的中继站。  相似文献   

10.
江连海  沈锷 《生理学报》1985,37(6):503-509
在麻醉的32只猫记录了电刺激颌下腺神经支引起的上涎核平均场电位和单位放电。逆行电刺激颌下腺神经支引起的上涎核平均场电位分布在同侧脑干背面闩部头端5.5—8mm处,与过去的组织学结果大致符合。用微电极在上涎核记录了68个对刺激颌下腺神经支有反应的单位,其中33个单位作了碰撞试验。有9个单位符合逆向反应标准,它们是真正的颌下腺节前神经元,逆行反应的潜伏期为14.4±2.5ms,其轴突传导速度为2.9±0.1m/s。其他不符合逆向反应标准的单位,对刺激颌下腺神经支仍能发生反应,估计多为中间神经元。在一部分单位观察了电刺激舌神经或味觉刺激舌引起的反应。根据这些观察对上涎核内存在复杂神经元回路的可能性作了讨论。  相似文献   

11.
Abstract In a behavioral experiment, rats reliably acquired a taste aversion to non-preferred 0.01 M HCl that had been previously paired with intraperitoneal injection of 0.15 M LiCl. These rats showed aversions to other acidic solutions such as malic acid and tartaric acid. In a neurophysiological experiment, the neuronal activities of the parabrachial nucleus (PBN) were recorded after the acquisition of conditioned taste aversion (CTA) to 0.01 M HCl in urethane-anesthetized rats. Neuronal responses to the conditioned stimulus (CS) did not change on the whole but decreased in the dorsal region to the brachium conjunctivum. The proportion of HCl-best to NaCl-best units was lower in the CTA group than in controls. The spontaneous firing rate was lower in the CTA group than in controls. Correlation coefficients between the HCl CS and normally preferred tastes (sucrose and NaCl) were more negative and those between HCl and quinine were more positive in the CTA group than in the controls. These results may be explained by the notion that gustatory responses of PBN neurons are concerned with alterations in taste hedonics after the acquisition of conditioned taste aversions.  相似文献   

12.
Evidence suggests that GABA might mediate the inhibitory influence of centrifugal inputs on taste-evoked responses in the parabrachial nucleus (PBN). Previous studies show that activation of the gustatory cortex (GC), bed nucleus of the stria terminalis (BNST), central nucleus of the amygdala (CeA), and lateral hypothalamus (LH) inhibits PBN taste responses, GABAergic neurons are present in these forebrain regions, and GABA reduces the input resistance of PBN neurons. The present study investigated the expression of glutamic acid decarboxylase immunoreactivity (GAD_67 ir) in GC, BNST, CeA, and LH neurons that project to the PBN in rats. After anesthesia (50 mg/kg ip Nembutal), injections of the retrograde tracer Fluorogold (FG) were made in the physiologically defined gustatory PBN. Brain tissue containing the above forebrain structures was processed and examined for FG and GAD_67 ir. Similar to previous studies, each forebrain site contained retrogradely labeled neurons. Our results suggest further that the major source of input to the PBN taste region is the CeA (608 total cells) followed by GC (257 cells), LH (106 cells), and BNST (92 cells). This suggests a differential contribution to centrifugal control of PBN taste processing. We further show that despite the presence of GAD_67 neurons in each forebrain area, colocalization was extremely rare, occurring only in 3 out of 1,063 FG-labeled cells. If we assume that the influence of centrifugal input is mediated by direct projections to the gustatory region of the PBN, then GABAergic forebrain neurons apparently are not part of this descending pathway.  相似文献   

13.
Palatable gustatory stimuli promote feeding, whereas gastric distension generally inhibits this behavior. We explored a neural basis for integration of these opposing sensory signals by evaluating the effect of gastric distension on gustatory responses in the parabrachial nucleus (PBN) of anesthetized rats. Sixteen percent of 92 taste cells were coactivated; they responded to independent taste or gastric distension stimulus application. Modulation of taste responses by distension was more prevalent; taste responses declined 37% in response to distension in 25% of the cells and increased by 46% in 10% of cells. Across the whole population, however, the suppressive effect of distension on taste responses was small (6%). The incidence of modulation did not vary as a simple hedonic function of gustatory sensitivity, i.e., similar proportions of sucrose-, citric-acid-, and QHCl-best, but not NaCl-best, neurons were modulated by gastric distension. Coactivated, modulated, and nonmodulated gustatory-responsive cells were intermingled in the gustatory zone of the caudal PBN. The suppression of PBN taste responses by visceral stimulation may reflect a mechanism for satiation and further implicates the PBN in the control of ingestive function.  相似文献   

14.
Smith DV  Ye MK  Li CS 《Chemical senses》2005,30(5):421-434
Previous studies have shown a modulatory influence of limbic forebrain areas, such as the central nucleus of the amygdala and lateral hypothalamus, on the activity of taste-responsive cells in the nucleus of the solitary tract (NST). The bed nucleus of the stria terminalis (BST), which receives gustatory afferent information, also sends descending axons to the NST. The present studies were designed to investigate the role of the BST in the modulation of NST gustatory activity. Extracellular action potentials were recorded from 101 taste-responsive cells in the NST of urethane-anesthetized hamsters and analyzed for a change in excitability following bilateral electrical stimulation of the BST. The response of NST taste cells to stimulation of the BST was predominately inhibitory. Orthodromic inhibitory responses were observed in 29 of 101 (28.7%) NST taste-responsive cells, with four cells inhibited bilaterally. An increase in excitability was observed in seven of the 101 (6.9%) NST taste cells. Of the 34 cells showing these responses, 25 were modulated by the ipsilateral BST and 15 by the contralateral; four were inhibited bilaterally and two inhibited ipsilaterally and excited contralaterally. The duration of inhibitory responses (mean = 177.9 ms) was significantly longer than that of excitatory responses (35.4 ms). Application of subthreshold electrical stimulation to the BST during taste trials inhibited or excited the taste responses of every BST-responsive NST cell tested with this protocol. NST neurons that were most responsive to sucrose, NaCl, citric acid or quinine hydrochloride were all affected by BST stimulation, although citric acid-best cells were significantly more often modulated and NaCl-best less often modulated than expected by chance. These results combine with excitatory and inhibitory modulation of NST neurons by the insular cortex, lateral hypothalamus and central nucleus of the amygdala to demonstrate extensive centrifugal modulation of brainstem gustatory neurons.  相似文献   

15.
Electrical stimulation of the waist area (W) of the parabrachial nucleus (PBN) in conscious rats elicits stereotypical oromotor behaviors (Galvin et al. 2004). To identify neurons possibly involved in these behavioral responses, we used Fos immunohistochemistry to locate populations of neurons within central gustatory and oromotor centers activated by PBN stimulation. Dramatic increases in the numbers of Fos-like immunoreactive neurons were observed in the ipsilateral PBN, nucleus of the solitary tract (NST), and central amygdala. The increase in neurally-activated cells within the ventral subdivision (V) of the rostral NST is particularly noteworthy because of its projections to medullary oromotor centers. A modest increase in labeled neurons occurred bilaterally within the gustatory cortex. Although there were trends for an increase in Fos-labeled neurons in the gustatory thalamus and medullary reticular formation, most changes in labeled neurons in these areas were not statistically significant. Linear regression analysis revealed a relationship between the number of taste reactivity (TR) behaviors performed during PBN stimulation and the number of Fos-like immunoreactive neurons in the caudal PBN and V of the rostral NST. These data support a role for neurons in W of the PBN and the ventral rostral NST in the initiation of TR behaviors.  相似文献   

16.
Cho YK  Li CS  Smith DV 《Chemical senses》2003,28(2):155-171
The lateral hypothalamus (LH) and the central nucleus of the amygdala (CeA) exert an influence on many aspects of ingestive behavior. These nuclei receive projections from several areas carrying gustatory and viscerosensory information, and send axons to these nuclei as well, including the nucleus of the solitary tract (NST). Gustatory responses of NST neurons are modulated by stimulation of the LH and the CeA, and by several physiological factors related to ingestive behavior. We investigated the effect of both LH and CeA stimulation on the activity of 215 taste-responsive neurons in the hamster NST. More than half of these neurons (113/215) were modulated by electrical stimulation of the LH and/or CeA; of these, 52 cells were influenced by both areas, often bilaterally. The LH influenced more neurons than the CeA (101 versus 64 cells). Contralateral stimulation of these forebrain areas was more often effective (144 responses) than ipsilateral (74). Modulatory effects were mostly excitatory (102 cells); 11 cells were inhibited, mostly by ipsilateral LH stimulation. A subset of these cells (n = 25) was examined for the effects of microinjection of DL-homocysteic acid (DLH), a glutamate receptor agonist, into the LH and/or CeA. The effects of electrical stimulation were completely mimicked by DLH, indicating that cell somata in and around the stimulating sites were responsible for these effects. Other cells (n = 25) were tested for the effects of electrical stimulation of the LH and/or CeA on the responses to taste stimulation of the tongue (32 mM sucrose, NaCl and quinine hydrochloride, and 3.2 mM citric acid). Responses to taste stimuli were enhanced by the excitatory influence of the LH and/or CeA. These data demonstrate that descending influences from the LH and CeA reach many of the same cells in the gustatory NST and can modulate their responses to taste stimulation.  相似文献   

17.
Responses of three groups of neural fibers from the chorda tympani of the hamster to binary mixtures of taste stimuli applied to the tongue were analyzed. The groups displayed different sensitivities to six chemicals at concentrations that had approximately equal effects on the whole nerve. Sucrose-best fibers responded strongly only to sucrose and D-phenylalanine. NaCl-best and HCl-best fibers, responded to four electrolytes: equally to CaCl2 and nearly equally to HCl, but the former responded more to NaCl, and the latter responded more to NH4Cl. The groups of fibers dealt differently with binary mixtures. Sucrose- best fibers responded to a mixture of sucrose and D-phenylalanine as if one of the chemicals had been appropriately increased in concentration, but they responded to a mixture of either one and an electrolyte as if the concentration of sucrose or D-phenylalanine had been reduced. NaCl- best fibers responded to a mixture as if it were a "mixture" of two appropriate concentrations of one chemical, or somewhat less. But, responses of HCl-best fibers to mixtures were greater than that, approaching a sum of responses to components. These results explain effects on the whole nerve, suggest that the sensitivity of a mammalian taste receptor to one chemical can be affected by a second, which may or may not be a stimulus for that receptor, and suggest that some effects of taste mixtures in humans may be the result of peripheral processes.  相似文献   

18.
The parabrachial nucleus (PBN) is regarded as an important locus for the processing and integration of sensory inputs from oral, gastrointestinal, and postabsorptive receptor sites and is thus thought to play an important role in regulating food intake. Gastric distension is an important satiation cue; however, such responses have been qualitatively characterized only over a limited area of the PBN. To more fully characterize gastric distension responses throughout the PBN, the responses of single units to gastric distension were tested using computer-controlled balloon inflation (3-18 ml air) in pentobarbital sodium- and/or urethan-anesthetized male rats. Distension-responsive neurons were indeed distributed throughout the nucleus from rostral areas typically considered to be visceral to more caudal areas associated with gustatory function, providing further anatomical support for the hypothesis that the PBN integrates taste and visceral signals that control feeding. Most PBN neurons had thresholds of 6 ml or less, similar to vagal afferent fibers. However, in contrast to the periphery, there were both excitatory and inhibitory responses. Increases in volume were associated with two distinct effects. First, as volume increased, the response rate increased; second, the duration of the response increased. In fact, in a subset of cells, responses to gastric distension lasted well beyond the stimulation period, particularly at larger volumes. Prolonged gastric distension responses are not common in the periphery and may constitute a central mechanism that contributes to satiation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号