首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Forty different chiral molecules were studied by liquid chromatography with a Pirkle-type, (R)-N-(3,5-dinitrobenzoyl) phenylglycine (DNBPG), chiral stationary phase column. The dramatic effect of a small molecular change on chiral recognition was demonstrated using DL-amino acid derivatives. The inductive effect on chiral recognition was also studied using trifluoro-, trichloro-, dichloro-, monochloroacetyl, and acetyl derivatives of four different chiral amines. The study of the enantiomer separation of 11 different crown ethers of 2,2′-binaphthyldiyl showed that the rigidity of the chiral center can be an additional parameter in chiral recognition for the DNBPG phase but not for a β-cyclodextrin bonded chiral phase. It is apparent from this study that steric effects, inductive effects, and molecular rigidity play important roles in chiral recognition with DNBPG chiral stationary phases.  相似文献   

2.
A single low‐molecular mass chiral selector namely (R)‐acryloyloxy‐β‐β‐dimethyl‐γ‐butyrolactone has been bonded to a modified silica‐based monolith to form a new brush‐type chiral stationary phase for micro‐high performance liquid chromatography (HPLC) separation. © 2011 Wiley‐Liss, Inc.  相似文献   

3.
4.
A novel high‐performance liquid chromatography (HPLC) multifunctional immobilized chiral stationary phase was prepared by bonding dialdehyde microcrystalline cellulose to aminosilica via Schiff base reaction and then derivatized with 3,5‐dimethylphenyl isocyanate. The HPLC multifunctional immobilized chiral stationary phase could not only achieve chiral separation but also achieve achiral separation. Chiral separation evaluation showed that 1‐(1‐naphthyl)ethanol and mandelonitrile got separation in normal phase (NP) mode. Ranolazine, benzoin ethyl ether, metalaxyl, and diclofop were successfully separated in reversed phase (RP) mode. Aromatic compounds such as polycyclic aromatic hydrocarbons (PAHs), anilines, and aromatic acids were selected as analytes to investigate the achiral separation performance of the multifunctional immobilized chiral stationary phase in NP and RP modes. The achiral separation evaluation showed that six PAHs could get good separation within 10 minutes in NP mode. Four aromatic acids were well separated in RP mode. The retention mechanism of aromatic compounds on the stationary phase was discussed, founding that π‐π interaction, π‐π electron‐donor‐acceptor (EDA) interaction, and hydrogen bonding interaction played important roles during the achiral separation process. This multifunctional immobilized chiral stationary phase had the advantages of simple bonding steps, short reaction time, and no need for space arm.  相似文献   

5.
A direct, isocratic, and simple chromatographic method is described for the resolution of racemic albuterol using the α1-acid glycoprotein chiral stationary phase (AGP-CSP) under reverse phase conditions. The effect of various organic modifiers, temperature, and phosphate buffer ionic strength on the separation factor (α) and stereochemical resolution factor (Rs) has been studied. The enantiomeric separation of albuterol was also achieved using a urea-type CSP of (S)-indoline-2-carboxylic acid and (R)-1-(α-naphthyl)ethylamine, known as Chirex 3022, running in the normal phase mode. The effect of different organic acids added to the mobile phase was examined and the chiral recognition mechanism(s) is discussed. Solid phase extraction with C18 Sep-Pak cartridges was applied as a clean-up step to determine the enantiomeric ratio between (?)-R and (+)-S-albuterol in pharmaceutical formulations and in human plasma. © 1995 Wiley-Liss, Inc.  相似文献   

6.
Huang SH  Bai ZW  Yin CQ  Li SR  Pan ZQ 《Chirality》2007,19(2):129-140
Two new chiral polymers of different molecular weights were synthesized by the copolymerization of (1R,2R)-(+)-1,2-diphenylethylenediamine, phenyl diisocyanate and terephthaloyl chloride. The polymers were immobilized on aminated silica gel to afford two chiral stationary phases. The polymers and the corresponding chiral stationary phases were characterized by Fourier transform-IR, elemental analysis, 1H and 13C NMR. The surface coverages of chiral structural units on the chiral stationary phases were estimated as 0.27 and 0.39 mmol/g, respectively. The enantioseparation ability of these chiral stationary phases was evaluated with a variety of chiral compounds by high-performance liquid chromatography. The effects of the organic additives, the composition of mobile phases, and the injection amount of sample on enantioseparation were investigated. A comparison of enantioseparation ability between these two chiral stationary phases was made. It was believed that the chain length of polymeric chiral selector significantly affected the enantioseparation ability of corresponding chiral stationary phase.  相似文献   

7.
The copper(II) complexes of two new diastereomeric ligands, N2-(R)- and N2-(S)-2′-hydroxypropyl-(S)-phenylalaninamide [(R, S)-1 and (S, S)-1], have been used as additives to the eluent in high-performance liquid chromatography (HPLC) reversed phase for the chiral separation of DNS-amino acids. The aim was that of comparing the separation process obtained by the chiral eluent with that obtained by an analogous bonded stationary phase containing (S)-phenylalaninamide, previously studied [CSP-(S)-Phe-NH2]. The affinity of the ternary complexes for the C18 column was determined by adsorption experiments in HPLC. It was shown that the two systems (chiral eluent, chiral stationary phase) work according to different mechanisms. Ternary complex formation in solution was studied by fluorescence spectroscopy. It was shown that chiral separation with the Cu(II) complexes added to the eluent was determined by the relative affinities of the ternary complexes for the column-stationary phase rather than by their stabilities in solution. With CSP-(S)-Phe-NH2 the separation is accounted for by the relative stabilities of the ternary complexes, which depends mainly on the “allowed” geometry of the complex and on the steric repulsion of the amino acid side chain with the spacer. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Yin CQ  He BJ  Li SR  Liu YQ  Bai ZW 《Chirality》2009,21(4):442-448
A chiral selector was prepared through the reaction between (1S,2R)-(+)-2-amino-1,2-diphenylethanol and phenyl isocyanate. This selector was immobilized on aminated silica gel, respectively, with bifunctional group linkers of 1,4-phenylene diisocyanate, methylene-di-p-phenyl diisocyanate, and terephthaloyl chloride to produce corresponding three chiral stationary phases. The prepared compounds and chiral stationary phases were characterized by FT-IR, elemental analysis, (1)H NMR, and solid-state (1)H NMR. The enantioseparation ability of these chiral stationary phases was evaluated with structurally various chiral compounds. The chiral stationary phase prepared with 1,4-phenylene diisocyanate as linker showed excellent enantioseparation ability. The influence of different linkages on the enantioseparation was discussed.  相似文献   

9.
Insight into enantioselective separation utilizing chiral-modified zeolite HY could be useful in designing a chiral stationary phase for resolving pharmaceutical compounds. A model was employed to better understand the enantioseparation of valinol in zeolite HY that contains (+)-(1R;2R)-hydrobenzoin as a chiral modifier. This model incorporates the zeolite support and accounts for the flexible change. Results from grand canonical Monte Carlo and molecular dynamics simulations indicate that the associated diastereomeric complex consists of a single (+)-(1R;2R)-hydrobenzoin and a single valinol molecules located in the zeolite HY supercage. Supercage-based docking simulation predicted an enantioselectivity of 2.6 compared with that of 1.4 measured experimentally. Also, the supercage-based docking simulation demonstrated a single binding motif in the S complex, and two binding motifs in the R complex. The multiple binding modes in the R complex resulted in its lower stability. This is hypothesized to be the origin of the weaker binding between (-)-(R)-valinol and the chiral modifier, and explains why (+)-(R)-valinol is retained more in the chiral-modified zeolite system studied.  相似文献   

10.
Lavison G  Thiébaut D 《Chirality》2003,15(7):630-636
A stationary phase derived from ristocetin was evaluated for chiral separation in subcritical fluid chromatography. Separation of various enantiomers having different structures and pK(a) values were investigated using carbon dioxide and polar modifiers. The influence of modifiers, additives, temperature, and mobile phase flow rate on separations is presented. It is concluded that this stationary phase can be used for SFC despite its structural similarity with protein-derived stationary phases that can only be used in HPLC. The separation mechanisms could not be elucidated or predicted using these initial experiments. The separations of warfarin and, especially, efavirenz demonstrate the potential of this type of stationary phase for rapid SFC chiral separations.  相似文献   

11.
The enantioseparation of ezetimibe stereoisomers by high‐performance liquid chromatography on different chiral stationary phases, ie, 3 polysaccharide‐based chiral columns, was studied. It was observed that cellulose‐based Chiralpak IC column exhibited the best resolving ability. After the optimization of mobile phase compositions in both normal and reversed phase modes, satisfactory separation could be obtained on Chiralpak IC column, especially in normal phase mode. The use of prohibited solvents as nonstandard mobile phase gave rise to better resolution than that of standard mobile phases (n‐hexane/alcohol system). In addition, the presence of ethanol in nonstandard mobile phase has played an important role in enhancing chromatographic efficiency and resolution between ezetimibe stereoisomers. Various attempts were made to comprehensively compare the chiral recognition capabilities of immobilized versus coated polysaccharide‐based chiral columns, amylose‐based versus cellulose‐based chiral stationary phases, reversed versus normal phase modes, and standard versus nonstandard mobile phases. Moreover, possible solute‐mobile phase‐stationary phase interactions were derived to explain how stationary and mobile phases affected the separation. Then the method validation with respect to selectivity, linearity, precision, accuracy, and robustness was carried out, which was demonstrated to be suitable and accurate for the quantitative determination of (RRS)‐ezetimibe impurity in ezetimibe bulk drug.  相似文献   

12.
Pidotimod, a synthetic dipeptide, has two chiral centers with biological and immunological activity. Its enantiomers were characterized by x‐ray crystallographic analysis. A chiral stationary phase (CSP) Chiralpak‐IA based on amylose derivatized with tris‐(3, 5‐dimethylphenyl carbamate) was used to separate pidotimod enantiomers. The mobile phase was prepared in a ratio of 35:65:0.2 of methyl‐tert‐butyl‐ether and acetonitrile trifluoroaceticacid. In addition, thermodynamics and molecular docking methods were used to explain the enantioseparation mechanism by Chiralpak‐IA. Thermodynamic studies were carried out from 10 to 45 °C. In general, both retention and enantioselectivity decreased as the temperature increased. Thermodynamic parameters indicate that the interaction force between the pidotimod enantiomer (4S, 2'R) and IA CSP is stronger and their complex model is more stable. According to GOLD molecular docking simulation, Van der Waals force is the leading cause of pidotimod enantiomers separation by IA CSP. Chirality 27:802–808, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
G T?r?k  A P?ter  D W Armstrong  D Tourw?  G T?th  J S?pi 《Chirality》2001,13(10):648-656
Direct high-performance liquid chromatographic chiral separation of numerous underivatized unnatural amino acids on a ristocetin A-bonded chiral stationary phase used in the reversed-phase and in the polar organic chromatographic modes is reported. The effects of different parameters such as mobile phase composition, temperature, and the structure of the analytes on the selectivity in both chromatographic modes are discussed. By variation of the parameters, the separation of the stereoisomers was optimized and, as a result, baseline resolution was achieved in most cases.  相似文献   

14.
The preparation and a preliminary chromatographic evaluation of a novel polymeric chiral stationary phase (CSP) derived from (1R;2R)-diaminocyclohexane (DACH) are presented. A radical copolymerization process has been employed to generate a silica-based chiral sorbent, showing considerable high chemical and thermal stability and stereoselectivity toward racemic compounds capable of H-bonding (3-hydroxy-benzodiazepin-2-ones, chlorthalidone, atropoisomeric sulfur compounds, etc.); in the present paper we present the investigation on the resolution of racemic dihydroxy biarylic atropoisomers; the effects of eluent composition and of temperature on the separation ability of the CSP have been studied in order to elucidate the recognition mechanism operating in these chiral separations. © 1992 Wiley-Liss, Inc.  相似文献   

15.
Caccamese S  Manna L  Scivoli G 《Chirality》2003,15(8):661-667
Naringin is the chief flavanone glycoside of grapefruit (Citrus paradisi). It is responsible for part of the bitter taste of the fruit and can cause the inhibition of some cytochrome P450s. The direct separation of (2R)- and (2S)-naringin in the albedo of grapefruits was obtained in normal phase HPLC mode using Chiralcel OD as chiral stationary phase and n-hexane/ethanol with 0.1% of TFA as mobile phase. Chiralpak AD was almost ineffective in the separation. This procedure was used to evaluate the stereochemistry at C-2 during maturation of the grapefruit. The CD curves of (2R)- and (2S)-naringin isolated by semipreparative chiral HPLC were determined and the elution order of the chromatographic peaks was related to the absolute C-2 configuration. Partial resolution of the C-2 diastereomers of narirutin was obtained on Chiralpak AD.  相似文献   

16.
Tan X  Hou S  Wang M 《Chirality》2007,19(7):574-580
A novel chiral packing material for high-performance liquid chromatography (HPLC) was prepared by connecting (R)-1-phenyl-2-(4-methylphenyl) ethylamine (PTE) amide derivative of (S)-isoleucine to aminopropyl silica gel through 2-amino-3,5-dinitro-1-carboxamido-benzene unit. This chiral stationary phase was applied to the enantioselective and diastereoselective separation of five pyrethroid insecticides by HPLC under normal phase condition. To achieve satisfactory baseline separation an optimization of the variables of mobile phase composition was required. The two enantiomers of fenpropathrin and four stereoisomers of fenvalerate were baseline separated using hexane-1,2-dichloroethane-2-propanol as mobile phase. The results show that the enantioselectivity of CSP is better than Pirkle type 1-A column for these compounds. Only partial separations for the cypermethrin and cyfluthrin stereoisomers were observed. Seven peaks and eight peaks were observed for cypermethrin and cyfluthrin, respectively. The elution orders were assigned by using different stereoisomer-enriched products.  相似文献   

17.
A direct HPLC method was developed for the enantioseparation of pantoprazole using macrocyclic glycopeptide-based chiral stationary phases, along with various methods to determine the elution order without isolation of the individual enantiomers. In the preliminary screening, four macrocyclic glycopeptide-based chiral stationary phases containing vancomycin (Chirobiotic V), ristocetin A (Chirobiotic R), teicoplanin (Chirobiotic T), and teicoplanin-aglycone (Chirobiotic TAG) were screened in polar organic and reversed-phase mode. Best results were achieved by using Chirobiotic TAG column and a methanol-water mixture as mobile phase. Further method optimization was performed using a face-centered central composite design to achieve the highest chiral resolution. Optimized parameters, offering baseline separation (resolution = 1.91 ± 0.03) were as follows: Chirobiotic TAG stationary phase, thermostated at 10°C, mobile phase consisting of methanol/20mM ammonium acetate 60:40 v/v, and 0.6 mL/min flow rate. Enantiomer elution order was determined using HPLC hyphenated with circular dichroism (CD) spectroscopy detection. The online CD signals of the separated pantoprazole enantiomers at selected wavelengths were compared with the structurally analogous esomeprazole enantiomer. For further verification, the inline rapid, multiscan CD signals were compared with the quantum chemically calculated CD spectra. Furthermore, docking calculations were used to investigate the enantiorecognition at molecular level. The molecular docking shows that the R-enantiomer binds stronger to the chiral selector than its antipode, which is in accordance with the determined elution order on the column—S- followed by the R-isomer. Thus, combined methods, HPLC-CD and theoretical calculations, are highly efficient in predicting the elution order of enantiomers.  相似文献   

18.
The normal phase mode liquid chromatographic enantiomer separation capability of a quinine tert-butyl-carbamate-type chiral stationary phase (CSP) has been investigated for a set of polar [1,5-b]-quinazoline-1,5-dione derivatives. This class of chiral heterocycles is currently under development as potential alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and/or N-methyl-D-aspartic acid (NMDA) receptor antagonists. The effect of the nature and concentration of polar modifier, i.e., ethanol and isopropanol, in n-hexane-based mobile phases, as well as the substituent pattern of the phenyl ring attached to the quinazolone framework on retention factor, enantioselectivity, and resolution was investigated. The Soczewiński competitive adsorption model was used to describe the relationship between the retention and the binary mobile phase compositions. According to this model, linear plots of the logarithms of retention factor versus molar fractions of the polar modifiers were obtained over a wide concentration range (X(B) between 0.15 and 0.35). Addition of equimolar ethanol yields higher resolution than isopropanol, R(S) values ranging between 1.54 and 2.75, whereas the latter allows to achieve moderately increased enatioselectivity. The resolution was further improved by using a ternary mixture of n-hexane:methanol:isopropanol/85:5:10 (v/v). The most pronounced selectivity factor alpha and resolution R(S) values were obtained for the para-hydroxy substituted compound, indicating that chiral recognition is sensitive to steric and stereoelectronic factors. In the course of optimization, the temperature-dependence on the chiral separation was also investigated. It turned out that the enantiomer separation is predominantly enthalpically driven in normal phase mode.  相似文献   

19.
Ghanem A  Al-Humaidi E 《Chirality》2007,19(6):477-484
The chiral recognition ability and solvent versatility of a new chiral stationary phase containing amylose 3,5-dimethylphenylcarabamate immobilized onto silica gel (CHIRALPAK IA) is investigated. Thus, the direct enantioselective separation of a set of racemic N-alkylated barbiturates and 3-alkylated analogs of thalidomide was conducted using different nonstandard solvents as eluent and diluent, respectively in high-performance liquid chromatography (HPLC). The separation, resolution, and elution order of the investigated compounds were compared on both immobilized and coated amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phases (Chiralpak IA and Chiralpak AD, respectively) using a mixture of n-hexane/2-propanol (90:10 v/v) as mobile phase with different flow-rates and fixed UV detection at 254 nm. The effect of the immobilization of the amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase on silica (Chiralpak IA) on the chiral recognition ability was noted as the bonded phase (Chiralpak IA) was superior in chiral recognition and possesses a higher resolving power in most of the reported cases than the coated one (Chiralpak AD). A few racemates were not or poorly resolved on the immobilized Chiralpak IA or the coated Chiralpak AD when using standard solvents were most efficiently resolved on the immobilized Chiralpak IA upon using nonstandard solvents. Furthermore, the immobilized phase withstands the nonstandard (prohibited) HPLC solvents such as dichloromethane, ethyl acetate, tetrahydrofuran, methyl-tert-butyl ether, and others when used as eluents or as a dissolving agent for the analyte itself. The direct analysis of a real sample extracted from plasma using DCM on Chiralpak IA is also shown.  相似文献   

20.
Wang X  Ching CB 《Chirality》2002,14(10):798-805
Nadolol, a beta-blocker used in the management of hypertension and angina pectoris, has three chiral centers and is currently marketed as an equal mixture of its four stereoisomers. Enantiomeric separation of nadolol by high-performance liquid chromatography was studied on a column packed with novel heptakis (6-azido-6-deoxy-2, 3-di-O-phenylcarbamolyted) beta-cyclodextrin bonded chiral stationary phase. The retention behavior and resolution of nadolol enantiomers were investigated and discussed with respect to the mobile phase composition and flow rate, pH, ionic strength, and temperature. The optimal separation condition was found; the mobile phase contained 80% buffer solution (1% triethylamine acetate, pH 5.5) and 20% methanol with 0.3 ml/min mobile phase flow rate at a temperature of 20 degrees C. At the optimal conditions, resolution of three stereoisomers of nadolol was obtained with a complete separation of the most active enantiomer, (RSR)-nadolol. Thermodynamic properties including enthalpy and entropy change of binding to the CSP for the enantiomeric separation were also determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号