首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
采用硅胶、聚酰胺、Sephadex LH-20等色谱方法从盐地碱蓬乙醇提取液中分离得到6个化合物,分别鉴定为β-谷甾醇(1)、胡萝卜苷(2)、没食子酸(3)、槲皮素(4)、槲皮素-3-O--β-D-吡喃葡萄糖苷(5)和苯甲醇-β-D-吡喃糖苷(6).以上化合物均为首次从碱蓬属植物中分离得到.  相似文献   

2.
辽河三角洲湿地的景观破碎化分析   总被引:98,自引:13,他引:98  
利用遥感、GIS手段对辽河三角洲的湿地景观进行研究,并选用6种不同的方法对研究区的景观破碎化程度进行分析.结果表明,研究区的景观破碎化程度较低,总体斑块密度为0.286个·km-2,廊道密度为1.098km·km-2,聚集度指数为0.955.景观破碎化与人类活动密切相关,随着人类活动的增加,景观破碎化程度加深.廊道景观的发展是景观破碎化的前提与动因.  相似文献   

3.
盐地碱蓬耐盐相关基因克隆研究进展   总被引:3,自引:0,他引:3  
盐地碱蓬是一种生长于盐碱地和海滨沙滩的盐生植物,富含氨基酸、维生素、矿物质等,极具开发价值。由于其具有很强的耐盐性,人们日益重视其耐盐机理的研究。目前对其耐盐机理的研究已经进入到耐盐基因的克隆、结构分析、功能研究等方面。综述了近年来盐地碱蓬与耐盐相关的基因克隆、结构及功能分析等方面的研究进展。  相似文献   

4.
黄河三角洲重度退化滨海湿地盐地碱蓬的生态修复效果   总被引:5,自引:0,他引:5  
采用翻地、施肥和芦苇碎屑培肥等土壤改良方法,利用盐地碱蓬在黄河三角洲重度退化区进行生态修复实验研究。结果表明:重度退化湿地土壤改良后,盐地碱蓬能够成功生长,3种改良方法均可有效的降低重度退化盐碱地的土壤含盐量,改良后的土壤Na离子含量均显著低于对照组,土壤脲酶和磷酸酶活性与对照相比有了显著的提高,表明改良后土壤肥力得到了改善。3种改良方法比较,培肥处理组土壤Na离子含量显著低于其他两种方法;盐地碱蓬生物量达到最高值,说明增加有机物的培肥方法可有效的改良重度退化盐碱湿地土壤,达到较为理想的生态修复预期效果。  相似文献   

5.
盐地碱蓬(Suaeda salsa)是一种典型的抗逆性强的真盐生植物,且营养丰富、含有多种功能 成分,蕴涵着巨大的生态、经济和社会效益,特别是在植物耐盐基因工程的研究利用方面更显示 出了广阔的应用前景和巨大的利用价值,因而近年来日益为人们所重视。目前对盐地碱蓬抗逆 特别是抗盐机制的研究已从生理水平深入到了生化及分子水平,并由此带动了其耐盐基因工程 的研究;另一方面,对其保健和药用功效的研究也取得了一定进展。以盐地碱蓬抗盐机制及其基 因工程研究为重点对以上方面的成果进行了综述。  相似文献   

6.
盐地碱蓬内生中度嗜盐菌   总被引:1,自引:0,他引:1  
邱并生 《微生物学通报》2012,39(3):0416-0427
植物内生菌已经成为我国微生物领域研究的热点之一[1],对植物内生细菌的研究不仅丰富了内生菌的生理类群及数量,而且探索了内生菌与植物的相互关系;同时也发现了一些新分类地位的菌株。目前,关于植物内生极端微生物的研究较少,本刊2010年第2期刊登了崔春晓、夏志洁等发表的文章"盐地碱蓬内生中度嗜盐菌的分离与系统发育多样性分析"[2],作者根据盐地碱蓬内生境高盐的特点,从中不仅  相似文献   

7.
盐地碱蓬化学成分及其开发利用的研究进展   总被引:2,自引:0,他引:2  
综述了盐地碱蓬的化学成分、药理作用及开发利用等方面的研究进展,并提出了在以后的化学研究中应该重点关注的一些问题。  相似文献   

8.
盐地碱蓬的生态生物学特性及栽培技术   总被引:2,自引:0,他引:2  
盐地碱蓬(Suaedasalsa(L.)Pall.)又名黄须菜,碱葱,藜科植物。它味鲜色美,现在人们在饮食上趋向回归自然,作为无污染的绿色食品的野菜,正倍受青睐。我们将几年来对盐地碱蓬选育、驯化、栽培的技术作一个总结,以便为研究发展滩涂生态农业和产品的深度开发提供一些参考。1 盐地碱蓬的用途  盐地碱蓬全株均含有丰富的钾盐,其中以含碳酸钾最高,从其植株中提取出的碳酸钾可广泛应用于印染、玻璃、制药、化学工业。鲜嫩茎叶的蛋白质含量占干物质的40%,与大豆相当;100g鲜梢部分含胡萝卜素1.75mg,维生素B20.10mg,维生素C78…  相似文献   

9.
研究黄河三角洲滨海湿地不同贮存年限盐地碱蓬种子的萌发及植株生长特征,以期为利用土壤种子库进行滨海湿地盐地碱蓬群落的恢复提供科学数据。种子萌发实验结果显示:随着种子贮存年限的增加,盐地碱蓬种子活力呈明显下降趋势(P<0.05),表现为种子发芽率和发芽速度的下降;在同一盐度条件下,盐地碱蓬种子发芽率、发芽速度随贮存年限增加呈线性下降趋势;同一年限的种子随盐度的增加,发芽率呈线性下降趋势。植株生长实验结果显示:贮存时间短的种子出苗率高于贮存时间久的种子;随着贮存时间的增加,盐地碱蓬植株的密度呈下降趋势,但植株高度、含水量及单株鲜重及干重无明显差异,而单位面积生物总量差异显著(P<0.05)。在未来滨海湿地盐地碱蓬群落的修复过程中,应该根据滨海湿地的退化时间制定盐地碱蓬群落的恢复方案。研究结果可为滨海湿地生态恢复提供理论支持和科学参考,以实现滨海湿地恢复过程中降低恢复成本、提高恢复效率、加快恢复进程的目标。  相似文献   

10.
黑河中游湿地景观破碎化过程及其驱动力分析   总被引:9,自引:0,他引:9  
赵锐锋  姜朋辉  赵海莉  樊洁平 《生态学报》2013,33(14):4436-4449
在遥感和GIS技术支持下,基于1975-2010年长时间序列遥感影像,选取斑块密度指数(PD)、景观内部生境面积指数(IA)、斑块平均面积指数(MPS)、斑块形状破碎化指数(FS1、FS2)等具有典型生态意义的景观指数模型,系统分析了黑河中游湿地景观的破碎化过程,并结合灰色关联分析、主成分分析等方法,探讨了影响研究区湿地景观破碎化过程的各驱动因子.结果表明:近35年来,研究区湿地景观破碎化主要表现为斑块平均面积的萎缩,斑块密度的上升以及斑块形状破碎化指数的增大.整个研究时段内,研究区湿地斑块平均面积减少了48.95hm2,斑块密度的上升0.006个/hm2;导致黑河中游湿地景观破碎化发生和发展的驱动力包含自然和人文两个方面.自然因子对湿地景观破碎化进程的影响则主要体现在气温和降水上,而且气温对湿地景观破碎化进程的影响程度明显大于降水.但在1975-2010年间的这一较小时间尺度上,人类活动对湿地景观破碎化的贡献率明显高于自然因子,人类活动能力的增强以及影响范围的不断扩大是引发黑河中游湿地景观破碎化的主因.  相似文献   

11.
Aims Pigment composition is an important functional trait that can be affected by environmental factors. The objective of this study was to investigate the effect of soil salinity on pigment composition in Suaeda salsa by comparing chlorophyll and betacyanin content in the Liaohe estuary wetland, a typical coastal wetland in northeast China.Methods We investigated the plant biomass, percentage of red leaves and pigment content (chlorophyll a, chlorophyll b and betacyanins) in S. salsa in intertidal and supratidal zones of the upper, middle and lower reaches of the Liaohe estuary wetlands. The Na + content of both the soil and plant was also measured. Full analysis of variance and multivariate analysis were used to compare differences in pigment content and Na + content between the supratidal and intertidal zones.Important findings Pigment composition was significantly affected by soil salinity. With increasing soil salinity, the percentage of red leaves was higher in the intertidal zone than in the supratidal zone. In all three reaches, plants had lower chlorophyll a content and higher betacyanin content in the intertidal zone than in the supratidal zone. Compared to chlorophyll a, chlorophyll b was less sensitive to soil salinity. There were no differences in chlorophyll b content between the intertidal and supratidal zones in the upper and lower reaches. Furthermore, pigment composition was associated with both the plant tissue and soil Na + content. Compared to the supratidal zone, the intertidal zone had a higher Na + content in plants. There was a negative relationship between plant chlorophyll content and soil Na + content, but a positive relationship between betacyanin content and soil Na + content. Overall, the results indicated that there might be a trade-off between leaf chlorophyll and betacyanin content in S. salsa to maintain its growth and survival in high salinity environments.  相似文献   

12.
Genetic manipulation technologies have been limited in the halophyte Suaeda salsa L. due to the lack of an efficient transformation system. Here, we examined factors affecting transformation and developed an efficient transformation system at the cell level using S. salsa hypocotyl as starting material. S. salsa hypocotyl explants from 10-day-old seedlings were precultured for 2 days on a hygromycin (hyg)-free callus induction medium (CIM) and then inoculated with Agrobacterium tumefaciens suspension at a concentration of 0.5 at OD600 for 5–10 min. After cocultivation with A. tumefaciens for 4 days in the dark, followed by selection on carbenicillin (carb) for 3 days, explants were placed on CIM containing 10 mg l−1 hyg and 500 mg l−1 carb with three to four consecutive subcultures for up to 45 days. β-Glucuronidase assays showed an average transformation frequency of 62.89%. Gene integration was confirmed by polymerase chain reaction analysis and Northern blot analysis. To our knowledge, this is the first study to show Agrobacterium-mediated transformation in the C3 halophyte S. salsa.  相似文献   

13.
乌裕尔河-双阳河流域湿地景观格局演变及其驱动机制   总被引:2,自引:0,他引:2  
明确湿地格局演变特征与驱动机制是开展湿地管理与保护工作的重要前提。利用1980—2015年7期土地遥感解译数据,运用空间分析、景观指数、转移概率矩阵和增强回归树模型定量分析乌裕尔河-双阳河流域湿地格局演变特征与驱动机制。结果表明:(1)1980—2015年间湿地面积持续减少,减少了738 km2,较1980年减少了16.43%;沼泽地占湿地的75%以上,面积也持续减少。1990—1995年是湿地面积减少速率最大的时段。(2)1980—2015年间湿地景观变化趋势为最大斑块的优势地位降低,破碎度加剧,且空间分布趋于离散,连通性减弱。沼泽地的景观变化特征与湿地相似,而水域与之相异。(3)1980—2015年间湿地损失集中分布在乌裕尔河两岸、双阳河中游及流域尾闾,主要转出为水田、旱地、草地和盐碱地,总的转移概率约为20%。(4)气候因素是导致湿地损失的主要因素,贡献率达到50%。道路修建对湿地损失的影响范围约为1.8 km;高海拔会增加湿地损失的风险;耕地周围2 km的湿地易被开垦;自然保护区的建立有效遏制了湿地损失。未来湿地损失风险较大的区域为乌裕尔河中游、双阳河中下...  相似文献   

14.
In this study, high-betacyanin Suaeda salsa seedlings were developed and used to explore whether the betacyanin accumulation is related to salinity tolerance in S. salsa. After 8 days of culture, betacyanin content decreased markedly in both high-betacyanin S. salsa seedlings and the control under nonsalt stress, but the decreases were suppressed by NaCl treatments. Betacyanin content in high-betacyanin seedlings was much higher than that in the control throughout the salt treatments. Growth of S. salsa plants was significantly promoted by NaCl treatments, and the fresh weight of high-betacyanin seedlings was much higher than that of the control when grown in 400 mmol L−1 NaCl. Similar cell sap osmolarity and K+/Na+ ratios were observed in high-betacyanin seedlings and the control. No obvious differences in V-ATPase (tonoplast H+-ATPase) activity, leaf SOD (superoxide dismutase) activity, and total chloroplast SOD (including thylakoid-bound SOD and stroma SOD) activity were detected between high-betacyanin seedlings and the control under nonsalt stress conditions. However, V-ATPase hydrolytic activity increased dramatically in S. salsa seedlings when subjected to different levels of NaCl, and the increases in V-ATPase activity in high-betacyanin seedlings were much higher than that in the control. No clear pattern was observed for NaCl-dependent activity changes of P-ATPase (plasma membrane H+-ATPase) and V-PPase (tonoplast H+-pyrophosphatase). Similar changes were demonstrated in leaf SOD activity and chloroplast SOD activity under salt stress. Both leaf SOD activity and chloroplast SOD activity were markedly enhanced with the increase of NaCl or with time, especially thylakoid-bound SOD activity. Furthermore, the increases in chloroplast SOD activity and thylakoid-bound SOD activity were much higher in high-betacyanin seedlings than that in the control at different levels of NaCl treatment. The higher V-ATPase activity, chloroplastic SOD activity, and thylakoid-bound SOD activity demonstrated in high-betacyanin seedlings, but lower in the control, suggest that high-betacyanin S. salsa seedlings may have higher potential to be energized by the electrochemical gradient for ion uptake into the vacuole and to scavenge O2−• in situ produced in the chloroplasts, which may lead to higher salt tolerance than the control under salt stress. Thus, betacyanin may be involved in salt tolerance of S. salsa.  相似文献   

15.
The halophyte Suaeda salsa L., exposed to different NaCl concentrations (100 and 400 mmol/L) and polyethylene glycol (isoosomotic to 100 mmol/L NaCl) containing nutrient solutions under normal or K+-deficient conditions for 7 days, was used to study effects of NaCl salinity and osmotic stress on chlorophyll content, chlorophyll fluorescence characteristics, malonedialdehyde (MDA) content, and superoxide dismutase (SOD) isoform activities. Photosynthetic capacity was not decreased by NaCl treatment, indicating that S. salsa possesses an effective antioxidative response system for avoiding oxidative damage. Seven SOD activity bands were detected in S. salsa leaf extracts, including an Mn-SOD and several isoforms of Fe-SOD and CuZn-SOD. It turned out that NaCl salinity and osmotic stress lead to a differential regulation of distinct SOD isoenzymes. This differential regulation is suggested to play a major role in stress tolerance of S. salsa.  相似文献   

16.
Salt stress is one of the most serious factors limiting the productivity of agricultural crops. Increasing evidence has demonstrated that vacuolar Na+/H+ antiporters play a crucial role in plant salt tolerance. In the present study, we expressed the Suaeda salsa vacuolar Na+/H+ antiporter SsNHX1 in transgenic rice to investigate whether this can increase the salt tolerance of rice, and to study how overexpression of this gene affected other salt-tolerant mechanisms. It was found that transgenic rice plants showed markedly enhanced tolerance to salt stress and to water deprivation compared with non-transgenic controls upon salt stress imposition under outdoor conditions. Measurements of ion levels indicated that K+, Ca2+ and Mg2+ contents were all higher in transgenic plants than in non-transformed controls. Furthermore, shoot V-ATPase hydrolytic activity was dramatically increased in transgenics compared to that of non-transformed controls under salt stress conditions. Physiological analysis also showed that the photosynthetic activity of the transformed plants was higher whereas the same plants had reduced reactive oxygen species generation. In addition, the soluble sugar content increased in the transgenics compared with that in non-transgenics. These results imply that up-regulation of a vacuolar Na+/H+ antiporter gene in transgenic rice might cause pleiotropic up-regulation of other salt-resistance-related mechanisms to improve salt tolerance.Fengyun Zhao and Zenglan Wang contributed equally to this work.  相似文献   

17.
Suaeda salsa, a leaf succulent shrub in the family Chenopodiaceae, is one of the most important halophytes in China. Suaeda salsa produces dimorphic seeds (soft brown seeds and hard black seeds). Seeds of S. salsa were collected from the coastal salt flats near Huanghua City, China. Experiments were conducted to determine the salinity-alleviating effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of S. salsa. Brown seeds had a higher germination rate than black seeds in all experiments. Black seeds were more sensitive to salt in the absence of light in comparison to brown seeds. Brown seeds absorbed water more quickly in comparison to black seeds and were found to be more tolerant of salt stress. Our results showed that 1-aminocyclopropane-1-carboxylate (ACC, the immediate precursor of ethylene), nitrite, GA4 and BA improved seed germination in the presence of salt. However, nitrate, GA1, GA3 failed to alleviate salt stress. ABA inhibited seed germination and seedling growth. Possible mechanisms involved in the alleviation of salt stress in S. salsa seeds and the ecological adaptation of the seeds to the environment are discussed.  相似文献   

18.
Li W  Zhang C  Lu Q  Wen X  Lu C 《Journal of plant physiology》2011,168(15):1743-1752
Under natural conditions or in the field, plants are often subjected to a combination of different stresses such as salt stress and heat shock. Although salt stress and heat shock have been extensively studied, little is known about how their combination affects plants. We used proteomics, coupled with physiological measurements, to investigate the effect of salt stress, heat shock, and their combination on Suaeda salsa plants. A combination of salt stress and heat shock resulted in suppression of CO2 assimilation and the photosystem II efficiency. Approximately 440 protein spots changed their expression levels upon salt stress, heat shock and their combination, and 57 proteins were identified by MS. These proteins were classified into several categories including disease/defense, photosynthesis, energy production, material transport, and signal transduction. Some proteins induced during salt stress, e.g. choline monooxygenase, chloroplastic ATP synthase subunit beta, and V-type proton ATPase catalytic subunit A, and some proteins induced during heat shock, e.g. heat shock 70 kDa protein, probable ion channel DMI1, and two component sensor histidine kinase, were either unchanged or suppressed during a combination of salt stress and heat shock. In contrast, the expression of some proteins, including nucleoside diphosphate kinase 1, chlorophyll a/b binding protein, and ABC transporter I family member 1, was specifically induced during a combination of salt stress and heat shock. The potential roles of the stress-responsive proteins are discussed.  相似文献   

19.
近30年来白洋淀湿地景观格局变化及其驱动机制   总被引:11,自引:0,他引:11  
张敏  宫兆宁  赵文吉  阿多 《生态学报》2016,36(15):4780-4791
湿地是水陆相互作用形成的独特生态系统,其景观格局极易受到气候变化和人类活动的影响。利用1984—2014年的11期遥感影像数据,综合运用GIS技术和景观格局指数方法,对白洋淀湿地景观格局变化特征及其驱动力机制进行了分析。结果表明,1984—2014年期间,挺水植物和沉水植物呈减少趋势,农田和居民点持续快速增长,纯水体为"增加—减少—再增加"的趋势,林地和裸土地变化幅度不大。其中挺水植物一直是白洋淀最主要的景观类型,占研究区总面积比例达到37%—61%。农田的平均斑块面积最大,挺水植物的最大斑块指数和分维度指数最高,挺水植物和农田的聚集度指数最大,居民点、林地和裸土地空间分布离散,破碎化程度高,连通性差。1989—2004年白洋淀景观多样性指数呈减少趋势,景观格局趋于不稳定,同期聚集度指数上升,湿地连通性增加;1984—1989年和2004—2014年期间白洋淀多样性指数上涨,聚集度指数逐年下降,景观异质性增加。人口和社会经济发展是影响白洋淀景观格局变化的主要因素。  相似文献   

20.
Transgenic rice plants co-expressing the Suaeda salsa SsNHX1 (vacuolar membrane Na+/H+ antiporter) and Arabidopsis AVP1 (vacuolar H+-PPase) showed enhanced salt tolerance during 3 d of 300 mM NaCl treatment under outdoor growth conditions. These transgenic rice seedlings also grew better on MS medium containing 150 mM NaCl compared to SsNHX1-transformed lines and non-transformed controls. Measurements on isolated vacuolar membrane vesicles derived from the salt stressed SsNHX1+AVP1-transgenic plants demonstrated that the vesicles had increased V-PPase hydrolytic activity in comparison with the Ss-transgenics and non-transgenics. Moreover the V-PPase activity was closely related to the development period of the SA-transgenic seedlings and markedly higher in 3-week-old seedlings than in 5-week-old seedlings. Statistic analysis indicated that the SA-transgenic rice plants contained relatively more ions with higher K+/Na+ ratio in their shoots compared to the SsNHX1-transformed lines upon salt treatment. Furthermore, these SA-transformants also exhibited relatively higher level of photosynthesis and root proton exportation capacity whereas reduced H2O2 generation in the same plants. In general, these results supported the hypothesis that simultaneous expression of the SsNHX1 and AVP1 conferred greater performance to the transgenic plants than that of the single SsNHX1.Feng-Yun Zhao and Xue-Jie Zhang contributed equally to this work  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号