首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular amino acid pools in four Penicillium chrysogenum strains, which differed in their ability to produce penicillin, were determined under conditions supporting growth without penicillin production and under conditions supporting penicillin production. A significant correlation between the rate of penicillin production and the intracellular concentration of alpha-aminoadipate was observed, which was not shown with any other amino acid in the pool. In replacement cultivation, penicillin production was stimulated by alpha-aminoadipate, but not by valine or cysteine. Exogenously added alpha-aminoadipate (2 or 3 mM) maximally stimulated penicillin synthesis in two strains of different productivity. Under these conditions intracellular concentrations of alpha-aminoadipate were comparable in the two strains in spite of the higher rate of penicillin production in the more productive strain. Results suggest that the lower penicillin titre of strain Q 176 is due to at least two factors: (i) the intracellular concentration of alpha-aminoadipate is insufficient to allow saturation of any enzyme which is rate limiting in the conversion of alpha-aminoadipate to penicillin and (ii) the level of an enzyme, which is rate limiting in the conversion of alpha-aminoadipate to penicillin, is lower in Q 176 (relative to strain D6/1014/A). Results suggest that the intracellular concentration of alpha-aminoadipate in strain D6/1014/A is sufficiently high to allow saturation of the rate-limiting penicillin biosynthetic enzyme in that strain. The basis of further correlation of intracellular alpha-aminoadipate concentration and penicillin titre among strains D6/1014/A, P2, and 389/3, the three highest penicillin producers studied here, remains to be established.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
A partially purified preparation of alpha-aminoadipate reductase (EC 1.2.1.31) from Penicillium chrysogenum is competitively inhibited by lysine (Ki of 0.26 mM). Exogenous addition of 10 mM L-lysine to resting mycelia of P. chrysogenum increased the intracellular lysine pool concentration 2-fold, but decreased the incorporation of (6-14C)-alpha-aminoadipate into protein-bound lysine to a fifth. The distribution of radioactivity in the pathway metabolites alpha-aminoadipate, saccharopine and lysine was consistent with the assumption of a lysine sensitive enzyme step in vivo between alpha-aminoadipate and saccharopine. Hence lysine inhibition of alpha-aminoadipate reductase may be of physiologic importance.  相似文献   

3.
Subcellular fractionation of cell-free extracts obtained by nitrogen cavitation showed that Penicillium chrysogenum Q176 contains a cytosolic as well as a mitochondrial homocitrate synthase activity. The cytosolic isoenzyme was purified about 500-fold, and its kinetic and molecular properties were investigated. Native homocitrate synthase shows a molecular mass of 155 +/- 10 kDa as determined by gel filtration and a pH of 4.9 +/- 0.1 as determined by chromatofocusing. The kinetic behaviour towards 2-oxoglutarate is hyperbolic, with Km = 2.2 mM; with respect to acetyl-CoA the enzyme shows sigmoidal saturation kinetics, with [S]0.5 = 41 microM and h = 2.6. The enzyme was inhibited strongly by L-lysine (Ki = 8 +/- 2 microM; 50% inhibition by 53 microM at 6 mM-2-oxoglutarate), competitively with 2-oxoglutarate, in protamine sulphate-treated and desalted cell-free extracts and in partially purified preparations. The extent of this inhibition was strongly pH-dependent. Both isoenzymes are equally susceptible to inhibition by lysine. The same inhibition pattern is shown by the enzyme from strain D6/1014A, which is a better producer of penicillin than strain Q176.  相似文献   

4.
The effect of changes in the intracellular concentration of alpha-aminoadipate on the formation of alpha-aminoadipyl-cysteinyl-valine (ACV) and isopenicillin N (IPN)--two intermediates of penicillin biosynthesis--by strains of Penicillium chrysogenum has been investigated by measuring the incorporation of radioactivity from (6-14C)-alpha-aminoadipate into cellular 14C-ACV and 14C-IPN. No ACV or IPN were found in any strain during cultivation on glucose, but were clearly detected in all three strains during growth on lactose, displaying increased formation in strains exhibiting increased penicillin productivity and increased intracellular alpha-aminoadipate pools. ACV and IPN formation was affected by subjected P. chrysogenum mycelia to either general amino acid control (by addition of amitrol) or by exogenous addition of 5 mM L-lysine. In all cases, the changes observed paralleled the changes in the intracellular alpha-aminoadipate pool. These results are consistent with the alpha-aminoadipate pool limiting the biosynthesis of ACV and IPN and hence penicillin biosynthesis in the present strains of P. chrysogenum.  相似文献   

5.
alpha-Aminoadipate reductase (alpha-AAR) is a key enzyme in the branched pathway for lysine and beta-lactam biosynthesis of filamentous fungi since it competes with alpha-aminoadipyl-cysteinyl-valine synthetase for their common substrate L-alpha-aminoadipic acid. The alpha-AAR activity in two penicillin-producing Penicillium chrysogenum strains and two cephalosporin-producing Acremonium chrysogenum strains has been studied. The alpha-AAR activity peaked during the growth-phase preceding the onset of antibiotic production, which coincides with a decrease in alpha-AAR activity, and was lower in high penicillin- or cephalosporin-producing strains. The alpha-AAR required NADPH for enzyme activity and could not use NADH as electron donor for reduction of the alpha-aminoadipate substrate. The alpha-AAR protein of P. chrysogenum was detected by Western blotting using anti-alpha-AAR antibodies. The mechanism of lysine feedback regulation in these two filamentous fungi involves inhibition of the alpha-AAR activity but not repression of its synthesis by lysine. This is different from the situation in yeasts where lysine feedback inhibits and represses alpha-AAR. Nitrate has a strong negative effect on alpha-AAR formation as shown by immunoblotting studies of alpha-AAR. The nitrate effect was reversed by lysine.  相似文献   

6.
7.
Homocitrate synthase in the first enzyme of the lysine biosynthetic pathway. It is feedback regulated by L-lysine. Lysine decreases the biosynthesis of penicillin (determined by the incorporation of [14C]valine into penicillin) by inhibiting and repressing homocitrate synthase, thereby depriving the cell of alpha-aminoadipic acid, a precursor of penicillin. Lysine feedback inhibited in vivo the biosynthesis and excretion of homocitrate by a lysine auxotroph, L2, blocked in the lysine pathway after homocitrate. Neither penicillin nor 6-aminopenicillanic acid exerted any effect at the homocitrate synthase level. The molecular mechanism of lysine feedback regulation in Penicillium chrysogenum involved both inhibition of homocitrate synthase activity and repression of its synthesis. In vitro studies indicated that L-lysine feedback inhibits and represses homocitrate synthase both in low- and high-penicillin-producing strains. Inhibition of homocitrate synthase activity by lysine was observed in cells in which protein synthesis was arrested with cycloheximide. Maximum homocitrate synthase activity in cultures of P. chrysogenum AS-P-78 was found at 48 h, coinciding with the phase of high rate of penicillin biosynthesis.  相似文献   

8.
A 5.2-kb NotI DNA fragment isolated from a genomic library of Acremonium chrysogenum by hybridization with a probe internal to the Penicillium chrysogenum lys2 gene, was able to complement an alpha-aminoadipate reductase-deficient mutant of P. chrysogenum (lysine auxotroph L-G-). Enzyme assays showed that the alpha-aminoadipate reductase activity was restored in all the transformants tested. The lys2-encoded enzyme catalyzed both the activation and reduction of alpha-aminoadipic acid to its semialdehyde, as shown by reaction of the product with p-dimethylaminobenzaldehyde. The reaction required NADPH, and was not observed in the presence of NADH. Sequence analysis revealed that the gene encodes a protein with relatively high similarity to members of the superfamily of acyladenylate-forming enzymes. The Lys2 protein contained all nine motifs that are conserved in the adenylating domain of this enzyme family, a peptidyl carrier domain, and a reduction domain. In addition, a new NADP-binding motif located at the N-terminus of the reduction domain that may form a Rossmann-like betaalphabeta-fold has been identified and found to be shared by all known Lys2 proteins. The lys2 gene was mapped to chromosome I (2.2 Mb, the smallest chromosome) of A. chrysogenum C10 (the chromosome that contains the "late" cephalosporin cluster) and is transcribed as a monocistronic 4.5-kb mRNA although at relatively low levels compared with the beta-actin gene.  相似文献   

9.
Pipecolic acid serves as a precursor of the biosynthesis of the alkaloids slaframine and swainsonine (an antitumor agent) in some fungi. It is not known whether other fungi are able to synthesize pipecolic acid. Penicillium chrysogenum has a very active alpha-aminoadipic acid pathway that is used for the synthesis of this precursor of penicillin. The lys7 gene, encoding saccharopine reductase in P. chrysogenum, was target inactivated by the double-recombination method. Analysis of a disrupted strain (named P. chrysogenum SR1-) showed the presence of a mutant lys7 gene lacking about 1,000 bp in the 3'-end region. P. chrysogenum SR1- lacked saccharopine reductase activity, which was recovered after transformation of this mutant with the intact lys7 gene in an autonomously replicating plasmid. P. chrysogenum SR1- was a lysine auxotroph and accumulated piperideine-6-carboxylic acid. When mutant P. chrysogenum SR1- was grown with L-lysine as the sole nitrogen source and supplemented with DL-alpha-aminoadipic acid, a high level of pipecolic acid accumulated intracellularly. A comparison of strain SR1- with a lys2-defective mutant provided evidence showing that P. chrysogenum synthesizes pipecolic acid from alpha-aminoadipic acid and not from L-lysine catabolism.  相似文献   

10.
The inhibitory effect of L-lysine on penicillin biosynthesis by Penicillium chrysogenum has been compared in a low-producing strain (Wis. 54-1255) and a high-producing strain (ASP-78). Lysine inhibited total penicillin synthesis to a similar extent in both strains. However, in the high-producing strain the onset of penicillin synthesis occurred even at a high lysine concentration, whereas in the low-producing strain lysine had to be depleted before penicillin production commenced.  相似文献   

11.
The alpha-aminoadipate-semialdehyde dehydrogenase (EC 1.2.1.31) of Trichosporon adeninovorans, an enzyme of lysine biosynthesis, was partially purified, some properties of the enzyme were studied and a novel regulatory pattern was found. The Km values of the enzyme were estimated to be 0.78 mM for alpha-aminoadipate, 1.0 mM for ATP, 0.23 mM for NADPH and 0.77 mM for MgCl2. It is demonstrated that the enzyme can be regulated by lysine and lysine analogues. L-Lysine (Ki of 0.09 mM), S-(beta-aminoethyl)-L-cysteine (Ki of 0.007 mM) and delta-hydroxylysine (Ki of 1.65 mM) inhibited the enzyme activity. The inhibition was competitive with respect to alpha-aminoadipate and non-competitive with respect to both ATP and NADPH.  相似文献   

12.
Genetic and biochemical evidence was obtained for lysine catabolism via cadaverine and delta-aminovalerate in both the beta-lactam producer Streptomyces clavuligerus and the nonproducer Streptomyces lividans. This pathway is used when lysine is supplied as the sole source of nitrogen for the organism. A second pathway for lysine catabolism is present in S. clavuligerus but not in S. lividans. It leads to alpha-aminoadipate, a precursor for beta-lactam biosynthesis. Since it does not allow S. clavuligerus to grow on lysine as the sole nitrogen source, this pathway may be used exclusively to provide a precursor for beta-lactam biosynthesis. beta-Lactam producers were unable to grow well on alpha-aminoadipate as the only nitrogen source, whereas three of seven species not known to produce beta-lactam grew well under the same conditions. Lysine epsilon-aminotransferase, the initial enzyme in the alpha-aminoadipate pathway for lysine catabolism, was detected in cell extracts only from the beta-lactam producers. These results suggest that synthesis of alpha-aminoadipate is exclusively a secondary metabolic trait, present or expressed only in beta-lactam producers, while genes governing the catabolism of alpha-aminoadipate are present or fully expressed only in beta-lactam nonproducers.  相似文献   

13.
Pulse-chase experiments using [U14C]valine were done with P2 and Q176, high- and low-penicillin-producing strains of Penicillium chrysogenum. The metabolic flux of this amino acid into protein and penicillin was measured, and compartmentation of penicillin biosynthesis was assessed. Strain P2 took up 14C-valine more slowly than strain Q176, but their rates of incorporation into protein were comparable. Incorporation of 14C-valine into penicillin occurred immediately with the high-producer P2, but exhibited a lag with Q176. After 14C-valine had been removed from the medium, the specific radioactivity of penicillin continued to increase in Q176 but started to decrease immediately in P2. The specific radioactivities of 14C-valine in protein and in penicillin were significantly different in both strains: Q176 had a higher specific radioactivity of valine in penicillin than P2, whereas P2 had a higher specific radioactivity of valine in protein than Q176. Moreover, the specific radioactivity of 14C-valine in penicillin was 20-fold higher in strain Q176 than in P2. These results indicate that penicillin and protein biosynthesis use different pools of cellular valine, and that exchange of valine between the two compartments is slow in the low-producer, but rapid in the high-producer strain. Hence these results indicate a further control point of penicillin biosynthesis in P. chrysogenum.  相似文献   

14.
We previously reported that lysine inhibits in vivo homocitrate synthesis in the lysine bradytroph, Penicillium chrysogenum L(1), and that such feedback inhibition could explain the known lysine inhibition of penicillin formation. In the present study, it was found that dialyzed cell-free extracts of mutant L(1) converted [1-(14)C]acetate to homocitrate. This homocitrate synthase activity was extremely labile but could be stabilized by high salt concentrations. The pH optimum of the reaction was 6.9, and the K(m) was 5.5 mM with respect to alpha-ketoglutarate. The reaction was also dependent upon the presence of Mg(2+), adenosine 5'-triphosphate, and coenzyme A. Surprisingly, the activity in these crude extracts was not inhibited by lysine. Benzylpenicillin at a high concentration (20 mM) partially inhibited the enzyme, an effect that was enhanced by lysine. Casein hydrolysate also partially inhibited the enzyme.  相似文献   

15.
BACKGROUND: The biosynthesis of the essential amino acid lysine in higher fungi and cyanobacteria occurs via the alpha-aminoadipate pathway, which is completely different from the lysine biosynthetic pathway found in plants and bacteria. The penultimate reaction in the alpha-aminoadipate pathway is catalysed by NADPH-dependent saccharopine reductase. We set out to determine the structure of this enzyme as a first step in exploring the structural biology of fungal lysine biosynthesis. RESULTS: We have determined the three-dimensional structure of saccharopine reductase from the plant pathogen Magnaporthe grisea in its apo form to 2.0 A resolution and as a ternary complex with NADPH and saccharopine to 2.1 A resolution. Saccharopine reductase is a homodimer, and each subunit consists of three domains, which are not consecutive in amino acid sequence. Domain I contains a variant of the Rossmann fold that binds NADPH. Domain II folds into a mixed seven-stranded beta sheet flanked by alpha helices and is involved in substrate binding and dimer formation. Domain III is all-helical. The structure analysis of the ternary complex reveals a large movement of domain III upon ligand binding. The active site is positioned in a cleft between the NADPH-binding domain and the second alpha/beta domain. Saccharopine is tightly bound to the enzyme via a number of hydrogen bonds to invariant amino acid residues. CONCLUSIONS: On the basis of the structure of the ternary complex of saccharopine reductase, an enzymatic mechanism is proposed that includes the formation of a Schiff base as a key intermediate. Despite the lack of overall sequence homology, the fold of saccharopine reductase is similar to that observed in some enzymes of the diaminopimelate pathway of lysine biosynthesis in bacteria. These structural similarities suggest an evolutionary relationship between two different major families of amino acid biosynthetic pathway, the glutamate and aspartate families.  相似文献   

16.
Penicillium chrysogenum L2, a lysine auxotroph blocked in the early steps of the lysine pathway before 2-aminoadipic acid, was able to synthesize penicillin when supplemented with lysine. The amount of penicillin produced increased as the level of lysine in the media was increased. The same results were observed in resting-cell systems. Catabolism of [U-14C]lysine by resting cells and batch cultures of P. chrysogenum L2 resulted in the formation of labeled saccharopine and 2-aminoadipic acid. Formation of [14C]saccharopine was also observed in vitro when cell extracts of P. chrysogenum L2 and Wis 54-1255 were used. Saccharopine dehydrogenase and saccharopine reductase activities were found in cell extracts of P. chrysogenum, which indicates that lysine catabolism may proceed by reversal of the two last steps of the lysine biosynthetic pathway. In addition, a high lysine:2-ketoglutarate-6-aminotransferase activity, which converts lysine into piperideine-6-carboxylic acid, was found in cell extracts of P. chrysogenum. These results suggest that lysine is catabolized to 2-aminoadipic acid in P. chrysogenum by two different pathways. The relative contribution of lysine catabolism in providing 2-aminoadipic acid for penicillin production is discussed.  相似文献   

17.
Penicillin, discovered 75 years ago by Sir Alexander Fleming in Penicillium notatum, laid the foundations of modern antibiotic chemotherapy. Early work was carried out on the original Fleming strain, but it was later replaced by overproducing strains of Penicillium chrysogenum, which became the industrial penicillin producers. We show how a C(1357)-->T (A394V) change in the gene encoding PahA in P. chrysogenum may help to explain the drawback of P. notatum. PahA is a cytochrome P450 enzyme involved in the catabolism of phenylacetic acid (PA; a precursor of penicillin G). We expressed the pahA gene from P. notatum in P. chrysogenum obtaining transformants able to metabolize PA (P. chrysogenum does not), and observing penicillin production levels about fivefold lower than that of the parental strain. Our data thus show that a loss of function in P. chrysogenum PahA is directly related to penicillin overproduction, and support the historic choice of P. chrysogenum as the industrial producer of penicillin.  相似文献   

18.
The growth of Saccharomyces cerevisiae wild-type strain X2180 in minimal medium was inhibited by the addition of higher-than-supplementary levels of alpha-aminoadipate. This inhibitory effect was reversed by the addition of arginine, asparagine, aspartate, glutamine, homoserine, methionine, or serine as single amino acid supplements. Mutants belonging to the lys2 and lys14 loci were able to grow in lysine-supplemented alpha-aminoadipate medium, although not as well as when selected amino acids were added. Growth in alpha-aminoadipate medium by all strains was accompanied by an accumulation of alpha-ketoadipate. Glutamate:keto-adipate transaminase levels were derepressed two- to fivefold in lys2 mutants using alpha-aminoadipate as a nitrogen source. Wild-type strain X2180 growing in amino acid-supplemented AA medium exhibited higher levels of alpha-aminoadipate reductase. Mutants unable to use alpha-aminoadipate without amino acid supplementation were obtained by treatment of lys2 strain MW5-64 and were shown to have glutamate: ketoadipate transaminase activity and to lack alpha-aminoadipate reductase activity. Altered cell morphologies, including increased size, multiple buds, pseudohyphae, and germ tubes, evidenced by cells grown in alpha-aminoadipate medium suggest that higher-than-supplementary levels of alpha-aminoadipate result in an impairment of cell division.  相似文献   

19.
Normal strains of Saccharomyces cerevisiae do not use alpha-aminoadipate as a principal nitrogen source. However, alpha-aminoadipate is utilized as a nitrogen source by lys2 and lys5 strains having complete or partial deficiencies of alpha-aminoadipate reductase and, to a limited extent, by heterozygous lys2/+ strains. Lys2 mutants were conveniently selected on media containing alpha-aminoadipate as a nitrogen source, lysine, and other supplements to furnish other possible auxotrophic requirements. The lys2 mutations were obtained in a variety of laboratory strains containing other markers, including other lysine mutations. In addition to the predominant class of lys2 mutants, low frequencies of lys5 mutants and mutants not having any obvious lysine requirement were recovered on alpha-aminoadipate medium. The mutants not requiring lysine appeared to have mutations at the lys2 locus that caused partial deficiencies of alpha-aminoadipate reductase. Such partial deficiencies are believed to be sufficiently permissive to allow lysine biosynthesis, but sufficiently restrictive to allow for the utilization of alpha-aminoadipate. Although it is unknown why partial or complete deficiencies of alpha-aminoadipate reductase cause utilization of alpha-aminoadipate as a principal nitrogen source, the use of alpha-aminoadipate medium has considerable utility as a selective medium for lys2 and lys5 mutants.  相似文献   

20.
Compounds structurally related to lysine were tested against Penicillium chrysogenum Wis. 54-1255 for inhibition of growth, sporulation, and penicillin formation. This strain is relatively resistant to lysine analogs. The compounds that were the more active inhibitors of growth and whose activities were reversed by L-lysine were diaminohexynoic acid, N-epsilon-methyllysine, N-alpha-methyllysine, and diaminopimelic acid. These four compounds also inhibited sporulation, which was more sensitive to inhibition than growth was. Analogs strongly inhibiting benzyl-penicillin formation by resting mycelia were diaminohexynoic acid and N-epsilon-methyllysine. The action of the most active analog (diaminohexynoic acid) on penicillin synthesis was reversed by DL-alpha-aminoadipic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号