首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The par region of the broad-host-range, IncP alpha plasmid RK2 has been implicated as a stability determinant by its ability to enhance the maintenance of mini-RK2 plasmids or heterologous replicons in a growing population of host cells. The region consists of two operons: parCBA, which encodes a multimer resolution system, and parDE, which specifies a postsegregational response mechanism that is toxic to plasmidless segregants. To assess the importance of this region to the stable maintenance of the complete RK2 plasmid in different hosts, we used the vector-mediated excision (VEX) deletion system to specifically remove the entire par region or each operon separately from an otherwise intact RK2 plasmid carrying a lacZ marker. The par region was found to be important to stable maintenance of RK2lac (pRK2526) in Escherichia coli and five other gram-negative hosts (Agrobacterium tumefaciens, Azotobacter vinelandii, Acinetobacter calcoaceticus, Caulobacter crescentus, and Pseudomonas aeruginosa). However, the relative importance of the parCBA and parDE operons varied from host to host. Deletion of parDE had no effect on the maintenance of pRK2526 in A. calcoaceticus, but it severely reduced pRK2526 maintenance in A. vinelandii and resulted in significant instability in the other hosts. Deletion of parCBA did not alter pRK2526 stability in E. coli, A. tumefaciens, or A. vinelandii but severely reduced plasmid maintenance in A. calcoaceticus and P. aeruginosa. In the latter two hosts and C. crescentus, the delta parCBA mutant caused a notable reduction in growth rate in the absence of selection for the plasmid, indicating that instability resulting from the absence of parCBA may trigger the postsegregational response mediated by parDE. We also examined the effect of the conjugal transfer system on RK2 maintenance in E. coli. Transfer-defective traJ and traG mutants of pRK2526 were stably maintained in rapidly growing broth cultures. On solid medium, which should be optimal for IncP-mediated conjugation, colonies from cells containing the pRK2526 tra mutants displayed significant numbers of white (Lac-) sectors on X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside) plates, whereas sectors appeared rarely in colonies from tra+ plasmid-containing cells. Both the traJ and traG mutations further reduced the maintenance of the already unstable deltapar derivative. Thus, these experiments with defined mutations in an intact RK2 plasmid have revealed (i) that the par region allows RK2 to adapt to the different requirements for stable maintenance in various hosts and (ii) that conjugal transfer can contribute to the maintenance of RK2 in a growing population, particularly under conditions that are favorable to RK2 transfer.  相似文献   

3.
Bacterial conjugation normally involves the unidirectional transfer of DNA from donor to recipient. Occasionally, conjugation results in the transfer of DNA from recipient to donor, a phenomenon known as retrotransfer. Two distinct models have been generally considered for the mechanism of retrotransfer. In the two-way conduction model, no transfer of the conjugative plasmid is required. The establishment of a single conjugation bridge between donor and recipient is sufficient for the transfer of DNA in both directions. In the one-way conduction model, transfer of the conjugative plasmid to the recipient is required to allow the synthesis of a new conjugation bridge for the transfer of DNA from recipient to donor. We have tested these models by the construction of a mutant of the self-transmissible, IncP plasmid RK2lac that allows the establishement of the conjugation bridge but is incapable of self-transfer. Four nucleotides of the nic region of the origin of transfer (oriT) were changed directly in the 67-kb plasmid RK2lac by a simple adaptation of the vector-mediated excision (VEX) strategy for precision mutagenesis of large plasmids (E. K.Ayres, V. J. Thomson, G. Merino, D. Balderes, and D. H. Figurski, J. Mol. Biol. 230:174-185, 1993). The resulting RK2lac oriT1 mutant plasmid mobilizes IncQ or IncP oriT+ plasmids efficiently but transfers itself at a frequency which is 10(4)-fold less than that of the wild type. Whereas the wild-type RK2lac oriT+ plasmid promotes the retrotransfer of an IncQ plasmid from Escherichia coli or Pseudomonas aeruginosa recipients, the RK2lac oriT1 mutant is severely defective in retrotransfer. Therefore, retrotransfer requires prior transfer of the conjugative plasmid to the recipient. The results prove that retrotransfer occurs by two sequential DNA transfer events.  相似文献   

4.
Broad-host-range plasmid RK2 encodes several kil operons (kilA, kilB, kilC, kilE) whose expression is potentially lethal to Escherichia coli host cells. The kil operons and the RK2 replication initiator gene (trfA) are coregulated by various combinations of kor genes (korA, korB, korC, korE). This regulatory network is called the kil-kor regulon. Presented here are studies on the structure, product, and expression of korC. Genetic mapping revealed the precise location of korC in a region near transposon Tn1. We determined the nucleotide sequence of this region and identified the korC structural gene by analysis of korC mutants. Sequence analysis predicts the korC product to be a polypeptide of 85 amino acids with a molecular mass of 9,150 daltons. The KorC polypeptide was identified in vivo by expressing wild-type and mutant korC alleles from a bacteriophage T7 RNA polymerase-dependent promoter. The predicted structure of KorC polypeptide has a net positive charge and a helix-turn-helix region similar to those of known DNA-binding proteins. These properties are consistent with the repressorlike function of KorC protein, and we discuss the evidence that KorA and KorC proteins act as corepressors in the control of the kilC and kilE operons. Finally, we show that korC is expressed from the bla promoters within the upstream transposon Tn1, suggesting that insertion of Tn1 interrupted a plasmid operon that may have originally included korC and kilC.  相似文献   

5.
6.
7.
A 3.2-kb region of the broad-host-range plasmid RK2 has been shown to encode a highly efficient plasmid maintenance system that functions in a vector-independent manner. This region, designated par, consists of two divergently arranged operons: parCBA and parDE. The 0.7-kb parDE operon promotes plasmid stability by a postsegregational killing mechanism that ensures that plasmid-free daughter cells do not survive after cell division. The 2.3-kb parCBA operon encodes a site-specific resolvase protein (ParA) and its multimer resolution site (res) and two proteins (ParB and ParC) whose functions are as yet unknown. It has been proposed that the parCBA operon encodes a plasmid partitioning system (M. Gerlitz, O. Hrabak, and H. Schwabb, J. Bacteriol. 172:6194-6203, 1990; R. C. Roberts, R. Burioni, and D. R. Helinski, J. Bacteriol. 172:6204-6216, 1990). To further define the role of this region in promoting the stable maintenance of plasmid RK2, the parCBA and parDE operons separately and the intact (parCBA/DE) par region (3.2 kb) were reintroduced into an RK2 plasmid deleted for par and assayed for plasmid stability in two Escherichia coli strains (MC1061K and MV10delta lac). The intact 3.2-kb region provided the highest degree of stability in the two strains tested. The ability of the parCBA or parDE region alone to promote stable maintenance in the E. coli strains was dependent on the particular strain and the growth temperature. Furthermore, the insertion of the ColE1 cer site into the RK2 plasmid deleted for the par region failed to stabilize the plasmid in the MC1061K strain, indicating that the multimer resolution activity encoded by parCBA is not by itself responsible for the stabilization activity observed for this operon. To examine the relative contributions of postsegregational cell killing and a possible partitioning function encoded by the intact 3.2-kb par region, stability assays were carried out with ParD provided in trans by a compatible (R6K) minireplicon to prevent postsegregational killing. In E. coli MV10delta lac, postsegregational killing appeared to be the predominant mechanism for stabilization since the presence of ParD substantially reduced the stability of plasmids carrying either the 3.2- or 0.7-kb region. However, in the case of E. coli MC1061K, the presence of ParD in trans did not result in a significant loss of stabilization by the 3.2-kb region, indicating that the putative partitioning function was largely responsible for RK2 maintenance. To examine the basis for the apparent differences in postsegregational killing between the two E. coli strains, transformation assays were carried out to determine the relative sensitivities of the strains to the ParE toxin protein. Consistent with the relatively small contribution of the postsegregational killing to plasmid stabilization in MC1061K, we found that this strain was substantially more resistant to killing by ParE in comparison to E. coli MV10delta lac. A transfer-deficient mutant of thepar-deleted plasmid was constructed for the stable maintenance studies. This plasmid was found to be lost from E. coli MV10delta lac at a rate three times greater than the rate for the transfer-proficient plasmid, suggesting that conjugation can also play a significant role in the maintenance of plasmid RK2.  相似文献   

8.
Plasmids classified to the IncP-1 incompatibility group belong to the most stably maintained mobile elements among low copy number plasmids known to date. The remarkable persistence is achieved by various tightly controlled stability mechanisms like active partitioning, efficient conjugative transfer system, killing of plasmid-free segregants and multimer resolution. The unique feature of IncP-1 plasmids is the central control operon coding for global regulators which control the expression of genes involved in vegetative replication, stable maintenance and conjugative transfer. The multivalent regulatory network provides means for coordinated expression of all plasmid functions. The current state of knowledge about two fully sequenced plasmids RK2 and R751, representatives of the IncP-1alpha and IncP-1beta subgroups, is presented.  相似文献   

9.
The conjugation system of the IncP alpha plasmid RK2/RP4 is encoded by transfer regions designated Tra1, Tra2, and Tra3. The Tra1 core region, cloned on plasmid pDG4 delta 22, consists of the origin of transfer (oriT) and 2.6 kilobases of flanking DNA providing IncP alpha plasmid-specific functions that allow pDG4 delta 22 to be mobilized by the heterologous IncP beta plasmid R751. Tn5 insertions in pDG4 delta 22 define a minimal 2.2-kilobase region required for plasmid-specific transfer of oriT. The Tra1 core contains the traJ and traK genes as well as an 18-kilodalton open reading frame downstream of traJ. The traJ and traK genes were shown to be required for transfer by complementation of inserts within these genes. Genetic evidence for the role of the 18-kilodalton open reading frame in transfer was obtained, although this protein has not been detected in cell lysates. These studies indicate that at least three transfer proteins are involved in plasmid-specific interactions at oriT.  相似文献   

10.
11.
12.
13.
14.
The kil-kor regulon of promiscuous plasmid RK2 includes the replication initiator gene trfA and several potentially host-lethal kil loci (kilA, kilB, kilC, kilE), whose functions may be involved in plasmid maintenance or broad host range. The kilA locus consists of a single operon of three genes (klaA, klaB, klaC), each of which is lethal when expressed from the klaA promoter in the absence of repressors encoded by korA and korB. In this study, we examined the effects of the unregulated klaA gene on the host cell. Bacteriophage lambda was used to construct a transducing phage (lambda pklaA-1) that allows efficient introduction of the klaA gene into Escherichia coli. Cells lacking korA and korB (to allow uncontrolled expression of klaA) and expressing lambda repressor (to prevent phage lytic growth) are killed by lambda pklaA-1. Cell death is dependent on the klaA structural gene, independent of the SOS system of the host, and is prevented by the presence of korA and korB. lambda pklaA-1 was used to synchronously infect cells lacking korA and korB to determine the effects of klaA on the cells over time. The earliest effects, visible at two hours post-infection, are inhibition of growth of the culture, formation of elongated cells, and striking changes in the appearance of the outer membrane. After four to five hours, the viability of the culture declined sharply and macromolecular synthesis ceased. The distinct class of early events is consistent with the hypothesis that the KlaA polypeptide interacts with a specific target in the host cell.  相似文献   

15.
The replication and maintenance properties of the broad-host-range plasmid RK2 and its derivatives were examined in nine gram-negative bacterial species. Two regions of RK2, the origin of replication (oriV) and a segment that encodes for a replication protein (trfA delta kilD, designated trfA*), are sufficient for replication in all nine species tested. However, stable maintenance of this minimal replicon (less than 0.3% loss per generation under nonselection conditions) is observed only in Escherichia coli, Pseudomonas aeruginosa, Pseudomonas putida, and Azotobacter vinelandii. Maintenance of this minimal replicon is unstable in Rhizobium meliloti, Agrobacterium tumefaciens, Caulobacter crescentus, Acinetobacter calcoaceticus, and Rhodopseudomonas sphaeroides. A maintenance function has been localized to a 3.1-kilobase (kb) region of RK2 encoding three previously described functions: korA (trfB korB1 korD), incP1-(II), and korB. The 3.1-kb maintenance region can increase or decrease the stability of maintenance of RK2 derivatives dependent on the host species and the presence or absence of the RK2 origin of conjugal transfer (oriT). In the case of A. calcoaceticus, stable maintenance requires an RK2 segment that includes the promoter and the kilD (kilB1) functions of the trfA operon in addition to the 3.1-kb maintenance region. The broad-host-range maintenance requirements of plasmid RK2, therefore, are encoded by multiple functions, and the requirement for one or more of these functions varies among gram-negative bacterial species.  相似文献   

16.
We have examined the DNA homology in the replication regions of 10 IncP plasmids independently isolated from several different countries. Two regions of RK2, the best-studied plasmid of this group, are required for vegetative DNA replication: the origin of replication (oriV) and the trfA region, which codes for a gene product necessary for replication. Six of nine IncP plasmids studied were identical to RK2 in the oriV and trfA regions as shown by Southern hybridization. Three P plasmids, R751, R772, and R906, showed weaker homology with the RK2 trfA, region and hybridized to different-sized HaeII fragments than the other six plasmids. R751, R772, and R906 hybridized to the region of the RK2 replication origin which expresses P incompatibility but differed markedly from RK2 and the other six plasmids in the GC-rich region of the origin required for replication. These data indicate that the P-group plasmids can be divided into two subgroups: IncP alpha, which includes the RK2-like plasmids, and IncP beta which includes the R751-like plasmids.  相似文献   

17.
The kilB locus (which is unclonable in the absence of korB) of broad-host-range plasmid RK2 (60 kb) lies between the trfA operon (co-ordinates 16.4 to 18.2 kb), which encodes a protein essential for vegetative replication, and the Tra2 block of conjugative transfer genes (co-ordinates 20.0 to 27.0 kb). Promoter probe studies indicated that kilB is transcribed clockwise from a region containing closely spaced divergent promoters, one of which is the trfA promoter. The repression of both promoters by korB suggested that kilB may also play a role in stable maintenance of RK2. We have sequenced the region containing kilB and analysed it by deletion and insertion mutagenesis. Loss of the KilB+ phenotype does not result in decreased stability of mini RK2 plasmids. However insertion in ORFI (kilBI) of the region analysed results in a Tra- phenotype in plasmids which are otherwise competent for transfer, demonstrating that this locus is essential for transfer and is probably the first gene of the Tra2 region. From the kilBI DNA sequence KilBI is predicted to be 34995 Da, in line with M(r) = 36,000 observed by sodium dodecyl sulphate/polyacrylamide gel electrophoresis, and contains a type I ATP-binding motif. The purified product was used to raise antibody which allowed the level of KilBI produced from RK2 to be estimated at approximately 2000 molecules per bacterium. Protein sequence comparisons showed the highest homology score with VirB11, which is essential for the transfer of the Agrobacterium tumefaciens Ti plasmid DNA from bacteria to plant cells. The sequence similarity of both KilBI and VirB11 to a family of protein export functions suggested that KilBI may be involved in assembly of the surface-associated Tra functions. The data presented in this paper provide the first demonstration of coregulation of genes required for vegetative replication and conjugative transfer on a bacterial plasmid.  相似文献   

18.
Gene transfer between organisms is a prime contributor to evolution. Bacterial conjugation is probably the most important mechanism by which genes are spread among prokaryotes and perhaps also contributes to eukaryotic evolution. Conjugation is mediated by plasmids. The mechanism of conjugation remains ill-understood despite progress in the identification, mapping and sequencing of genes required for plasmid transmission. All conjugation-specific genes (those required only for DNA transfer and establishment) identified to date map to plasmids. We found that IncP plasmids could enter and subsequently convert maxicells, which are trapped in a metabolic state that prevents de novo expression of chromosomal genes, into conjugative donors. This suggests that IncP plasmids encode not only necessary functions but indeed all functions specific to DNA transmission. Thus, like viruses, plasmids can convert non-viable cells into gene vectors.  相似文献   

19.
The amino acid sequence of the 13-kDa polypeptide (P116) encoded by the first gene of the trfA operon of IncP plasmid RK2 shows significant similarity to several known single-stranded DNA-binding proteins. We found that unregulated expression of this gene from its natural promoter (trfAp) or induced expression from a strong heterologous promoter (trcp) was sufficient to complement the temperature-sensitive growth phenotype of an Escherichia coli ssb-1 mutant. The RK2 ssb gene is the first example of a plasmid single-stranded DNA-binding protein-encoding gene that is coregulated with replication functions, indicating a possible role in plasmid replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号