首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
This study gives an integrated analysis of the effects of temperature, swimming speed and body mass on standard metabolism and aerobic swimming performance in vendace (Coregonus albula (L.)). The metabolic rate was investigated at 4, 8 and 15°C using one flow-through respirometer and two intermittent-flow swim tunnels. We found that the standard metabolic rate (SMR), which increased significantly with temperature, accounted for up to 2/3 of the total swimming costs at optimum speed (U opt), although mean U opt was high, ranging from 2.0 to 2.8 body lengths per second. Net swimming costs increased with swimming speed, but showed no clear trend with temperature. The influence of body mass on the metabolic rate varied with temperature and activity level resulting in scaling exponents (b) of 0.71–0.94. A multivariate regression analysis was performed to integrate the effects of temperature, speed and mass (AMR = 0.82M 0.93 exp(0.07T) + 0.43M 0.93 U 2.03). The regression analysis showed that temperature affects standard but not net active metabolic costs in this species. Further, we conclude that a low speed exponent, high optimum speeds and high ratios of standard to activity costs suggest a remarkably efficient swimming performance in vendace.  相似文献   

2.
According to common belief, metabolic rate usually scales with body mass to the 3/4-power, which is considered by some to be a universal law of nature. However, substantial variation in the metabolic scaling exponent (b) exists, much of which can be related to the overall metabolic level (L) of various taxonomic groups of organisms, as predicted by the recently proposed metabolic-level boundaries (MLB) hypothesis. Here the MLB hypothesis was tested using data for intraspecific (ontogenetic) body-mass scaling of resting metabolic rate in spiders and boid snakes. As predicted, in both animal groups b varies mostly between 2/3 and 1, and is significantly negatively related to L. L is, in turn, negatively related to species-specific body mass (Mm: estimated as the mass at the midpoint of a scaling relationship), and as a result, larger species tend to have steeper metabolic scaling slopes (b) than smaller species. After adjusting for the effects of Mm, b and L are still negatively related, though significantly only in the spiders, which exhibit a much wider range of L than the snakes. Therefore, in spiders and snakes the intraspecific scaling of metabolic rate with body mass itself scales with interspecific variation in both metabolic level and body mass.  相似文献   

3.
Three groups of specialist nectar-feeders covering a continuous size range from insects, birds and bats have evolved the ability for hovering flight. Among birds and bats these groups generally comprise small species, suggesting a relationship between hovering ability and size. In this study we established the scaling relationship of hovering power with body mass for nectar-feeding glossophagine bats (Phyllostomidae). Employing both standard and fast-response respirometry, we determined rates of gas exchange in Hylonycteris underwoodi (7 g) and Choeronycteris mexicana (13–18 g) during hover-feeding flights at an artificial flower that served as a respirometric mask to estimate metabolic power input. The O2 uptake rate ( o2) in ml g−1 h−1 (and derived power input) was 27.3 (1.12 W or 160 W kg−1) in 7-g Hylonycteris and 27.3 (2.63 W or 160 W kg−1) in 16.5-g Choeronycteris and thus consistent with measurements in 11.9-g Glossophagasoricina (158 W kg−1, Winter 1998). o2 at the onset of hovering was also used to estimate power during forward flight, because after a transition from level forward to hovering flight gas exchange rates initially still reflect forward flight rates. o2 during short hovering events (<1.5 s) was 19.0 ml g−1 h−1 (1.8 W) in 16-g Choeronycteris, which was not significantly different from a previous, indirect estimate of the cost of level forward flight (2.1 W, Winter and von Helversen 1998). Our estimates suggest that power input during hovering flight P h (W) increased with body mass M (kg) within 13–18-g Choeronycteris (n = 4) as P h  = 3544 (±2057 SE) M 1.76 (±0.21 SE) and between different glossophagine bat species (n = 3) as P h  = 128 (±2.4 SE) M 0.95 (±0.034 SE). The slopes of three scaling functions for flight power (hovering, level forward flight at intermediate speed and submaximal flight power) indicate that: 1. The relationship between flight power to flight speed may change with body mass in the 6–30-g bats from a J- towards a U-shaped curve. 2. A metabolic constraint (hovering flight power equal maximal flight power) may influence the upper size limit of 30–35 g for this group of flower specialists. Mass-specific power input (W kg−1) during hovering flight appeared constant with regard to body size (for the mass ranges considered), but differed significantly (P < 0.001) between groups. Group means were 393 W kg−1 (sphingid moths), 261 W kg−1 (hummingbirds) and 159 W kg−1 (glossophagine bats). Thus, glossophagine bats expend the least metabolic power per unit of body mass supported during hovering flight. At a metabolic power input of 1.1 W a glossophagine bat can generate the lift forces necessary for balancing 7 g against gravitation, whereas a hummingbird can support 4 g and a sphingid moth only 3 g of body mass with the same amount of metabolic energy. These differences in power input were not fully explained by differences in induced power output estimated from Rankine-Froude momentum-jet theory. Accepted: 10 November 1998  相似文献   

4.
Variability in metabolic scaling in animals, the relationship between metabolic rate (R) and body mass (M), has been a source of debate and controversy for decades. R is proportional to Mb, the precise value of b much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts b to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH (‘ocean acidification’). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; b is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size.  相似文献   

5.
The relationship between body size and temperature of mammals is poorly resolved, especially for large keystone species such as bison (Bison bison). Bison are well represented in the fossil record across North America, which provides an opportunity to relate body size to climate within a species. We measured the length of a leg bone (calcaneal tuber, DstL) in 849 specimens from 60 localities that were dated by stratigraphy and 14C decay. We estimated body mass (M) as M = (DstL/11.49)3. Average annual temperature was estimated from δ18O values in the ice cores from Greenland. Calcaneal tuber length of Bison declined over the last 40,000 years, that is, average body mass was 37% larger (910 ± 50 kg) than today (665 ± 21 kg). Average annual temperature has warmed by 6°C since the Last Glacial Maximum (~24–18 kya) and is predicted to further increase by 4°C by the end of the 21st century. If body size continues to linearly respond to global temperature, Bison body mass will likely decline by an additional 46%, to 357 ± 54 kg, with an increase of 4°C globally. The rate of mass loss is 41 ± 10 kg per°C increase in global temperature. Changes in body size of Bison may be a result of migration, disease, or human harvest but those effects are likely to be local and short‐term and not likely to persist over the long time scale of the fossil record. The strong correspondence between body size of bison and air temperature is more likely the result of persistent effects on the ability to grow and the consequences of sustaining a large body mass in a warming environment. Continuing rises in global temperature will likely depress body sizes of bison, and perhaps other large grazers, without human intervention.  相似文献   

6.
The rate of oxygen consumption throughout embryonic development is used to indirectly determine the ‘cost’ of development, which includes both differentiation and growth. This cost is affected by temperature and the duration of incubation in anamniote fish and amphibian embryos. The influences of temperature on embryonic development rate, respiration rate and energetics were investigated in the Australian lungfish, Neoceratodus forsteri, and compared with published data. Developmental stage and oxygen consumption rate were measured until hatching, upon which wet and dry gut-free masses were determined. A measure of the cost of development, the total oxygen required to produce 1 mg of embryonic dry tissue, increased as temperature decreased. The relationship between the oxygen cost of development (C, ml mg−1) and dry hatchling mass (M, mg) in fishes and amphibians is described by C = 0.30 M0.22 ± 0.13 (95% CI), r 2 = 0.52. The scaling exponent indicates that the cost of embryonic development increases disproportionally with increasing hatchling mass. At 15 and 20°C, N. forsteri cost of development is significantly lower than the regression mean for all species, and at 25°C is lower than the allometrically scaled data set. Unexpectedly, incubation of N. forsteri is long, despite natural development under relatively warm conditions, and may be related to a large genome size. The low cost of development may be associated with construction of a rather sluggish fish with a low capacity for aerobic metabolism. The metabolic rate is lower in N. forsteri hatchlings than in any other fishes or amphibians at the same temperature, which matches the extremely low aerobic metabolic scope of the juveniles.  相似文献   

7.
The body temperature (T b) of Cape ground squirrels (Xerus inauris, Sciuridae) living in their natural environment during winter has not yet been investigated. In this study we measured abdominal T b of eight free-ranging Cape ground squirrels over 27 consecutive days during the austral winter. Mean daily T b was relatively stable at 37.0 ± 0.2°C (range 33.4 to 40.2°C) despite a marked variation in globe temperature (T g) (range −7 to 37°C). Lactating females (n = 2) consistently had a significantly higher mean T b (0.7°C) than non-lactating females (n = 3) and males. There was a pronounced nychthemeral rhythm with a mean active phase T b of 38.1 ± 0.1°C and a mean inactive phase T b of 36.3 ± 0.3°C for non-lactating individuals. Mean daily amplitude of T b rhythm was 3.8 ± 0.2°C. T b during the active phase closely followed T g and mean active phase T b was significantly correlated with mean active phase T g (r 2 = 0.3–0.9; P < 0.01). There was no evidence for daily torpor or pronounced hypothermia during the inactive phase, and mean minimum inactive phase T b was 35.7 ± 0.3°C for non-lactating individuals. Several alternatives (including nocturnal huddling, an aseasonal breeding pattern and abundant winter food resources) as to why Cape ground squirrels do not employ nocturnal hypothermia are discussed.  相似文献   

8.
Data on thermal energetics for vespertilionid bats are under-represented in the literature relative to their abundance, as are data for bats of very small body mass. Therefore, we studied torpor use and thermal energetics in one of the smallest (4 g) Australian vespertilionids, Vespadelus vulturnus. We used open-flow respirometry to quantify temporal patterns of torpor use, upper and lower critical temperatures (T uc and T lc) of the thermoneutral zone (TNZ), basal metabolic rate (BMR), resting metabolic rate (RMR), torpid metabolic rate (TMR), and wet thermal conductance (C wet) over a range of ambient temperatures (T a). We also measured body temperature (T b) during torpor and normothermia. Bats showed a high proclivity for torpor and typically aroused only for brief periods. The TNZ ranged from 27.6°C to 33.3°C. Within the TNZ T b was 33.3±0.4°C and BMR was 1.02±0.29 mlO2 g−1 h−1 (5.60±1.65 mW g−1) at a mean body mass of 4.0±0.69 g, which is 55 % of that predicted for a 4 g bat. Minimum TMR of torpid bats was 0.014±0.006 mlO2 g−1 h−1 (0.079±0.032 mW g−1) at T a=4.6±0.4°C and T b=7.5±1.9. T lc and C wet of normothermic bats were both lower than that predicted for a 4 g bat, which indicates that V. vulturnus is adapted to minimising heat loss at low T a. Our findings support the hypothesis that vespertilionid bats have evolved energy-conserving physiological traits, such as low BMR and proclivity for torpor.  相似文献   

9.
IntroductionCerebral blood flow and thermal perception during physical exercise under hyperthermia conditions in females are poorly understood. Because sex differences exist for blood pressure control, resting middle cerebral artery velocity (MCAVmean), and pain, we tested the hypothesis that females would have greater reductions in MCAvmean and increased thermal perceptual strain during exercise hyperthermia compared to males.MethodsTwenty-two healthy active males and females completed 60 min of matched exercise metabolic heat production in a 1) control cool (24.0 ± 0.0 °C; 14.4 ± 3.4% Rh) and 2) hot (42.3 ± 0.3 °C; 28.4 ± 5.2% Rh) conditions in random order, separated by at least 3 days while MCAvmean, thermal comfort, and preference was obtained during the exercise.ResultsCompared to 36 °C mean body temperature (Mbt), as hyperthermia increased to 39 °C Mbt, females had a greater reduction in absolute (MCAvmean), and relative change (%Δ MCAvmean) and conductance (%Δ MCAvmean conductance) in MCAVmean compared to males (Interaction: Temperature x Sex, P ≤ 0.002). During exercise in cool conditions, absolute and conductance MCAvmean was maintained from rest through exercise; however, females had greater MCAVmean compared to males (Main effect: Sex, P < 0.0008). We also found disparities in females' perceptual thermal comfort and thermal preference. These differences may be associated with a greater reduction in partial pressure of end-tidal CO2, and different cardiovascular and blood pressure control to exercise under hyperthermia.ConclusionsIn summary, females exercise cerebral blood flow velocity is reduced to a greater extent (25% vs 15%) and the initial reduction occurs at lower hyperthermia mean body temperatures (~38 °C vs ~39 °C) and are under greater thermal perceptual strain compared to males.  相似文献   

10.
Water temperature is known to be a particularly important environmental factor that affects fish swimming performance, but it is unknow how acute temperature changes affect the fish performance of Ptychobarbus kaznakovi. P. kaznakovi in the Lancang River have declined quickly in recent years, and this species was used to examine the effects of acute temperature changes on swimming abilities and oxygen consumption in a Brett‐type swimming tunnel respirometer. The standard metabolic rate (SMR) and routine metabolic rate (RMR) showed 216% and 134% increases, respectively, at 22°C (an acute increase from 17 to 22°C) compared to those at 12°C (an acute decrease from 17 to 12°C). Moreover, the RMR was approximately 1.7, 1.6 and 1.3 times the value of the SMR at 12°C, 17°C and 22°C, respectively. The critical swimming speed (Ucrit) of P. kaznakovi at 22°C was 5.45 ± 0.45BL/S, which was 45% higher than that at 12°C (3.77 ± 0.92BL/S). The oxygen consumption rates (MO2) reached their maximum values at swimming speeds near the Ucrit for all the temperature treatments. The maximum metabolic rate (MMR) values at 12°C, 17°C and 22°C were 274.53 ± 142.60 (mgO2 kg?1 hr?1), 412.85 ± 216.34 (mgO2 kg?1 hr?1) and 1,095.73 ± 52.50 (mgO2 kg?1 hr?1), respectively. Moreover, there was a narrow aerobic scope at 12°C compared to that at 17°C and 22°C. The effect of acute temperature changes on the swimming abilities and oxygen consumption of P. kaznakovi indicated that water temperature changes caused by dam construction could directly affect energy consumption during the upstream migration of fish.  相似文献   

11.
In response to handling or other acute stressors, most mammals, including humans, experience a temporary rise in body temperature (T b). Although this stress-induced rise in T b has been extensively studied on model organisms under controlled environments, individual variation in this interesting phenomenon has not been examined in the field. We investigated the stress-induced rise in T b in free-ranging eastern chipmunks (Tamias striatus) to determine first if it is repeatable. We predicted that the stress-induced rise in T b should be positively correlated to factors affecting heat production and heat dissipation, including ambient temperature (T a), body mass (M b), and field metabolic rate (FMR). Over two summers, we recorded both T b within the first minute of handling time (T b1) and after 5 min of handling time (T b5) 294 times on 140 individuals. The mean ∆T b (T b5 – T b1) during this short interval was 0.30 ± 0.02°C, confirming that the stress-induced rise in T b occurs in chipmunks. Consistent differences among individuals accounted for 40% of the total variation in ∆T b (i.e. the stress-induced rise in T b is significantly repeatable). We also found that the stress-induced rise in T b was positively correlated to T a, M b, and mass-adjusted FMR. These results confirm that individuals consistently differ in their expression of the stress-induced rise in T b and that the extent of its expression is affected by factors related to heat production and dissipation. We highlight some research constraints and opportunities related to the integration of this laboratory paradigm into physiological and evolutionary ecology.  相似文献   

12.
J. Schmid 《Oecologia》2000,123(2):175-183
Patterns and energetic consequences of spontaneous daily torpor were measured in the gray mouse lemur (Microcebus murinus) under natural conditions of ambient temperature and photoperiod in a dry deciduous forest in western Madagascar. Over a period of two consecutive dry seasons, oxygen consumption (VO2) and body temperature (T b) were measured on ten individuals kept in outdoor enclosures. In all animals, spontaneous daily torpor occurred on a daily basis with torpor bouts lasting from 3.6 to 17.6 h, with a mean torpor bout duration of 9.3 h. On average, body temperatures in torpor were 17.3±4.9°C with a recorded minimum value of 7.8°C. Torpor was not restricted to the mouse lemurs’ diurnal resting phase: entries occurred throughout the night and arousals mainly around midday, coinciding with the daily ambient temperature maximum. Arousal from torpor was a two-phase process with a first passive, exogenous heating where the T b of animals increased from the torpor T b minimum to a mean value of 27.1°C before the second, endogenous heat production commenced to further raise T b to normothermic values. Metabolic rate during torpor (28.6±13.2 ml O2 h–1) was significantly reduced by about 76% compared to resting metabolic rate (132.6±50.5 ml O2 h–1). On average, for all M. murinus individuals measured, hypometabolism during daily torpor reduced daily energy expenditure by about 38%. In conclusion, all these energy-conserving mechanisms of the nocturnal mouse lemurs, with passive exogenous heating during arousal from torpor, low minimum torpor T bs, and extended torpor bouts into the activity phase, comprise an important and highly adapted mechanism to minimize energetic costs in response to unfavorable environmental conditions and may play a crucial role for individual fitness. Received: 8 July 1999 / Accepted: 3 December 1999  相似文献   

13.
Antarctic marine organisms are considered to have extremely limited ability to respond to environmental temperature change. However, here we show that the Antarctic notothenioid fish Pagothenia borchgrevinki is an exception to this theory. P. borchgrevinki was able to acclimate its resting metabolic rate and resting ventilation frequency after a 5°C rise in temperature. Acute exposure to 4°C resulted in an elevation in metabolic rate (57.8 ± 4.79 mg O2 kg−1 h−1) and resting ventilation rate (40.38 ± 1.61 breaths min−1) compared with fish at −1°C (metabolic rate 34.45 ± 3.12 mg O2 kg−1 h−1; ventilation rate 29.88 ± 3.72 breaths min−1). However, after a 1-month acclimation period, there was no significant difference in the metabolic rate (cold fish 29.52 ± 3.01; warm fish 31.13 ± 2.30 mg O2 kg−1 h−1), or the resting ventilation rate (cold fish 28.75 ± 0.98; warm fish 34.25 ± 2.28 breaths min−1) of cold and warm acclimated fish. Acclimation changes to the rate of oxygen consumption following exhaustive exercise were complex. The pattern of oxygen consumption during recovery from exhaustive exercise was not significantly different in either cold or warm acclimated fish.  相似文献   

14.
Length–weight relationships are presented for 33 fish species from New Zealand. The parameters a and b of the equation W = aLb were estimated. Parameter b ranged from 2.51 (Pseudocaranx dentex) to 3.51 (Alepocephalus antipodianus) with a mean of 3.12 ± 0.24. Most of these estimates (90.9%) were between 2.8 and 3.4. Maximum lengths and depths of catch are updated for nine species.  相似文献   

15.
Catecholamines (noradrenaline, NA; adrenaline, AD; dopamine, DA) influence the metabolic and cardiovascular responses to exercise. However, changes in catecholamine metabolism during exercise are unclear. Plasma normetanephrine (NMET), metanephrine (MET) and catecholamine responses to a laboratory-based model of games-type exercise were examined. Twelve healthy men completed a resting control trial and a trial consisting of ten 6 s cycle ergometer sprints interspersed with 30 s recovery, in randomised order. Resting and post-sprint venous blood samples were taken. Plasma NA and AD increased after each sprint but DA was unaltered. Plasma nephrines increased significantly from sprint 4 onwards with peak NMET increasing 60% to 0.76 ± 0.19 nmol l−1 and MET 230% to 0.37 ± 0.16 nmol l−1 from resting values (< 0.05). The results demonstrate increased catecholamine metabolism via elevated catechol-O-methyl transferase activity during intermittent sprinting. The results may aid regulation of the metabolic and cardiovascular responses to exercise by maintaining tissue adrenoceptor sensitivity to circulating catecholamines.  相似文献   

16.
In this study we examined the allometry of basal metabolic rate (BMR) of 31 parrot species. Unlike previous reports, we show that parrots per se do not display BMRs that are any different to other captive-raised birds of their body size. An ordinary least squares regression fitted the data best and body mass explained 95% of the variation in BMR. There was no phylogenetic signal in the BMR data. We also provide new data for the Greater Vasa Parrot (Coracopsis vasa) of Madagascar. We tested the hypotheses that C. vasa may, because of its insular existence, display conservative energetic traits (low BMR, use of adaptive heterothermy) similar to those observed in several Malagasy mammals. However, this was not the case. C. vasa had a higher BMR than other parrots, especially during summer, when BMR was up-regulated by 50.5% and was 95.7% higher than predicted from an ordinary least squares (OLS) allometry of parrots (BMR = 0.042M b0.649, BMR in Watts, M b in grammes). Compared with BMR data for 94 captive-raised bird species, the winter and summer BMRs were, respectively, 45.5 and 117.8% higher than predicted by a phylogenetic generalised least squares (PGLS) allometry (BMR = 0.030M b0.687, BMR in Watts, M b in grammes). The summer up-regulation of BMR is the highest recorded for a bird of any size to date. We suggest that the costs of a high summer BMR may be met by the unusual cooperative breeding system of C. vasa in which groups of males feed the female and share paternity. The potential breeding benefits of a high summer BMR are unknown.  相似文献   

17.
The use of hypothermia as a means to save energy is well documented in birds. This energy‐saving strategy is widely considered to occur exclusively at night in diurnally active species. However, recent studies suggest that facultative hypothermia may also occur during the day. Here, we document the use of daytime hypothermia in foraging Black‐capped Chickadees Poecile atricapillus wintering in eastern Canada. We measured the body temperature (Tb) of 126 individuals (plus 48 repeated measures) during a single winter and related values to ambient temperature (Ta) at the time of capture. We also tested whether daytime hypothermia was correlated with the size of body reserves (residuals of mass on structural size and fat score) and levels of metabolic performance (basal metabolic rate and maximum thermogenic capacity). We found that Tb of individual birds was lower when captured at low Ta, reaching values as low as 35.5 °C in actively foraging individuals. Tb was unrelated to metabolic performance or measures of body reserves. Therefore, daytime hypothermia does not result from individuals being unable to maintain Tb during cold spells or to a lack of body reserves. Our data also demonstrated a high level of individual variation in the depth of hypothermia, the causes of which remain to be explored.  相似文献   

18.
Quolls (Dasyurus) are medium-sized carnivorous dasyurid marsupials. Tiger (3,840 g) and eastern quolls (780 g) are mesic zone species, northern quolls (516 g) are tropical zone, and chuditch (1,385 g) were once widespread through the Australian arid zone. We found that standard physiological variables of these quolls are consistent with allometric expectations for marsupials. Nevertheless, inter-specific patterns amongst the quolls are consistent with their different environments. The lower T b of northern quolls (34°C) may provide scope for adaptive hyperthermia in the tropics, and they use torpor for energy/water conservation, whereas the larger mesic species (eastern and tiger quolls) do not appear to. Thermolability varied from little in eastern (0.035°C °C−1) and tiger quolls (0.051°C oC−1) to substantial in northern quolls (0.100°C oC−1) and chuditch (0.146°C oC−1), reflecting body mass and environment. Basal metabolic rate was higher for eastern quolls (0.662 ± 0.033 ml O2 g−1 h−1), presumably reflecting their naturally cool environment. Respiratory ventilation closely matched metabolic demand, except at high ambient temperatures where quolls hyperventilated to facilitate evaporative heat loss; tiger and eastern quolls also salivated. A higher evaporative water loss for eastern quolls (1.43 ± 0.212 mg H2O g−1 h−1) presumably reflects their more mesic distribution. The point of relative water economy was low for tiger (−1.3°C), eastern (−12.5°C) and northern (+3.3) quolls, and highest for the chuditch (+22.6°C). We suggest that these differences in water economy reflect lower expired air temperatures and hence lower respiratory evaporative water loss for the arid-zone chuditch relative to tropical and mesic quolls.  相似文献   

19.
Molossid bats are specialised aerial-hawkers that, like their diurnal ecological counterparts, swallows and swifts, hunt for insects in open spaces. The long and narrow wings of molossids are considered energetically adapted to fast flight between resource patches, but less suited for manoeuvring in more confined spaces, such as between tree-tops or in forest gaps. To understand whether a potential increase in metabolic costs of manoeuvring excludes molossids from foraging in more confined spaces, we measured energy costs and speed of manoeuvring flight in two tropical molossids, 18 g Molossus currentium and 23 g Molossus sinaloae, when flying in a ~500 m3 hexagonal enclosure (~120 m2 area), which is of similar dimensions as typical forest gaps. Flight metabolism averaged 10.21 ± 3.00 and 11.32 ± 3.54 ml CO2 min−1, and flight speeds 5.65 ± 0.47 and 6.27 ± 0.68 m s−1 for M. currentium and M. sinaloae respectively. Metabolic rate during flight was higher for the M. currentium than for the similar-sized, but broader-winged frugivore Carollia sowelli, corroborating that broad-winged bats are better adapted to flying in confined spaces. These higher metabolic costs of manoeuvring flight may be caused by having to fly slower than the optimal foraging speed, and by the additional metabolic costs for centripetal acceleration in curves. This may preclude molossids from foraging efficiently between canopy trees or in forest gaps. The surprisingly brief burst of foraging activity at dusk of many molossids might be related to the cooling of the air column after sunset, which drives airborne insects to lower strata. Accordingly, foraging activity of molossids may quickly turn unprofitable when the abundance of insects decreases above the canopy.  相似文献   

20.
Whether basal metabolic rate‐body mass scaling relationships have a single exponent is highly discussed, and also the correct statistical model to establish relationships. Here, we aimed (1) to identify statistically best scaling models for 17 mammalian orders, Marsupialia, Eutheria and all mammals, and (2) thereby to prove whether correcting for differences in species’ body temperature and their shared evolutionary history improves models and their biological interpretability. We used the large dataset from Sieg et al. (The American Naturalist 174 , 2009, 720) providing species’ body mass (BM), basal metabolic rate (BMR) and body temperature (T). We applied different statistical approaches to identify the best scaling model for each taxon: ordinary least squares regression analysis (OLS) and phylogenetically informed analysis (PGLS), both without and with controlling for T. Under each approach, we tested linear equations (log‐log‐transformed data) estimating scaling exponents and normalization constants, and such with a variable normalization constant and a fixed exponent of either ? or ¾, and also a curvature. Only under temperature correction, an additional variable coefficient modeled the influence of T on BMR. Except for Pholidata and Carnivora, in all taxa studied linear models were clearly supported over a curvature by AICc. They indicated no single exponent at the level of orders or at higher taxonomic levels. The majority of all best models corrected for phylogeny, whereas only half of them included T. When correcting for T, the mathematically expected correlation between the exponent (b) and the normalization constant (a) in the standard scaling model y = a x b was removed, but the normalization constant and temperature coefficient still correlated strongly. In six taxa, T and BM correlated positively or negatively. All this hampers a disentangling of the effect of BM, T and other factors on BMR, and an interpretation of linear BMR‐BM scaling relationships in the mammalian taxa studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号