首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nucleotide sequence of Rhizobium meliloti nodulation genes   总被引:43,自引:4,他引:39       下载免费PDF全文
A Rhizobium meliloti DNA region, determining nodulation functions common in different Rhizobium species, has been delimited by directed Tn5 mutagenesis and its nucleotide sequence has been determined. The sequence data indicates three large open reading frames with the same polarity coding for three proteins of 196, 217 and 402 (or 426) amino acid residues, respectively. We suggest the existence of three nod genes on this region, which were designated as nodA, B and C, respectively. Comparison of the R. meliloti nodA, B, C nucleotide and amino acid sequences with those from R. leguminosarum, as reported in the accompanying paper, shows 69-72% homology, clearly demonstrating the high degree of conservation of common nod genes in these Rhizobium species.  相似文献   

2.
3.
An IncQ multicopy vector (pKT230) and an IncP1 low-copy-number vector (pRK290), both carrying Rhizobium trifolii root hair curling (Hac) genes, were transferred to a Sym plasmid-cured derivative of R. trifolii ANU843. The resulting transconjugants were used to inoculate the monocotyledonous plants sorghum, maize, rice, and wheat. Transconjugants carrying the Hac genes on the multicopy vector caused a root hair curling response on maize and rice plants 14 days after inoculation.  相似文献   

4.
5.
6.
Plasmids which contained wild-type or mutated Rhizobium meliloti nodulation (nod) genes were introduced into NodR. trifolii mutants ANU453 and ANU851 and tested for their ability to nodulate clover. Cloned wild-type and mutated R. meliloti nod gene segments restored ANU851 to Nod+, with the exception of nodD mutants. Similarly, wild-type and mutant R. meliloti nod genes complemented ANU453 to Nod+, except for nodCII mutants. Thus, ANU851 identifies the equivalent of the R. meliloti nodD genes, and ANU453 specifies the equivalent of the R. meliloti nodCII genes. In addition, cloned wild-type R. trifolii nod genes were introduced into seven R. meliloti Nod mutants. All seven mutants were restored to Nod+ on alfalfa. Our results indicate that these genes represent common nodulation functions and argue for an allelic relationship between nod genes in R. meliloti and R. trifolii.  相似文献   

7.
8.
Regions of the Rhizobium meliloti nodulation genes from the symbiotic plasmid were transferred to Agrobacterium tumefaciens and Rhizobium trifolii by conjugation. The A. tumefaciens and R. trifolii transconjugants were unable to elicit curling of alfalfa root hairs, but were able to induce nodule development at a low frequency. These were judged to be genuine nodules on the basis of cytological and developmental criteria. Like genuine alfalfa nodules, the nodules were initiated from divisions of the inner root cortical cells. They developed a distally positioned meristem and several peripheral vascular bundles. An endodermis separated the inner tissues of the nodule from the surrounding cortex. No infection threads were found to penetrate either root hairs or the nodule cells. Bacteria were found only in intercellular spaces. Thus, alfalfa nodules induced by A. tumefaciens and R. trifolii transconjugants carrying small nodulation clones of R. meliloti were completely devoid of intracellular bacteria. When these strains were inoculated onto white clover roots, small nodule-like protrusions developed that, when examined cytologically, were found to more closely resemble roots than nodules. Although the meristem was broadened and lacked a root cap, the protrusions had a central vascular bundle and other rootlike features. Our results suggest that morphogenesis of alfalfa root nodules can be uncoupled from infection thread formation. The genes encoded in the 8.7-kilobase nodulation fragment are sufficient in A. tumefaciens or R. trifolii backgrounds for nodule morphogenesis.  相似文献   

9.
The nodulation ability was effectively eliminated from different Rhizobium trifolii strains incubated at elevated temperature (urkowski and Lorkiewicz, 1978). Non-nodulating (Nod-) mutants were stable and no reversion of Nod- to Nod+ phenotype was observed. Strains R. trifolii 24 and T12 which showed a high percentage of elimination of nodulation ability were examined in detail. Two plasmids were detected in strain 24 using neutral and alkaline sucrose gradient centrifugation of plasmid preparations. Molecular weights of the plasmids pWZ1 and pWZ2 were 460 Mdal and 190 Mdal, respectively. Rhizobium lysates labeled with 3H-thymidine and ultracentrifuged in caesium chloride — ethidium bromide gradients demonstrated a 40% reduction of the plasmid DNA content in R. trifolii 24 Nod- mutants in comparison with the nodulating wild type strain 24. It was found further that non-nodulation of mutants 24 Nod- was due to the absence of plasmid pWZ2. Sucrose gradient data also demonstrated that strain T12 contained two plasmids with molecular weights corresponding to those of pWZ1 and pWZ2, respectively. In Nod- mutant clones derived from strain T12, pWZ2 plasmid was missing.Non Standard Abbreviations CCC covalently closed circular - OC open cirucular - Sarkosyl sodium N-lauroylsarcosinate  相似文献   

10.
Infection and nodulation of clover by nonmotile Rhizobium trifolii.   总被引:3,自引:0,他引:3       下载免费PDF全文
Nonmotile mutants of Rhizobium trifolii were isolated to determine whether bacterial motility is required for the infection and nodulation of clover. The nonmotile mutants were screened for their ability to infect and nodulate clover seedlings in Fahraeus glass slide assemblies, plastic growth pouches, and vermiculite-sand-filled clay pots. In each system, the nonmotile mutants were able to infect and nodulate clover.  相似文献   

11.
A set of conserved, or common, bacterial nodulation (nod) loci is required for host plant infection by Rhizobium meliloti and other Rhizobium species. Four such genes, nodDABC, have been indicated in R. meliloti 1021 by genetic analysis and DNA sequencing. An essential step toward understanding the function of these genes is to characterize their protein products. We used in vitro and maxicell Escherichia coli expression systems, together with gel electrophoresis and autoradiography, to detect proteins encoded by nodDABC. We facilitated expression of genes on these DNA fragments by inserting them downstream of the Salmonella typhimurium trp promoter, both in colE1 and incP plasmid-based vectors. Use of the incP trp promoter plasmid allowed overexpression of a nodABC gene fragment in R. meliloti. We found that nodA encodes a protein of 21 kilodaltons (kDa), and nodB encodes one of 28 kDa; the nodC product appears as two polypeptide bands at 44 and 45 kDa. Expression of the divergently read nodD yields a single polypeptide of 33 kDa. Whether these represent true Rhizobium gene products must be demonstrated by correlating these proteins with genetically defined Rhizobium loci. We purified the 21-kDa putative nodA protein product by gel electrophoresis, selective precipitation, and ion-exchange chromatography and generated antiserum to the purified gene product. This permitted the immunological demonstration that the 21-kDa protein is present in wild-type cells and in nodB- or nodC-defective strains, but is absent from nodA::Tn5 mutants, which confirms that the product expressed in E. coli is identical to that produced by R. meliloti nodA. Using antisera detection, we found that the level of nodA protein is increased by exposure of R. meliloti cells to plant exudate, indicating regulation of the bacterial nod genes by the plant host.  相似文献   

12.
A Rhizobium trifolii symbiotic plasmid specific gene library was constructed and the physical organisation of regions homologous to nifHDK, nifA and nod genes was determined. These symbiotic gene regions were localised to u 25 kb region on the sym-plasmid, pPN1. In addition four copies of a reiterated sequence were identified on this plasmid, with one copy adjacent to nifH. No rearrangement of these reiterated sequences was observed between R. trifolii bacterial and bacteroid DNA. Analysis of a deletion derivative of pPN1 showed that these sequences were spread over a 110 kb region to the left of nifA.  相似文献   

13.
Luteolin is a phenolic compound from plants that acts as a potent and specific inducer of nodABC gene expression in Rhizobium meliloti. We have found that R. meliloti RCR2011 exhibits positive chemotaxis towards luteolin. A maximum chemotactic response was observed at 10(-8) M. Two closely related flavonoids, naringenin and apigenin, were not chemoattractants. The presence of naringenin but not apigenin abolished chemotaxis of R. meliloti towards luteolin. A large deletion in the nif-nod region of the symbiotic megaplasmid eliminated all chemotactic response to luteolin but did not affect general chemotaxis, as indicated by swarm size on semisoft agar plates and chemotaxis towards proline in capillary tubes. Transposon Tn5 mutations in nodD, nodA, or nodC selectively abolished the chemotactic response of R. meliloti to luteolin. Agrobacterium tumefaciens GMI9050, a derivative of the C58 wild type lacking a Ti plasmid, responded chemotactically to 10(-8) M luteolin. The introduction of a 290-kilobase nif-nod-containing sequence of DNA from R. meliloti into A. tumefaciens GMI9050 enabled the recipient to respond to luteolin at concentrations peaking at 10(-6) M as well as at concentrations peaking at 10(-8) M. The response of A. tumefaciens GMI9050 to luteolin was also abolished by the presence of naringenin.  相似文献   

14.
Two self-transmissible Sym(biosis) plasmids, one encoding pea-specific nodulation and nitrogen-fixation functions (plasmid pJB5JI) and the other encoding clover-specific nodulation and nitrogen-fixation functions (plasmid pBR1AN) were used to determine whether the symbiotic genes encoded on these plasmids are expressed in various members of the Rhizobiaceae. The host specificity of Rhizobium trifolii and R. leguminosarum Sym plasmid-cured strains could be directly determined by the transfer to these strains of the appropriate Sym plasmid. The nodulation of white clovers was restored by either plasmid pJB5JI or pBR1AN when these plasmids were transferred to two transposon Tn5-induced hair-curling (Hac-) R. trifolii mutants. In addition, lucerne nodulation was restored to a Hac- R. meliloti mutant when either plasmid pBR1AN or pJB5JI was transferred to this strain. The phenotype of nonmucoid (Muc-) Rhizobium mutants, which had altered cell surfaces, was not influenced by the transfer to these strains of plasmid pBR1AN or plasmid pJB5JI.  相似文献   

15.
A 6 kb DNA segment of the R. meliloti 2011 pSym megaplasmid, which contains genes controlling host specificity of root hair infection and of nodulation, was cloned and sequenced. The DNA sequence analysis, in conjunction with previous genetic data, allowed identification of four nod genes designated as E, F, G and H. nodH is divergently transcribed with respect to nodFE and nodG. A conserved nucleotide sequence was found around 200 bp upstream of the translation start of nodF, nodH and nodA. This sequence is also present upstream of common nodA and species specific nodF genes of other Rhizobium species. The predicted protein products of nodF and nodG show homology with acyl carrier protein and ribitol dehydrogenase, respectively. The nodH product contains a rare sequence of four contiguous proline residues. Comparison with the nod gene products of R. leguminosarum shows that species specific nodFE products are as well conserved as those of common nodABC and nodD genes.  相似文献   

16.
Nodulation of alfalfa by exoB mutants of Rhizobium meliloti occurred without root hair curling or infection thread formation. nod exoB double mutants had the same nodulation deficiency as single nod mutants. Therefore, all the known nod genes are involved in nodule induction by exoB mutants, which apparently occurs via intercellular invasion.  相似文献   

17.
Regions of the Rhizobium meliloti symbiotic plasmid (20 to 40 kilobase pairs long) containing nodulation (nod) genes were transferred to Agrobacterium tumefaciens or Escherichia coli by conjugation. The A. tumefaciens and E. coli transconjugants elicited root hair curling and the formation of ineffective pseudonodules on inoculated alfalfa plants. A tumefaciens elicited pseudonodules formed at a variable frequency, ranging from 15 to 45%, irrespective of the presence of the Ti plasmid. These pseudonodules developed characteristic nodule meristems, and in some nodules, infection threads were found within the interior of nodules. Infrequently, infection threads penetrated deformed root hairs, but these threads were found only in a minority of nodules. There was no evidence of bacterial release from the infection threads. In addition to being found within threads, agrobacteria were also found in intercellular spaces and within nodule cells that had senesced . In the latter case, the bacteria appeared to invade the nodule cells independently of infection threads and degenerated at the same time as the senescing host cells. No peribacteroid membranes enclosed any agrobacteria , and no bacteroid differentiation was observed. In contrast to the A. tumefaciens-induced pseudonodules , the E. coli-induced pseudonodules were completely devoid of bacteria; infection threads were not found to penetrate root hairs or within nodules. Our results suggest that relatively few Rhizobium genes are involved in the earliest stages of nodulation, and that curling of root hairs and penetration of bacteria via root hair infection threads are not prerequisites for nodule meristem formation in alfalfa.  相似文献   

18.
Of 18 Rhizobium trifolii strains tested, 12 showed a high frequency of loss of nodulation ability after incubation in cultures at elevated temperatures. A correlation between loss of nodulation ability and loss of a large plasmid was demonstrated for R. trifolii. In some nonnodulating (Nod-) mutants, deletions occurred instead of total elimination of the plasmid molecule. The maximum curing effect was observed in bacteria incubated at 35 degrees C. After 4 or more days of incubation at this temperature, the viability of bacteria decreased markedly, and the number of nonnodulating mutants increased significantly. At the elevated temperature DNA synthesis was stopped completely after 2 h, whereas protein synthesis proceeded for a few days. Microscopic observations showed that during the first 3 days of incubation at the elevated temperature, the bacterial cells increased markedly in size. These large irregular cells then divided and produced Nod- clones. Nonnodulating clones did not result from the selection of temperature-resistant mutants. The presence of P-group plasmids in Rhizobium strains strongly inhibited the loss of nodulation ability during incubation at 35 degrees C. The observed phenomenon did not result from integrative suppression. It is possible that a product(s) of the genes of R-plasmids acts as a stabilizing agent on the replication process of the indigenous Rhizobium plasmids.  相似文献   

19.
Infection of alfalfa by the soil bacterium Rhizobium meliloti proceeds by deformation of root hairs and bacterial invasion of host tissue by way of an infection thread. We studied an 8.7-kilobase (kb) segment of the R. meliloti megaplasmid, which contains genes required for infection. Site-directed Tn5 mutagenesis was used to examine this fragment for nodulation genes. A total of 81 R. meliloti strains with mapped Tn5 insertions in the 8.7-kb fragment were evaluated for nodulation phenotype on alfalfa plants; 39 of the insertions defined a 3.5-kb segment containing nodulation functions. Of these 39 mutants, 37 were completely nodulation deficient (Nod-), and 2 at the extreme nif-distal end were leaky Nod-. Complementation analysis was performed by inoculating plants with strains carrying a genomic Tn5 at one location and a plasmid-borne Tn5 at another location in the 3.5-kb nodulation segment. Mutations near the right border of the fragment behaved as two distinct complementation groups. The segment in which these mutations are located was analyzed by DNA sequencing. Several open reading frames were found in this region, but the one most likely to function is 1,206 bases long, reading from left to right (nif distal to proximal) and spanning both mutation groups. The genetic behavior of this segment may be due either to the gene product having two functional domains or to a recombinational hot spot between the apparent complementation groups.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号