首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y Chu  T S Huang    M T Hsu 《Nucleic acids research》1990,18(13):3705-3711
Under exhaustive digestion conditions P1 nuclease was found to cleave a subpopulation of intracellular SV40 chromatin only once. The major P1 cleavage site in SV40 DNA was mapped at the origin of DNA replication, and the two minor sites at the SV40 enhancers. The P1-sensitive SV40 chromatin subpopulation was found to have higher superhelical density than the bulk of the intracellular SV40 chromatin. Furthermore, pulse labeled SV40 DNA which had higher superhelical density than that of the steady state viral DNA (S.S.Chen and M.T.Hsu, J.Virol 51:14-19, 1984) was also found to be preferentially cleaved by P1 nuclease. These results are consistent with a supercoil-dependent alteration of chromatin conformation near the regulatory region of the viral genome that can be recognized by P1 nuclease. Since P1 nuclease cleaves the subpopulation of SV40 chromatin only once without further degradation, this nuclease can be used as a general tool to define viral or cellular chromatin fraction with altered chromatin conformation and to map nuclease hypersensitive sites. Preliminary studies indicate that P1 makes limited double stranded cleavages in cellular chromatin to generate large DNA fragments.  相似文献   

2.
Nascent DNA in nucleosome like structures from chromatin   总被引:17,自引:0,他引:17  
A Levy  K M Jakob 《Cell》1978,14(2):259-267
We have used chromatin sensitivity to cleavage by micrococcal nuclease as a probe for differences between chromatin containing nascent DNA and that containing bulk DNA. Micrococcal nuclease digested the nascent DNA in chromatin of swimming blastulae of sea urchins more rapidly to acid-soluble nucleotides than the DNA of bulk chromatin. A part of the nascent DNA occurred in micrococcal nuclease-resistant structures which were either different from, or temporary modifications of, the bulk nucleosomes. This was inferred from the size differences between bulk and nascent DNA fragments in 10% polyacrylamide gels after micrococcal nuclease digestion of nuclei from a mixture of 14C-thymidine long- and 3H-thymidine pulse-labeled embryos. Bulk monomer and dimer DNA fragments contained about 170 and 410 base pairs (bp), respectively, when 18% of the bulk DNA had been rendered acid-soluble. At this level of digestion, “nascent monomer DNA” fragments of about 150 bp as well as 305 bp “large nascent DNA fragments” were observed. Increasing levels of digestion indicated that the large nascent DNA fragment was derived from a chromatin structure which was more resistant to micrococcal nuclease cleavage than bulk dimer chromatin subunits. Peaks of 3H-thymidine-labeled DNA fragments from embryos which had been pulse-labeled and then chased or labeled for several minutes overlapped those of 14C-thymidine long-labeled monomer, dimer and trimer fragments. This indicated that the chromatin organization at or near the replication fork which had temporarily changed during replication had returned to the organization of its nonreplicating state.  相似文献   

3.
We describe a novel system for two dimensional electrophoresis at neutral and alkaline pH for determining the double-stranded and single-stranded lengths of DNA. With this system we analysed the mode of micrococcal nuclease digestion of DNA in cellular and SV40 viral chromatin and of supercoiled SV40 DNA. The enzyme reaction occurred in two steps : the enzyme first introduced single-strand breaks, then converted these to double-strand breaks by an adjacent cleavage on the opposite strand. Digestion of cellular chromatin DNA occurred by a similar mechanism. Chromatin fragments produced by limited micrococcal nuclease action contained many single-strand breaks, which may be important when this method is used to prepare chromatin fragments for biochemical and biophysical studies. Nucleosome monomer to tetramer produced at later stages of digestion contained few if any single-strand breaks.  相似文献   

4.
W A Scott  D J Wigmore 《Cell》1978,15(4):1511-1518
Simian virus 40 (SV40) chromatin isolated from infected BSC-1 cell nuclei was incubated with deoxyribonuclease I, staphylococcal nuclease or an endonuclease endogenous to BSC-1 cells under conditions selected to introduce one doublestrand break into the viral DNA. Full-length linear DNA was isolated, and the distribution of sites of initial cleavage by each endonuclease was determined by restriction enzyme mapping. Initial cleavage of SV40 chromatin by deoxyribonuclease I or by endogenous nuclease reduced the recovery of Hind III fragment C by comparison with the other Hind III fragments. Similarly, Hpa I fragment B recovery was reduced by comparison with the other Hpa I fragments. When isolated SV40 DNA rather than SV40 chromatin was the substrate for an initial cut by deoxyribonuclease I or endogenous nuclease, the recovery of all Hind III or Hpa I fragments was approximately that expected for random cleavage. Initial cleavage by staphylococcal nuclease of either SV40 DNA or SV40 chromatin occurred randomly as judged by recovery of Hind III or Hpa I fragments. These results suggest that, in at least a portion of the SV40 chromatin population, a region located in Hind III fragment C and Hpa I fragment B is preferentially cleaved by deoxyribonuclease I or by endogenous nuclease but not by staphylococcal nuclease.Complementary information about this nuclease-sensitive region was provided by the appearance of clusters of new DNA fragments after restriction enzyme digestion of DNA from viral chromatin initially cleaved by endogenous nuclease. From the sizes of new fragments produced by different restriction enzymes, preferential endonucleolytic cleavage of SV40 chromatin has been located between map positions 0.67 and 0.73 on the viral genome.  相似文献   

5.
The susceptibility of the DNA in chromatin to single strand-specific nucleases was examined using nuclease P1, mung bean nuclease, and venom phosphodiesterase. A stage in the reaction exists where the size range of the solubilized products is similar for each of the three nucleases and is nearly independent of incubation time. During this stage, the chromatin fragments sediment in the range of 30 to 100 S and contain duplex DNA ranging from 1 to 10 million daltons. Starting with chromatin depleted of histones H1 and H5 similar fragments are generated. In both cases these nucleoprotein fragments are reduced to nucleosomes and their multimers by micrococcal nuclease. Thus, chromatin contains a limited number of DNA sites which are susceptible to single strand-specific nucleases. These sites occur at intervals of 8 to 80 nucleosomes and are distributed throughout the chromatin. Nucleosome monomers, dimers, or trimers were not observed at any stage of single strand-specific nuclease digestion of nuclei, H1- and H5-depleted chromatin, or micrococcal nuclease-generated oligonucleosomes. Each of the three nucleases converted mononucleosomes (approximately 160 base pairs) to nucleosome cores (approximately 140 base pairs) probably by exonucleolytic action that was facilitated by the prior removal of H1 and H5. The minichromosome of SV40 is highly resistant to digestion by nuclease P1.  相似文献   

6.
Effects of cycloheximide on chromatin biosynthesis.   总被引:10,自引:0,他引:10  
In the presence of sufficient cycloheximide, puromycin or NaCl to quantitatively inhibit protein synthesis in HeLa cells, thymidine incorporation continues at 20% of control rates for 60 to 90 minutes, after which incorporation gradually ceases. Both DNA and protein synthesis revert to control rates in about five minutes after removal of cycloheximide.DNA synthesis in the presence of cycloheximide appears to be a continuation of the replicative process by several criteria. The persistent DNA synthesis in the presence of cycloheximide is abolished by hydroxyurea, which does not inhibit repair synthesis, while ethidium bromide, an inhibitor of mitochondrial DNA synthesis, is without effect. Nuclear DNA is not nicked during incubation in cycloheximide. Low molecular weight Okazaki fragments (4 to 5 S) are both synthesized and processed to high molecular weight DNA in cells treated with cycloheximide. Replication forks, identified in alkaline CsCl gradients by incorporation of bromodeoxyuridine as a density marker just before the addition of cycloheximide, are selectively labeled with radioactive thymidine during DNA synthesis.In the presence of cycloheximide the maturation of DNA intermediates into high molecular weight DNA is defective. All size classes of DNA fragments, normally present during progression of low to high molecular weight DNA, are demonstrable in cells preincubated in cycloheximide for prolonged periods. However, 21 S fragments, intermediate in size between Okazaki pieces and mature, high molecular weight DNA, accumulate in cells treated with cycloheximide, demonstrating a defect in maturation of the 21 S intermediates into high molecular weight DNA. After removal of the cycloheximide, the 21 S DNA fragments are processed to high molecular weight DNA at a significantly impaired rate, requiring about three hours for completion of chain growth as compared to 40 to 60 minutes in controls. The slowed growth of DNA fragments synthesized in the presence of cycloheximide following drug removal is not due to persisting effects of cyeloheximide since DNA synthesis immediately following removal of the drug has chain growth rates similar to that of controls.Pools of chromatin proteins exist in HeLa cells, as demonstrated by a brief, labeled amino acid pulse followed by a chase with cycloheximide. The specific activity of chromatin proteins increases significantly during 60 minutes of cycloheximide inhibition. Histone f2a1 accumulates preferentially during this chase period, suggesting that a supply of this highly conserved histone might be requisite to continued replication.Comparison of chromatin synthesized during cycloheximide treatment with pulse-labeled control chromatin has provided insight into the mechanism of assembly of proteins and DNA into the nucleoprotein complex. The DNA of ch-chromatin2 is more susceptible to nuclease digestion than control chromatin, suggesting that it is deficient in protein content. Upon reversal of cycloheximide inhibition, the recovery of nuclease digestibility of ch-chromatin to control values takes two to three hours, a time similar to that required for conversion of the corresponding 21 S chDNA fragments to high molecular weight DNA. Briefly pulse-labeled (30 to 60 s) DNA in control chromatin also has an enhanced susceptibility to nuclease digestion of the same degree as found in ch-ehromatin. The time of recovery of increased nuclease susceptibility of newly made chromatin DNA (via protein addition) to control levels is about 10 to 15 minutes and corresponds to the time required for synthesis of replicon-sized units of DNA.In addition to being nuclease-sensitive, both cycloheximide and newly synthesized (30 to 60 s) chromatin have lighter buoyant densities in CsCl gradients than bulk chromatin. This property exists for only one to two minutes in controls and is probably due to structural properties distinct from those rendering nuclease sensitivity.Limit digests of chromatin by micrococcal nuclease yield a characteristic pattern of polynucleotides when resolved in polyacrylamide gels. The radioactivity profiles of limit digest polynucleotides from control and ch-chromatin are identical, indicating that pre-existing chromatin proteins remain in place on newly replicated DNA in the same fashion as in mature chromatin.  相似文献   

7.
8.
Chromatin assembly in isolated mammalian nuclei.   总被引:4,自引:1,他引:3       下载免费PDF全文
Cellular DNA replication was stimulated in confluent monolayers of CV-1 monkey kidney cells following infection with SV40. Nuclei were isolated from CV-1 cells labeled with [3H]thymidine and then incubated in the presence of [alpha-32P]deoxyribonucleoside triphosphates under conditions that support DNA replication. To determine whether or not the cellular DNA synthesized in vitro was assembled into nucleosomes the DNA was digested in situ with either micrococcal nuclease or pancreatic DNase I, and the products were examined by electrophoretic and sedimentation analysis. The distribution of DNA fragment lengths on agarose gels following micrococcal nuclease digestion was more heterogeneous for newly replicated than for the bulk of the DNA. Nonetheless, the state of cellular DNA synthesized in vitro (32P-labeled) was found to be identical with that of the DNA in the bulk of the chromatin (3H-labeled) by the following criteria: (i) The extent of protection against digestion by micrococcal nuclease of DNase I. (ii) The size of the nucleosomes (180 base pairs) and core particles (145 base pairs). (iii) The number and sizes of DNA fragments produced by micrococcal nuclease in a limit digest. (iv) The sedimentation behavior on neutral sucrose gradients of nucleoprotein particles released by micrococcal nuclease. (v) The number and sizes of DNA fragments produced by DNase I digestion. These results demonstrate that cellular DNA replicated in isolated nuclei is organized into typical nucleosomes. Consequently, subcellular systems can be used to study the relationship between DNA replication and the assembly of chromatin under physiological conditions.  相似文献   

9.
DFF ((DNA Fragmentation Factor) is a heterodimer composed of 40 kDa (DFF40, CAD) and 45 kDa (DFF45, ICAD) subunits. During apoptosis, activated caspase-3 cleaves DFF45 and activates DFF40, a DNase that targets nucleosomal linker region and cleaves chromatin DNA into nucleosomal fragments. We have previously reported that HT induced apoptosis in HL-60 cells, and intracellular Ca2+ chelator BAPTA blocked apoptosis-associated DNA fragmentation induced by HT. We report here that HT also induced activation of caspase-3 and cleavage of DFF45. BAPTA prevented neither the caspase-3 activation nor the cleavage of DFF45. Mitochondrial membrane potential was disrupted in BAPTA-AM treated cells. However, BAPTA did prevent DNA fragmentation and chromatin condensation in HT-treated cells. These data suggest a novel role for intracellular calcium in regulating apoptotic nuclease that causes DNA fragmentation and chromatin condensation.  相似文献   

10.
The structures of DNAs present in various intracellular forms of simian virus 40 (SV40) nucleoprotein complexes were analyzed by micrococcal nuclease digestion. The results showed that the 70S SV40 chromatin was completely sensitive to nuclease digestion, whereas CsCl gradient-purified mature virion was completely resistant. Virion assembly intermediates with different degrees of virion maturation showed intermediate resistance, and three products were found: nucleosomal DNA fragments, representing the fraction of intermediates that were sensitive to nuclease; linear SV40 genome-sized DNA, representing the more mature intermediates that contained one or limited defects in the capsid shell; and supercoiled SV40, which was derived from mature virions. These digestion products, however, remained associated with capsid shells after nuclease digestion. These results were consistent with the model in which maturation of the SV40 virion is achieved through the organization of capsid proteins that accumulate around SV40 chromatin. Mild digestion of SV40 nucleoprotein complexes with micrococcal nuclease revealed the difference in nucleosome repeat length between SV40 chromatin and virion assembly intermediates. A novel DNA fragment of about 75 nucleotides was observed early in nuclease digestion.  相似文献   

11.
Cross-linking of DNA with trimethylpsoralen is a probe for chromatin structure   总被引:19,自引:0,他引:19  
T Cech  M L Pardue 《Cell》1977,11(3):631-640
  相似文献   

12.
It was shown with the use of specific probes that mild micrococcal nuclease digestion releases from chromatin actively-transcribed genes as small nucleosome oligomers. In the present work we demonstrate that most if not all of the active genes are accessible to the nuclease. It was found that the short released fragments are greatly enriched in transcribed DNA sequences, the most enriched being the dimers of nucleosomes since 35% of their DNA could be hybridized to cytoplasmic RNA. The results of cDNA-DNA hybridizations indicate that the monomers and dimers of nucleosomes contain most of the DNA sequences which encode poly(A+) RNAs, however larger released fragments include some transcribed sequences, while the nuclease-resistant chromatin is considerably impoverished in coding sites. These evidences and the finding that about 25% of the DNA from the dimers of nucleosomes are exclusively located in this class of fragments, tend to prove that the active chromatin regions are attacked in a non-random way by micrococcal nuclease. We have previously isolated, without using exogenous nuclease, an actively transcribed genomic fraction amounting to 1.5–2% of the total nuclear DNA, formed of single-stranded DNA. In the present study we show that all or nearly all the single-stranded DNA sequences could be reassociated with the DNA fragments present in the released monomers and dimers of nucleosomes. Our observations confirmed our previous finding that the greatest part of single-stranded DNA selectively originates from the coding strand of genomic DNA.  相似文献   

13.
In chromatin a minor fraction melts at a temperature lower than deproteinized DNA, which may be assigned to DNA destabilizing proteins. We attempted to localize the destabilized DNA in the various chromatin fragments separated by electrophoresis after a mild micrococcal nuclease digestion. The small released fragments are enriched in coding sequences. About 20% of the DNA extracted from the released nucleosomes are single-stranded, 60% of the DNA in these fragments are digested by nuclease S1 after incubation at low temperature, which suggests that the DNA destabilizing proteins are present in the released nucleosomes. Hybridization studies have shown that 25% of the DNA in nucleosomes are specific of this class of fragments. DNA destabilizing proteins could be associated with the specific sequences.  相似文献   

14.
The studies reported here demonstrate that ATP may be used in lieu of EDTA to inhibit nuclease digestion of DNA and chromatin. Because ATP is a milder chelator than EDTA and is a biochemical common to the cellular microenvironment in vivo, critical studies of cellular processes that require native structure to be maintained are more feasible without the presence of strong chelators. During the digestion of chromatin into its components by nuclease treatment, ATP assures the retention of nucleoprotein compaction, particularly for large to intermediate-sized oligosomes (2400bp–1000bp in length). ATP used at a concentration of 3.3 mM appears to be somewhat better than EDTA, 1.0 mM, for minimizing degradation of nuclease-treated chromatin. However, termination of nuclease digestion of chromatin and minimization of further degradation by the addition of ATP to a concentration of 1.0 mM was almost equivalent to the addition of EDTA to a concentration of 1.0 mM. Slightly more degradation was observed for the latter condition. In addition, ATP can be used to inhibit endogenous nuclease activity when specific restriction enzymes are needed. Standard low ionic strength DNP, deoxyribonucleoprotein, and DNA electrophoresis of proteinized and deproteinized chromatin oligomers, respectively, indicated that ATP effectively inhibits staphylococcal nuclease. Low ionic strength nucleoprotein electrophoresis to resolve staphylococcal nuclease-digested chromatin indicates that as little as 10–4 M EDTA can promote structural unfolding resulting in changes in apparent mobilities for chromatin oligomers 250 and 600 by in length. Comparative digestion of chromatin with staphlococcal nuclease followed by reaction termination by ATP or EDTA showed that this observation was not merely the result of degradation due to inefficiency of ATP enzyme inhibition.  相似文献   

15.
DFF40/CAD endonuclease is primarily responsible for internucleosomal DNA cleavage during the terminal stages of apoptosis. The nuclease specifically introduces DNA double strand breaks into chromatin substrates. Here we performed a detailed study on the specificity of the nuclease using synthetic single-stranded and double-stranded ribo- and deoxyribo-oligonucleotides as substrates. We have found that neither single-stranded DNA, single-stranded RNA, double-stranded RNA nor RNA–DNA heteroduplexes are cleaved by the DFF40/CAD nuclease. Noteworthy, all types of oligonucleotides that are not cleaved by the nuclease inhibit cleavage of double-stranded DNA. We have also observed that in cells undergoing apoptosis in vivo neither the activation of DFF40/CAD nor oligonucleosomal chromatin fragmentation was temporally correlated with either total cellular or nuclear RNA degradation. We conclude that DFF40/CAD is exclusively specific for double-stranded DNA. Jakub Hanus and Magdalena Kalinowska-Herok contributed equally to the work.  相似文献   

16.
Apoptotic nuclear morphology and oligonucleosomal double-strand DNA fragments (also known as DNA ladder) are considered the hallmarks of apoptotic cell death. From a classic point of view, these two processes occur concomitantly. Once activated, DNA fragmentation factor, 40-kDa subunit (DFF40)/caspase-activated DNase (CAD) endonuclease hydrolyzes the DNA into oligonucleosomal-size pieces, facilitating the chromatin package. However, the dogma that the apoptotic nuclear morphology depends on DNA fragmentation has been questioned. Here, we use different cellular models, including MEF CAD−/− cells, to unravel the mechanism by which DFF40/CAD influences chromatin condensation and nuclear collapse during apoptosis. Upon apoptotic insult, SK-N-AS cells display caspase-dependent apoptotic nuclear alterations in the absence of internucleosomal DNA degradation. The overexpression of a wild-type form of DFF40/CAD endonuclease, but not of different catalytic-null mutants, restores the cellular ability to degrade the chromatin into oligonucleosomal-length fragments. We show that apoptotic nuclear collapse requires a 3′-OH endonucleolytic activity even though the internucleosomal DNA degradation is impaired. Moreover, alkaline unwinding electrophoresis and In Situ End-Labeling (ISEL)/In Situ Nick Translation (ISNT) assays reveal that the apoptotic DNA damage observed in the DNA ladder-deficient SK-N-AS cells is characterized by the presence of single-strand nicks/breaks. Apoptotic single-strand breaks can be impaired by DFF40/CAD knockdown, abrogating nuclear collapse and disassembly. In conclusion, the highest order of chromatin compaction observed in the later steps of caspase-dependent apoptosis relies on DFF40/CAD-mediated DNA damage by generating 3′-OH ends in single-strand rather than double-strand DNA nicks/breaks.  相似文献   

17.
The sequential generation of large-scale DNA fragments followed by internucleosomal chromatin fragmentation is a biochemical hallmark of apoptosis. One of the nucleases primarily responsible for genomic DNA fragmentation during apoptosis is called DNA Fragmentation Factor 40 (DFF40) or Caspase-activated DNase (CAD). DFF40/CAD is a magnesium-dependent endonuclease specific for double stranded DNA that generates double strand breaks with 3'-hydroxyl ends. DFF40/CAD is activated by caspase-3 that cuts the nuclease's inhibitor DFF45/ICAD. The nuclease preferentially attacks chromatin in the internucleosomal linker DNA. However, the nuclease hypersensitive sites can be detected and DFF40/CAD is potentially involved in large-scale DNA fragmentation as well. DFF40/CAD-mediated DNA fragmentation triggers chromatin condensation that is another hallmark of apoptosis.  相似文献   

18.
Purified duck reticulocyte DNA was incubated in vitro with a 7,8-dihydrodiol-9,10-oxide derivative of benzo(a)pyrene (BPDE). The carcinogen-modified DNA was somewhat more susceptible to partial digestion by the single strand specific endonuclease S1 than unmodified DNA, suggesting slight denaturation of the helix at sites of modification. Chromatin was reconstituted in vitro utilizing this carcinogen-modified DNA and unmodified-chromatin associated proteins. This reconstituted chromatin showed the same kinetics and extent of digestion by Staphylococcal nuclease, and similar nucleosome profiles on sucrose density gradient centrifugation, as those obtained with native chromatin or chromatin reconstituted with unmodified DNA. Moreover, polyacrylamide gel electrophoresis of DNA fragments obtained from nuclease digests gel electrophoresis of DNA fragments obtained from nuclease digests of the reconstituted chromatins suggested that the chromatin containing carcinogen-modified DNA had the same subnucleosome structure as that reconstituted with unmodified DNA. In a separate set of studies intact duck reticulocyte chromatin was reacted directly with BPDE. Nuclease digestion studies indicated that 65% of the carcinogen was bound to the ‘open’ regions of chromatin, and 35% to ‘closed’ regions.These results indicate that although covalent binding of a benzo(a)pyrene (BP) derivative to DNA produces local distortions in conformation of the helix, this modification does not appear to interfere with the ability of the DNA to associate with histones to form nucleosome structures. In addition, although DNA in the open regions of chromatin is more susceptible to reaction with the BP derivative, there is appreciable reaction with the DNA associated with histones.  相似文献   

19.
20.
A comparison was made of the subunit organization of chromatin from regions of the genome with different metaphase chromosome banding characteristics by analyzing the accessibility of early and late replicating DNA in synchronized Chinese hamster ovary cells to digestion with staphylococcal nuclease. Three measures of nuclease susceptibility were employed: (1) the release of acid-soluble material; (2) a digestion index, P, which corresponds to the proportion of internucleosome segments which experienced at least one cleavage event; and (3) the size distribution of DNA fragments isolated from digested chromatin. Little or no difference was observed in the initial rates with which nuclease converted early and late replicating chromatin to acid-soluble material, although the initial digestion rates varied with time of cell collection in the cycle (metaphase > G1 mid-S > late-S or G2). Measurements of the digestion indices of material isolated from interphase cells suggested that initial cleavage events were more rapid in early replicating chromatin than in late replicating chromatin. In contrast, electrophoretic analysis revealed that oligomer DNA fragments from early labelled metaphase chromatin were slightly larger than corresponding fragments from late labelled metaphase chromatin. The size distribution of DNA in submonomer fragments obtained from extensively digested chromatin appeared to be identical regardless of the timing of replication or cell collection. Those small differences in chromatin digestibility that were observed may reflect subtle variations in the accessibility of internucleosome regions or perhaps in the higher-order arrangement of nucleosomes. However, no gross variation in accessibility to staphylococcal nuclease digestion was observed in chromatin localized to metaphase chromosome regions with vastly different cytological staining properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号