首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to examine the effects of aging on posture-related changes of the stretch reflex excitability in the ankle extensor, soleus (SOL), and flexor, tibialis anterior (TA) muscles. Fourteen neurologically normal elderly (mean 68 ± 6 years) and 12 young (mean 27 ± 3 years) subjects participated. Under two postural conditions, upright standing (STD) and sitting (SIT), stretch reflex electromyographic (EMG) responses in the SOL/TA muscle were elicited by imposing rapid ankle dorsi-/plantar-flexion. Under the SIT condition, subjects were asked to keep the SOL background EMG level, which is identical to that under the STD condition. In the SOL muscle, both groups showed significant enhancement of the short-latency stretch reflex (SLR) response when the posture changed from SIT to STD. In the TA muscle, the young group showed significant enhancement of the middle- (MLR) and long-latency stretch reflex (LLR) when the posture changed from SIT to STD; no such modulation was observed in the elderly group. Since the TA stretch reflex responses under the STD condition were comparable in the young and elderly groups, the lack of posture-related modulation of the TA muscle in the elderly group might be explained by augmented stretch reflex excitability under the SIT condition. The present results suggest that the (1) SOL SLR responses are modulated both in the young and elderly subjects when the posture is changed from SIT to STD, (2) TA MLR and LLR responses are not modulated in the elderly subjects when the posture is changed from SIT to STD, while each response is same between the young and elderly in STD, and (3) the effect of aging on the posture-related stretch reflex differs in the SOL and TA muscles.  相似文献   

2.
The aim of the current study was to investigate potential age-related differences in neural regulation strategies during maximal and sub-maximal hopping. Thirty-two boys from three different age groups (9-, 12- and 15-years), completed trials of both maximal and sub maximal hopping, and based on contact and flight times, measures of reactive strength index (RSI = jump height/contact time) and leg stiffness (peak ground reaction force/peak displacement of centre of mass) were collected respectively. During all trials, surface electromyograms (EMG) were recorded from four different muscle sites of the dominant lower limb, during 100 ms pre-ground contact, and then four subsequent stretch reflex phases: background muscle activity (0-30 ms), short-latency stretch reflex (31-60 ms), intermediate15 latency stretch reflex 61-90 ms and long-latency stretch reflex (91-120 ms). Reactive strength index and leg stiffness were measured during the hopping trials. During maximal hopping, both 12- and 15-year olds produced significantly greater RSI (P < 0.02) than 9-year olds, with 15-year olds utilising significantly greater soleus muscle activity during the 100 ms prior to ground contact than the younger age groups (P < 0.01). During sub-maximal hopping, 15-year olds produced significantly greater absolute leg stiffness than both 12- and 9-year olds (P < 0.01), with 9-year olds producing significantly less soleus muscle activity during the 31-60 ms time phase. For all age groups, sub-maximal hopping was associated with significantly greater background muscle activity and short-latency stretch reflex activity in the soleus and vastus lateralis, when compared to maximal hopping (P < 0.001). Results suggest that as children mature, they become more reliant on supra-spinal feed forward input and short latency stretch reflexes to regulate greater levels of leg stiffness and RSI when hopping.  相似文献   

3.
Whether the fusimotor system contributes to reflex gain changes during reinforcement maneuvers is re-examined in the light of new data. Recently, from direct recordings of spindle afferent activity originating from ankle flexor muscles, we showed that mental computation increased the muscle spindle mechanical sensitivity in completely relaxed human subjects without concomitant alpha-motoneuron activation, providing evidence for selective fusimotor drive activation. In the present study, the effects of mental computation were investigated on monosynaptic reflexes elicited in non-contracting soleus muscle either by direct nerve stimulation (Hoffmann reflex, H) or by tendon tap (Tendinous reflex, T). The aim was to relate the time course of the changes in reflex size to the increase in spindle sensitivity during mental task in order to explore whether fusimotor activation can influence the size of the monosynaptic reflex. The results show changes in reflex amplitude that parallel the increase in muscle spindle sensitivity. When T-reflex is consistently facilitated during mental effort, the H-reflex is either depressed or facilitated, depending on the subjects. These findings suggest that the increased activity in muscle spindle primary endings may account for mental computation-induced changes in both tendon jerk and H-reflex. The facilitation of T-reflex is attributed to the enhanced spindle mechanical sensitivity and the inhibition of H-reflex is attributed to post-activation depression following the increased Ia ongoing discharge. This study supports the view that the fusimotor sensitization of muscle spindles is responsible for changes in both the mechanically and electrically elicited reflexes. It is concluded that the fusimotor drive contributed to adjustment of the size of tendon jerk and H-reflex during mental effort. The possibility that a mental computation task may also operate by reducing the level of presynaptic inhibition is discussed on the basis of H-reflex facilitation.  相似文献   

4.
Neurophysiological studies in healthy subjects suggest that increased spinal inhibitory reflexes from the tibialis anterior (TA) muscle to the soleus (SOL) muscle might contribute to decreased spasticity. While 50?Hz is an effective frequency for transcutaneous electrical nerve stimulation (TENS) in healthy subjects, in stroke survivors, the effects of TENS on spinal reflex circuits and its appropriate frequency are not well known. We examined the effects of different frequencies of TENS on spinal inhibitory reflexes from the TA to SOL muscle in stroke survivors. Twenty chronic stroke survivors with ankle plantar flexor spasticity received 50-, 100-, or 200-Hz TENS over the deep peroneal nerve (DPN) of the affected lower limb for 30?min. Before and immediately after TENS, reciprocal Ia inhibition (RI) and presynaptic inhibition of the SOL alpha motor neuron (D1 inhibition) were assessed by adjusting the unconditioned H-reflex amplitude. Furthermore, during TENS, the time courses of spinal excitability and spinal inhibitory reflexes were assessed via the H-reflex, RI, and D1 inhibition. None of the TENS protocols affected mean RI, whereas D1 inhibition improved significantly following 200-Hz TENS. In a time-series comparison during TENS, repeated stimulation did not produce significant changes in the H-reflex, RI, or D1 inhibition regardless of frequency. These results suggest that the frequency-dependent effect of TENS on spinal reflexes only becomes apparent when RI and D1 inhibition are measured by adjusting the amplitude of the unconditioned H-reflex. However, 200-Hz TENS led to plasticity of synaptic transmission from the antagonist to spastic muscles in stroke survivors.  相似文献   

5.
The purpose of this study was to characterize the effects of aging on the stretch reflex in the ankle muscles, and in particular to compare the effects on the ankle dorsi-flexor (tibialis anterior: TA) and the plantar-flexor (soleus: SOL). Stretch reflex responses were elicited in the TA and SOL at rest and during weak voluntary contractions in 20 elderly and 23 young volunteers. The results indicated that, in the TA muscle, the elderly group had a remarkably larger long-latency reflex (LLR), whereas no aging effect was found in the short latency reflex (SLR). These results were very different from those in the SOL muscle, which showed significant aging effects in the SLR and medium latency reflex (MLR), but not in the LLR. Given the fact that the LLR of the TA stretch reflex includes the cortical pathway, it is probable that the effects of aging on the TA stretch reflex involve alterations not only at the spinal level but also at the cortical level. The present results indicate that the stretch reflexes of each of the ankle antagonistic muscles are affected differently by aging, which might have relevance to the neural properties of each muscle.  相似文献   

6.
Ten male subjects were tested to determine the effects of muscle fatigue upon the activation pattern of the two main ankle extensor muscles, the 'slow-twitch' soleus (SOL) and the relatively 'fast-twitch' medial gastrocnemius (MG), during a fatiguing 60-s trial of hopping to maximal height. The myoelectric signals from SOL and MG were recorded together with the vertical ground reaction force signal and analysed by means of a computer-aided electromyograph (EMG) contour analysis, i.e. two-dimensional frequency distributions were obtained relating the activation patterns of the two synergists. The EMGs were also full-wave rectified and integrated (IEMG) according to three phases of the hopping movement (PRE, pre-activation phase; ECC, eccentric phase; CON, concentric phase). Results indicated that there were significant decreases (P less than 0.01) in the peak ground reaction force, the height of hopping and the mechanical power per unit body weight at the end of the fatiguing contractions. These decreases in mechanical parameters were accompanied by significant (P less than 0.01) decreases in all three phases of MG IEMG while SOL IEMG showed no such significant declines, except in the CON phase. Thus, the decreased mechanical parameters could in large part be accounted for by the substantial and selective decline of the excitation level of the relatively fast-twitch MG muscle. Our data suggest that the centrally mediated pre-activation of the fatiguable MG muscle as well as the MG activation during the eccentric phase, which is largely controlled by supraspinal inputs and stretch-reflex modulation, are most affected by fatigue changes during repeated maximal stretch/shortening cycles of the ankle extensors.  相似文献   

7.
The purpose of this study was to investigate how gravity level affects the excitability of the soleus muscle (SOL) motoneuron pool to la afferent input while erect posture is maintained in humans. Three healthy male subjects participated in an experiment whereby three different gravity conditions (micro gravity (MG), normal gravity (NG), and hyper gravity) were imposed using a parabolic flight procedure. The SOL H-reflex was evoked every 2 seconds while the subjects kept an erect posture. The background electromyographic activity (BGA) of the SOL was almost absent during MG. The SOL H-reflex amplitude was significantly larger during MG than during NG. These results suggest that the somatosensory systems detecting a load at the lower limbs and/or vertebral column play a role in reducing the excitability of the SOL motoneuron pool to la afferent inputs by presynaptic inhibition.  相似文献   

8.
Knee flexion is a movement that initiates rising from a sitting position, which is a common therapeutic exercise for patients unable to ambulate. We investigated how voluntary isometric biceps femoris contraction affects motor evoked potential (MEP) amplitude following transcranial magnetic stimulation, background electromyographic (EMG) amplitude, and H-reflex amplitude in ipsilateral leg muscles. Subjects were seated on the edge of a bed with their hips and knees flexed at 90°, and the soles of their feet on the floor. MEP and background EMG were recorded from the tibialis anterior (TA) and soleus (SOL), and H reflexes from SOL of 30 volunteers. Background EMG and MEP also were recorded while voluntarily contracting tested muscles. Biceps femoris contraction increased MEP and background EMG for TA and SOL ( p < 0.01). Maximal background EMG and MEP increased with increasing voluntary contraction of tested muscles ( p < 0.005). Regression slope differed little between TA and SOL. Biceps femoris contraction facilitated MEP comparably for TA and SOL, while SOL background EMG exceeded that of TA ( p < 0.02). The relationship between MEP facilitation and background EMG changed to favor more efficient facilitation in TA ( p < 0.05), but not SOL ( p > 0.1). MEP recorded from TA and SOL with subthreshold stimuli using needle electrodes were more frequent with biceps femoris contraction ( p < 0.04). H-reflex amplitude of SOL decreased during biceps femoris contraction ( p < 0.001). We concluded that biceps femoris contraction affects leg muscle MEP, background EMG, and H reflexes differently.  相似文献   

9.
Stretch reflex shows sustained (3-min) increase with heightened sympathetic outflow [Hjortskov N, Skotte J, Hye-Knudsen C, Fallentin N. Sympathetic outflow enhances the stretch reflex response in the relaxed soleus muscle in humans. J Appl Physiol 2005;98:1366–70], but it is unknown if it accompanies a sustained increase in H-reflex. The purpose of the study was to test if there is a sustained facilitation in the H-reflex in the human soleus muscle during a variety of sustained tasks that are known to elevate sympathetic outflow. Mean arterial blood pressure, heart rate, and H- and stretch reflexes in the relaxed soleus muscle were obtained in healthy young adults who performed mental arithmetic, static handgrip exercise, post-handgrip ischemia, and cold stimulation. Each task lasted 3 min with a 3-min rest in between tasks. Data were analyzed for the initial 30 s and entire 3 min of each task. There was a heightened cardiovascular response in all tasks for both durations of analysis. An increase in H-reflex amplitude was not observed for either the initial or entire duration of the analysis. The tasks increased stretch reflex amplitude for both durations of analysis. Invariable H-reflex and sustained facilitation of stretch reflex with heightened sympathetic outflow would imply sympathetic modulation of muscle spindle sensitivity.  相似文献   

10.
The purpose of this study was to test whether the spinal reflex excitability of the soleus muscle is modulated as posture changes from a supine to a passive upright position. Eight healthy subjects (29.6 ± 5.4 yrs) participated in this study. Stretch and H-reflex responses were elicited while the subjects maintained passive standing (ST) and supine (SP) postures. The passive standing posture was accomplished by using a gait orthosis to which a custom-made device was mounted to elicit stretch reflex in the soleus muscle. This orthosis makes it possible to elicit stretch and H-reflexes without background muscle activity in the soleus muscle. The results revealed that the H-reflex amplitude in the ST was smaller than that in the SP condition, which is in good agreement with previous reports. On the other hand, the stretch reflex was significantly larger in the ST than in the SP condition. Since the experimental conditions of both the stretch and H-reflex measurements were exactly the same, the results were attributed to differences in the underlying neural mechanisms of the two reflex systems: different sensitivity of the presynaptic inhibition onto the spinal motoneuron pool and/or a change in the muscle spindle sensitivity.  相似文献   

11.
Stretch reflexes were evoked in elbow flexor muscles undergoing three different muscle contractions, i.e. isotonic shortening (SHO) and lengthening (LEN), and isometric (ISO) contractions. The intermuscle relationships for the magnitude of the stretch reflex component in the eletromyographic (EMG) activities of two main elbow flexor muscles, i.e. the biceps brachii (BB) and the brachioradialis (BRD), were compared among the three types of contractions. The subjects were requested to move their forearms sinusoidally (0.1 Hz) against a constant pre-load between elbow joint angles of 10° (0° = full extension) and 80° during SHO and LEN, and to keep an angle of 45° during the ISO. The perturbations were applied at the elbow angle of 45° in pseudo-random order. The EMG signals were rectified and averaged over a period of 100 ms before and 400 ms after the onset of the perturbation 40–50 times. From the ensemble averaged EMG waveform, the background activity (BGA), short (20–50 ms) and long latency (M2, 50–80, M3, 80–100 ms) reflex and voluntary activity (100–150 ms) components were measured. The results showed that both BGA and reflex EMG activity of the two elbow flexor muscles were markedly decreased during the lengthening contraction compared to the SHO and ISO contractions. Furthermore, the changes of reflex EMG components in the BRD muscle were more pronounced than those in the BB muscle, i.e. the ratios of M2 and M3 magnitudes between BRD and BB (BRD:BB) were significantly reduced during the LEN contractions. These results would suggest that the gain of long latency stretch reflex EMG activities in synergistic muscles might be modulated independently according to the model of muscle contraction. Accepted: 1 September 1997  相似文献   

12.
The antigravity soleus muscle (Sol) is crucial for compensation of stance perturbation. A corticospinal contribution to the compensatory response of the Sol is under debate. The present study assessed spinal, corticospinal, and cortical excitability at the peaks of short- (SLR), medium- (MLR), and long-latency responses (LLR) after posterior translation of the feet. Transcranial magnetic stimulation (TMS) and peripheral nerve stimulation were individually adjusted so that the peaks of either motor evoked potential (MEP) or H reflex coincided with peaks of SLR, MLR, and LLR, respectively. The influence of specific, presumably direct, corticospinal pathways was investigated by H-reflex conditioning. When TMS was triggered so that the MEP arrived in the Sol at the same time as the peaks of SLR and MLR, EMG remained unaffected. Enhanced EMG was observed when the MEP coincided with the LLR peak (P < 0.001). Similarly, conditioning of the H reflex by subthreshold TMS facilitated H reflexes only at LLR (P < 0.001). The earliest facilitation after perturbation occurred after 86 ms. The TMS-induced H-reflex facilitation at LLR suggests that increased cortical excitability contributes to the augmentation of the LLR peaks. This provides evidence that the LLR in the Sol muscle is at least partly transcortical, involving direct corticospinal pathways. Additionally, these results demonstrate that approximately 86 ms after perturbation, postural compensatory responses are cortically mediated.  相似文献   

13.
Soleus H-reflex reveals down modulation with increased postural difficulty. Role of this posture-related reflex modulation is thought to shift movement control toward higher motor centers in order to facilitate more precise postural control. Present study hypothesized that the ability to modulate H-reflex is related to one’s ability to dynamically balance while in an unstable posture. This study examined the relationship between dynamic balancing ability and soleus H-reflex posture-related modulation. Thirty healthy adults participated. The soleus maximal H-reflex (Hmax), motor response (Mmax), and background EMG activity (bEMG) were obtained during three postural conditions: prone, open-legged standing, and closed-legged standing. Hmax/Mmax ratios were normalized via the corresponding bEMG in order to remove the effects of background muscle activity from the obtained H-reflex. Reflex modulation was calculated as the ratio of the normalized Hmax/Mmax ratios in one postural condition to another posture in a more difficult condition. Dynamic balancing ability was assessed by testing stability while standing on a wobble board. A significant negative correlation was observed between balancing scores and reflex modulation from open-legged standing to closed-legged standing. This suggests that the ability to modulate monosynaptic stretch reflex excitability in response to a changing posture is a significant factor for dynamic balancing.  相似文献   

14.
Reflex and elastic properties of the triceps surae (TS) were measured on 12 male cosmonauts 28-40 days before a 3- to 6-mo spaceflight, 2 or 3 days after return (R+2/+3) and a few days later (R+5/+6). H reflexes to electrical stimulations and T reflexes to tendon taps gave the reflex excitability at rest. Under voluntary contractions, reflex excitability was assessed by the stretch reflex, elicited by sinusoidal length perturbations. Stiffness measurements concerned the musculoarticular system in passive conditions and the musculotendinous complex in active conditions. Results indicated 1) no changes (P > 0.05) in H reflexes, whatever the day of test, and 2) increase in T reflexes (P < 0.05) by 57%, despite a decrease (P < 0.05) in musculoarticular stiffness (11%) on R+2/+3. T reflexes decreased (P < 0.05) between R+2/+3 and R+5/+6 (-21%); 3) increase in stretch reflexes (P < 0.05) on R+2/+3 by 31%, whereas it decreased (P < 0.05) between R+2/+3 and R+5/+6 (-29%). Musculotendinous stiffness was increased (P < 0.05) whatever the day of test (25%). Links between changes in reflex and stiffness were also studied by considering individual data. At R+2/+3, correlated changes between T reflexes and musculoarticular stiffness suggested that, besides central adaptive phenomena, musculoarticular structures took part in the reflex adaptation. This mechanical contribution was confirmed when data collected at R+2/+3 and R+5/+6 were used because correlations between changes in stretch reflexes and musculotendinous stiffness were improved. In conclusion, the present study shows that peripheral influences take part in reflex changes in gravitational unloaded muscles, but can only be revealed when central influences are reduced.  相似文献   

15.
Stretch reflex responses of m. biceps brachii and m. brachioradialis of ten normal adults were studied before and after 20 days of strict bed rest. A standard torque perturbation (15 Nm, 170 ms) was applied to the forearm to induce reflex electromyographic (EMG) activities of the two muscles investigated. Totally 30 perturbations were applied during submaximal isometric elbow flexion movements at 80 deg flexed joint angle, and ensemble averaged EMG waveforms were calculated by aligning the signal to the onset of perturbations. All subjects showed that both short and long latency stretch reflex FMG activities of m. biceps brachii were reduced immediately after 20 days bed rest, and then recovered gradually to pre-bed rest levels at one- to two-months after bed rest, whereas there was no such variation in the stretch reflex induced in m. brachioradialis. It was demonstrated that the muscle stretch reflex gain might be reduced with long-term inactivity, but the effects on stretch reflex gains were different in the two tested muscles.  相似文献   

16.
In experiments on unanesthetized cats, we compared the effects of experimentally induced pain in the m. biceps brachii or in the neck muscles on EMG activity of the flexors and extensors of the elbow joint (mm. biceps et triceps brachii, respectively) evoked by a passive extension-flexion of the above joint. Muscle pain was induced by injections of 0.5 ml of a hypertonic (7%) NaCl solution into the above-mentioned muscles. In the case of pain in the biceps, i.e., in the muscle directly involved in realization of the reflex, we observed an increase in the amplitude and significant shortening of the latency of EMG responses of this muscle. The amplitude of a short-latency (supposedly monosynaptic) component of the biceps reflex (М1 response) increased by 65%, while an increment of the latter (supposedly polysynaptic) М2 component was 117%. When pain was induced in anatomically remote neck muscles, the stretch reflex in the biceps was considerably suppressed. The maximum amplitudes of the М1 and М2 components decreased by 25 and 30%, respectively, but the latencies of these components decreased significantly, similarly to what was observed in the case of induction of experimental pain in the biceps. Under both conditions of experimental pain, changes in the parameters of EMG responses of the forearm extensor (m. triceps brachii) demonstrated similarity with those of the biceps responses. The maximum effect of pain induction was observed within the first 5 min after injections of the hypertonic solution; full recovery of the stretch reflex parameters was observed on the 20th to 30th min. We conclude that the effects of pain induction on the reflex under study are not generalized. They depend on the site of such induction with respect to the muscle where the stretch reflex is elicited. Unidirectional effects of both types of pain on the antagonist muscles allow us to suppose that modulation of the reflex reactions upon pain induction is mediated by influences from the supraspinal CNS structures. Induction of pain in the biceps increased the amplitude of EMG manifestations of the stretch reflex, while such induction in the neck muscles decreased such responses; nonetheless, in both cases the latency of the reflexes decreased. This fact allows us to believe that the sensitivity of muscle spindles increased under both conditions of the pain influence.  相似文献   

17.
Mechanically evoked reflexes have been postulated to be less sensitive to presynaptic inhibition (PSI) than the H-reflex. This has implications on investigations of spinal cord neurophysiology that are based on the T-reflex. Preceding studies have shown an enhanced effect of PSI on the H-reflex when a train of ~10 conditioning stimuli at 1 Hz was applied to the nerve of the antagonist muscle. The main questions to be addressed in the present study are if indeed T-reflexes are less sensitive to PSI and whether (and to what extent and by what possible mechanisms) the effect of low frequency conditioning, found previously for the H-reflex, can be reproduced on T-reflexes from the soleus muscle. We explored two different conditioning-to-test (C-T) intervals: 15 and 100 ms (corresponding to D1 and D2 inhibitions, respectively). Test stimuli consisted of either electrical pulses applied to the posterior tibial nerve to elicit H-reflexes or mechanical percussion to the Achilles tendon to elicit T-reflexes. The 1 Hz train of conditioning electrical stimuli delivered to the common peroneal nerve induced a stronger effect of PSI as compared to a single conditioning pulse, for both reflexes (T and H), regardless of C-T-intervals. Moreover, the conditioning train of pulses (with respect to a single conditioning pulse) was proportionally more effective for T-reflexes as compared to H-reflexes (irrespective of the C-T interval), which might be associated with the differential contingent of Ia afferents activated by mechanical and electrical test stimuli. A conceivable explanation for the enhanced PSI effect in response to a train of stimuli is the occurrence of homosynaptic depression at synapses on inhibitory interneurons interposed within the PSI pathway. The present results add to the discussion of the sensitivity of the stretch reflex pathway to PSI and its functional role.  相似文献   

18.
Musculo-articular stiffness of the triceps surae (TS) increases with age in prepubescent children, under both passive and active conditions. This study investigates whether these changes in muscle stiffness influence the amplitude of the reflex response to muscle stretch. TS stiffness and reflex activities were measured in 46 children (7-11 yr old) and in 9 adults. The TS Hoffmann reflex (H reflex) and T reflex (tendon jerk) in response to taping the Achilles tendon were evaluated at rest and normalized to the maximal motor response (Mmax). Sinusoidal perturbations of passive or activated muscles were used to evoke stretch reflexes and to measure passive and active musculoarticular stiffness. The children's Hmax-to-Mmax ratio did not change with age and did not differ from adult values. The T-to-Mmax ratio increased with age but remained significantly lower than in adults. Passive stiffness also increased with age and was correlated with the T-to-Mmax ratio. Similarly, the children's stretch reflex and active musculoarticular stiffness were significantly correlated and increased with age. We conclude that prepubescent children have smaller T reflexes and stretch reflexes than adults, and the lower musculoarticular stiffness is mainly responsible for these smaller reflexes, as indicated by the parallel increases in reflex and stiffness.  相似文献   

19.
20.
Both contraction type and ageing may cause changes in H-reflex excitability. H reflex is partly affected by presynaptic inhibition that may also be an important factor in the control of MU activation. The purpose of the study was to examine age related changes in H-reflex excitability and motor unit activation patterns in dynamic and in isometric contractions. Ten younger (YOUNG) and 13 elderly (OLD) males performed isometric (ISO), concentric (CON) and eccentric (ECC) plantarflexions with submaximal activation levels (20% and 40% of maximal soleus surface EMG). Intramuscular EMG data was analyzed utilizing an intramuscular spike amplitude frequency histogram method. Average H/M ratio was always lowest in ECC (n.s.). Mean spike amplitude increased with activation level (P < .05), whereas no significant differences were found between contraction types. Both H-reflex excitability, which may be due to an increase in presynaptic inhibition, and mean spike frequency were higher in YOUNG compared to OLD. In OLD the mean spike frequency was significantly smaller in CON compared to ISO. Lack of difference in mean spike amplitude and frequency across contraction types in YOUNG would imply a similar activation strategy, whereas the lower frequency in dynamic contractions in OLD could be related to synergist muscle behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号