首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction during stimulation of cGMP and inhibition of cAMP was investigated in control and renal hypertensive hearts. Control and hypertensive [1 kidney, 1 clip (1K1C)] rabbits were used. The anesthetized open-chest groups were vehicle, 8-bromo-cGMP (8-Br-cGMP; 10(-3)M), propranolol (Prop; 2 mg/kg), and Prop + 8-Br-cGMP. O(2) consumption levels (Vo(2)) in the subepicardium (Epi) and subendocardium (Endo) were determined from coronary flow (microspheres) and O(2) extraction (microspectrophotometry). Wall thickening and cAMP levels were also determined. In control, no significant change in Vo(2) was seen for the 8-Br-cGMP group, but Vo(2) was decreased from Epi (9.7 +/- 1.5 ml O(2) x min(-1) x 100 g(-1)) and Endo (10.5 +/- 0.4 ml O(2) x min(-1) x 100 g(-1)) to 6.8 +/- 0.6/7.8 +/- 0.5 ml O(2) x min(-1) x 100 g(-1) in the control Prop group. Control Prop + 8-Br-cGMP did not cause a further fall in Vo(2) but lowered Endo flow. In 1K1C, Vo(2) decreased from Epi/Endo (10.8 +/- 1.3/11 +/- 1.0 ml O(2).min(-1).100 g(-1)) to 7.8 +/- 1.1/8.7 +/- 0.5 ml O(2) x min(-1) x 100 g(-1) in the 1K1C 8-Br-cGMP group and to 7 +/- 0.5/8.1 +/- 0.5 ml O(2) x min(-1) x 100 g(-1) in the 1K1C Prop group. 1K1C Prop + 8-Br-cGMP did not cause a further fall in Vo(2) but lowered blood flow. No significant changes in cAMP levels were present with 8-Br-cGMP in control or 1K1C rabbits, but significant decreases were seen with Prop in both control and 1K1C rabbits. No further change was seen in Prop + 8-Br-cGMP for either control or 1K1C. Thus the negative metabolic effect of stimulating cGMP was seen only in the hypertensive rabbit heart. The negative metabolic effect of inhibiting cAMP was seen in both the control and the hypertensive rabbit heart. However, the negative metabolic effects of cGMP and cAMP were nonadditive.  相似文献   

2.
We tested the hypothesis that atrial natriuretic peptide (ANP) would decrease both the effects of myocardial stunning and oxygen consumption in rabbit hearts. In two groups of anesthetized open-chest rabbits, myocardial stunning was produced by two 15 min occlusions of the left anterior descending (LAD) artery separated by 15 min of reperfusion. Either ANP (0.2 mg) or vehicle (lactated Ringers) was then injected into the affected area of the left ventricle. In a third group, ANP was injected into the LAD region of non-stunned rabbits. Hemodynamic (heart rate, aortic and left ventricular pressures) and functional (wall thickening (WT), delay of onset of WT, and rate of WT) parameters were measured. Coronary blood flow (microspheres) and O2 extraction (microspectrophotometry) were used to determine myocardial O2 consumption. Stunning was demonstrated by an increase in the time delay to contraction and depressed WT. In the control group, baseline delay to contraction was 25+/-7 ms, and this increased to 84+/-16 following stunning and vehicle administration. In the ANP group, baseline delay was 20+/-6 at baseline and after stunning and ANP administration it was 30+/-7. Wall thickening decreased by approximately 30% with stunning and vehicle but only 8% in the ANP treated hearts. Stunning did not affect regional O2 consumption (6.0+/-1.1 stunned vs. 7.4+/-1.2 mlO2/min/100g non-stunned). ANP administration did not affect O2 consumption (7.3+/-1.7 stunned vs. 6.4+/-1.0 non-stunned). We therefore concluded that ANP administration reversed the effects of stunning without alteration in local O2 consumption in stunned myocardium.  相似文献   

3.
5-Amino-4-imidazolecarboxamide riboside (AICAr) or acadesine has been proposed to exert cardioprotection by enhancing adenosine production in ischemic myocardium. However, there are conflicting reports on acadesine's effects in ischemic myocardium and few studies in which myocardial adenosine levels have been measured. The purpose of this study was to determine whether acadesine increases interstitial fluid adenosine levels and attenuates myocardial stunning or potentiates the effects of adenosine in the intact pig. In pentobarbital-anesthetized pigs, myocardial stunning was induced by 10 min left anterior descending coronary artery occlusion and 90 min reperfusion. Regional ventricular function was assessed by measuring systolic wall thickening, and interstitial nucleosides were estimated by cardiac microdialysis. Control hearts were compared with hearts treated with acadesine, adenosine, and adenosine plus acadesine. Adenosine pretreatment (100 microg x kg(-1) x min(-1), intracoronary) immediately prior to ischemia increased interstitial adenosine levels 9-fold and improved postischemic functional recovery from a control value of 17.6 +/- 4.1% to 43.6 +/- 3.4% of preischemic systolic wall thickening. In contrast, acadesine (20 mg/kg i.v. bolus 10 min prior to ischemia + 0.5 mg x kg (-1) x min(-1), i.v. infusion through 60 min reperfusion) had no effect on interstitial fluid adenosine levels or the recovery of regional function (21.5 +/- 5.9% recovery), nor were the functional effects of adenosine potentiated by acadesine. These findings indicate that acadesine does not enhance myocardial adenosine levels, attenuate myocardial stunning, or potentiate the cardioprotective effects of adenosine in the pig.  相似文献   

4.
We hypothesized that myocardial stunning would be reversed through increased cyclic GMP caused by nitroprusside, and that this would be accomplished through a decreased proportion of regional work during diastole. Hearts were instrumented to measure left ventricular pressure, and regional myocardial mechanics were recorded using a miniature force transducer and ultrasonic dimension crystals in eight open-chest anesthetized dogs. Following baseline (CON), the left anterior descending coronary artery (LAD) was occluded for 15 min, followed by a 30-min recovery (STUN). Then intracoronary LAD infusion of sodium nitroprusside (NP) (4 microg/kg/ min) was begun. The time delay (msec) to regional shortening increased significantly from 18+/-13 to 73+/-13 following stunning, but was reduced to 49+/-18 by NP. Total regional work (g*mm/min) at baseline (1368+/-401 CON) was unchanged with stunning (1320+/-333 STUN), but reduced (961+/-240) following NP. Time to peak force development (msec) increased significantly with stunning from 284+/-13 (CON) to 333+/-11 (STUN), but was reduced to 269+/-12 following NP. The percentage work during systole was reduced from 96%+/-2% (CON) to 77%+/-7% (STUN), but returned to 98%+/-1% with NP. Regional O2 consumption was unaffected by either treatment. Cyclic GMP was unchanged by stunning (2.9+/-0.3-2.9+/-0.4 pmol/g) but increased significantly with NP (4.6+/-0.6). These data indicated that regional myocardial stunning could be attenuated by nitroprusside, which increased cyclic GMP, decreased contractile delay, increased the proportion of work done during systole, and reduced time of shortening.  相似文献   

5.
We tested the hypothesis that the second messenger activated by nitric oxide, cyclic GMP, would reduce the effects of myocyte stunning following simulated ischemia-reperfusion and that this was related to cyclic GMP protein kinase. Ventricular cardiac myocytes were isolated from New Zealand White rabbits (n = 8). Cell shortening was measured by a video edge detector and protein phosphorylation was determined autoradiographically after SDS gel electrophoresis. Cell shortening data were acquired at: (i) baseline followed by 8-Bromo-cGMP 10(-6) M (8-Br-cGMP) and then KT 5823 10(-6) M (cyclic GMP protein kinase inhibitor) and (ii) simulated ischemia (20 min of 95% N(2)-5% CO(2) at 37 degrees C) followed by simulated reperfusion (reoxygenation) with addition of 8-Br-cGMP 10(-6) M followed by KT 5823 10(-6) M, (iii) addition of 8-Br-cGMP prior to ischemia followed by the addition of KT 5823 10(-6) M after 30 min of reoxygenation. In the control group, 8-Br-cGMP 10(-6) M decreased percentage shortening (%short) (5.0 +/- 0.6 vs 3.8 +/- 0. 4) and the maximum velocity (V(max), microm/s) (48.6 +/- 6.9 vs 40.2 +/- 6.4). KT 5823 10(-6) M added after 8-Br-cGMP partially restored %short (4.6 +/- 0.5) and V(max) (46.6 +/- 8.0). After stunning, baseline myocytes had decreased %short (3.4 +/- 0.2) and V(max) (36. 0 +/- 4.2). After the addition of 8-Br-cGMP, the %short (2.7 +/- 0. 2) and V(max) (27.6 +/- 2.5) decreased further. The addition of KT 5823 did not change either the %short or the V(max). The myocytes with 8-Br-cGMP during ischemia had increased %short (4.2 +/- 0.2) and V(max) (37.2 +/- 3.4) when compared to the stunned group. The addition of KT 5823 did not significantly alter %short (3.3 +/- 0.4) or V(max) (29.2 +/- 5.0) in the myocytes pretreated with 8-Br-cGMP. Protein phosphorylation was increased by 8-Br-cGMP in control and stunned myocytes. KT 5823 blocked this effect in control but not stunned myocytes, suggesting some change in the cyclic GMP protein kinase. Ischemia-reperfusion produced myocyte stunning that was reduced when 8-Br-cGMP was added prior to but not after ischemia.  相似文献   

6.
Postconditioning, i.e., brief intermittent episodes of myocardial ischemia-reperfusion performed at the onset of reperfusion, reduces infarct size after prolonged ischemia. Our goal was to determine whether postconditioning is protective against myocardial stunning. Accordingly, conscious chronically instrumented dogs (sonomicrometry, coronary balloon occluder) were subjected to a control sequence (10 min coronary artery occlusion, CAO, followed by coronary artery reperfusion, CAR) and a week apart to postconditioning with four cycles of brief CAR and CAO performed at completion of the 10 min CAO. Three postconditioning protocols were investigated, i.e., 15 s CAR/15 s CAO (n=5), 30 s CAR/30 s CAO (n=7), and 1 min CAR/1 min CAO (n=6). Left ventricular wall thickening was abolished during CAO and similarly reduced during subsequent stunning in control and postconditioning sequences (e.g., at 1 h CAR, 33+/-4 vs. 34+/-4%, 30+/-4 vs. 30+/-4%, and 33+/-4 vs. 32+/-4% for 15 s postconditioning, 30 s postconditioning, and 1 min postconditioning vs. corresponding control, respectively). We confirmed this result in anesthetized rabbits by demonstrating that shortening of left ventricular segment length was similarly depressed after 10 min CAO in control and postconditioning sequences (4 cycles of 30 s CAR/30 s CAO). In additional rabbits, the same postconditioning protocol significantly reduced infarct size after 30 min CAO and 3 h CAR (39+/-7%, n=6 vs. 56+/-4%, n=7 of the area at risk in postconditioning vs. control, respectively). Thus, contrasting to its beneficial effects on myocardial infarction, postconditioning does not protect against myocardial stunning in dogs and rabbits. Conversely, additional episodes of ischemia-reperfusion with postconditioning do not worsen myocardial stunning.  相似文献   

7.
We sought to determine whether administration of a very low, nonvasodilating dose of a highly selective adenosine A(2A) receptor agonist (ATL-193 or ATL-146e) would be cardioprotective in a canine model of myocardial stunning produced by multiple episodes of transient ischemia. Twenty-four anesthetized open-chest dogs underwent either 4 (n=12) or 10 cycles (n=12) of 5-min left anterior descending coronary artery (LAD) occlusions interspersed by 5 or 10 min of reperfusion. Left ventricular thickening was measured from baseline through 180 min after the last occlusion-reperfusion cycle. Regional flow was measured with microspheres. In 12 of 24 dogs, A(2A) receptor agonist was infused intravenously beginning 2 min prior to the first occlusion and continuing throughout reperfusion at a dose below that which produces vasodilatation (0.01 microg x kg(-1) x min(-1)). Myocardial flow was similar between control and A(2A) receptor agonist-treated animals, confirming the absence of A(2) receptor agonist-induced vasodilatation. During occlusion, there was severe dyskinesis with marked LAD zone thinning in all animals. After 180 min of reperfusion following the last cycle, significantly greater recovery of LAD zone thickening was observed in A(2A) receptor agonist-treated vs. control animals in both the 4-cycle (91 +/- 7 vs. 56 +/- 12%, respectively; P<0.05) and the 10-cycle (65 +/- 9 vs. 8 +/- 16%, respectively; P<0.05) occlusion groups. The striking amount of functional recovery observed with administration of low, nonvasodilating doses of adenosine A(2A) agonist ATL-193 or ATL-146e supports their further evaluation for the attenuation of postischemic stunning in the clinical setting.  相似文献   

8.
The role of ATP-sensitive potassium (K(ATP)) channels in the late phase of ischemic preconditioning (PC) remains unclear. Furthermore, it is unknown whether K(ATP) channels serve as end effectors both for late PC against infarction and against stunning. Thus, in phase I of this study, conscious rabbits underwent a 30-min coronary occlusion (O) followed by 72 h of reperfusion (R) with or without ischemic PC (6 4-min O/4-min R cycles) 24 h earlier. Late PC reduced infarct size approximately 46% versus controls. The K(ATP) channel blocker 5-hydroxydecanoic acid (5-HD), given 5 min before the 30-min O, abrogated the infarct-sparing effect of late PC but did not alter infarct size in non-PC rabbits. In phase II, rabbits underwent six 4-min O/4-min R cycles for 3 consecutive days (days 1, 2, and 3). In controls, the total deficit of systolic wall thickening (WTh) after the sixth reperfusion was reduced by 46% on day 2 and 54% on day 3 compared with day 1, indicating a late PC effect against myocardial stunning. Neither 5-HD nor glibenclamide, given on day 2, abrogated late PC. The K(ATP) channel opener diazoxide, given on day 1, attenuated stunning, and this effect was completely blocked by 5-HD. Thus the same dose of 5-HD that blocked the antistunning effect of diazoxide failed to block the antistunning effects of late PC. Furthermore, when diazoxide was administered in PC rabbits on day 2, myocardial stunning was further attenuated, indicating that diazoxide and late PC have additive anti-stunning effects. We conclude that K(ATP) channels play an essential role in late PC against infarction but not in late PC against stunning, revealing an important pathogenetic difference between these two forms of cardioprotection.  相似文献   

9.
Phase 2 pulmonary O(2) uptake (Vo(2(p))) kinetics are slowed with aging. To examine the effect of aging on the adaptation of Vo(2(p)) and deoxygenation of the vastus lateralis muscle at the onset of moderate-intensity constant-load cycling exercise, young (Y) (n = 6; 25 +/- 3 yr) and older (O) (n = 6; 68 +/- 3 yr) adults performed repeated transitions from 20 W to work rates corresponding to moderate-intensity (80% estimated lactate threshold) exercise. Breath-by-breath Vo(2(p)) was measured by mass spectrometer and volume turbine. Deoxy (HHb)-, oxy-, and total Hb and/or myoglobin were determined by near-infrared spectroscopy (Hamamatsu NIRO-300). Vo(2(p)) data were filtered, interpolated to 1 s, and averaged to 5-s bins. HHb data were filtered and averaged to 5-s bins. Vo(2(p)) data were fit with a monoexponential model for phase 2, and HHb data were analyzed to determine the time delay from exercise onset to the start of an increase in HHb and thereafter were fit with a single-component exponential model. The phase 2 time constant for Vo(2(p)) was slower (P < 0.01) in O (Y: 26 +/- 7 s; O: 42 +/- 9 s), whereas the delay before an increase in HHb (Y: 12 +/- 2 s; O: 11 +/- 1 s) and the time constant for HHb after the time delay (Y: 13 +/- 10 s; O: 9 +/- 3 s) were similar in Y and O. However, the increase in HHb for a given increase in Vo(2(p)) (Y: 7 +/- 2 microM x l(-1) x min(-1); O: 13 +/- 4 microM x l(-1) x min(-1)) was greater (P < 0.01) in O compared with Y. The slower Vo(2(p)) kinetics in O compared with Y adults was accompanied by a slower increase of local muscle blood flow and O(2) delivery discerned from a faster and greater muscle deoxygenation relative to Vo(2(p)) in O.  相似文献   

10.
This study examined the effect of heavy-intensity warm-up exercise on O(2) uptake (VO(2)) kinetics at the onset of moderate-intensity (80% ventilation threshold), constant-work rate exercise in eight older (65 +/- 2 yr) and seven younger adults (26 +/- 1 yr). Step increases in work rate from loadless cycling to moderate exercise (Mod(1)), heavy exercise, and moderate exercise (Mod(2)) were performed. Each exercise bout was 6 min in duration and separated by 6 min of loadless cycling. VO(2) kinetics were modeled from the onset of exercise by use of a two-component exponential model. Heart rate (HR) kinetics were modeled from the onset of exercise using a single exponential model. During Mod(1), the time constant (tau) for the predominant rise in VO(2) (tau VO(2)) was slower (P < 0.05) in the older adults (50 +/- 10 s) than in young adults (19 +/- 5 s). The older adults demonstrated a speeding (P < 0.05) of VO(2) kinetics when moderate-intensity exercise (Mod(2)) was preceded by high-intensity warm-up exercise (tau VO(2), 27 +/- 3 s), whereas young adults showed no speeding of VO(2) kinetics (tau VO(2), 17 +/- 3 s). In the older and younger adults, baseline HR preceding Mod(2) was elevated compared with Mod(1), but the tau for HR kinetics was slowed (P < 0.05) in Mod(2) only for the older adults. Prior heavy-intensity exercise in old, but not young, adults speeded VO(2) kinetics during Mod(2). Despite slowed HR kinetics in Mod(2) in the older adults, an elevated baseline HR before the onset of Mod(2) may have led to sufficient muscle perfusion and O(2) delivery. These results suggest that, when muscle blood flow and O(2) delivery are adequate, muscle O(2) consumption in both old and young adults is limited by intracellular processes within the exercising muscle.  相似文献   

11.
The objective of these experiments was to determine whether living and training in moderate hypoxia (MHx) confers an advantage on maximal normoxic exercise capacity compared with living and training in normoxia. Rats were acclimatized to and trained in MHx [inspired PO2 (PI(O2)) = 110 Torr] for 10 wk (HTH). Rats living in normoxia trained under normoxic conditions (NTN) at the same absolute work rate: 30 m/min on a 10 degrees incline, 1 h/day, 5 days/wk. At the end of training, rats exercised maximally in normoxia. Training increased maximal O2 consumption (VO2 max) in NTN and HTH above normoxic (NS) and hypoxic (HS) sedentary controls. However, VO2 max and O2 transport variables were not significantly different between NTN and HTH: VO2 max 86.6 +/- 1.5 vs. 86.8 +/- 1.1 ml x min(-1) x kg(-1); maximal cardiac output 456 +/- 7 vs. 443 +/- 12 ml x min(-1) x kg(-1); tissue blood O2 delivery (cardiac output x arterial O2 content) 95 +/- 2 vs. 96 +/- 2 ml x min(-1) x kg(-1); and O2 extraction ratio (arteriovenous O2 content difference/arterial O2 content) 0.91 +/- 0.01 vs. 0.90 +/- 0.01. Mean pulmonary arterial pressure (Ppa, mmHg) was significantly higher in HS vs. NS (P < 0.05) at rest (24.5 +/- 0.8 vs. 18.1 +/- 0.8) and during maximal exercise (32.0 +/- 0.9 vs. 23.8 +/- 0.6). Training in MHx significantly attenuated the degree of pulmonary hypertension, with Ppa being significantly lower at rest (19.3 +/- 0.8) and during maximal exercise (29.2 +/- 0.5) in HTH vs. HS. These data indicate that, despite maintaining equal absolute training intensity levels, acclimatization to and training in MHx does not confer significant advantages over normoxic training. On the other hand, the pulmonary hypertension associated with acclimatization to hypoxia is reduced with hypoxic exercise training.  相似文献   

12.
Reducing the hemolobin (Hb)-O(2) binding affinity facilitates O(2) unloading from Hb, potentially increasing tissue mitochondrial O(2) availability. We hypothesized that a reduction of Hb-O(2) affinity would increase O(2) extraction when tissues are O(2) supply dependent, reducing the threshold of critical O(2) delivery (DO(2 CRIT)). We investigated the effects of increased O(2) tension at which Hb is 50% saturated (P(50)) on systemic O(2) uptake (VO(2) (SYS)), DO(2 CRIT), lactate production, and acid-base balance during isovolemic hemodilution in conscious rats. After infusion of RSR13, an allosteric modifier of Hb, P(50) increased from 36.6 +/- 0.3 to 48.3 +/- 0.6 but remained unchanged at 35.4 +/- 0.8 mmHg after saline (control, CON). Arterial O(2) saturations were equivalent between RSR13 and saline groups, but venous PO(2) was higher and venous O(2) saturation was lower after RSR13. Convective O(2) delivery progressively declined during hemodilution reaching the DO(2 CRIT) at 3.4 +/- 0.8 ml x min(-1) x 100 g(-1) (CON) and 3.6 +/- 0.6 ml x min(-1) x 100 g(-1) (RSR13). At Hb of 8.1 g/l VO(2) (SYS) started to decrease (CON: 1.9 +/- 0.1; RSR13: 1.8 +/- 0.2 ml x min(-1) x 100 g(-1)) and fell to 0.8 +/- 0.2 (CON) and 0.7 +/- 0.2 ml x min(-1). 100 g(-1) (RSR13). Arterial lactate was lower in RSR13-treated than in control animals when animals were O(2) supply dependent. The decrease in base excess, arterial pH, and bicarbonate during O(2) supply dependence was significantly less after RSR13 than after saline. These findings demonstrate that during O(2) supply dependence caused by severe anemia, reducing Hb-O(2) binding affinity does not affect VO(2) (SYS) or DO(2 CRIT) but appears to have beneficial effects on oxidative metabolism and acid base balance.  相似文献   

13.
Myocardial ischemia and reperfusion cause myocyte and vascular dysfunction, frequently termed "stunning." We hypothesized that inhibiting the Na(+)/H(+) exchanger subtype 1 isoform (NHE(1)) during ischemia and reperfusion limits myocardial and coronary microvascular stunning. Anesthetized rats completed 2 x 10-min coronary artery occlusions separated by 5-min of reperfusion, followed by 15 or 60 min of reperfusion. Vehicle (saline) or the NHE(1) inhibitor cariporide (HOE-642) was administered 15 min before ischemia and was continued throughout each protocol. After reperfusion, hearts were excised, and the reactivity of resistance arteries (internal diameter, approximately 120 microm) was assessed. The first derivative of left ventricular (LV) pressure, LV developed pressure, and LV systolic wall thickening were depressed (P < 0.05) similarly in vehicle- and cariporide-treated rats during ischemia and after 15 or 60 min of reperfusion compared with sham-operated animals that were not exposed to ischemia (i.e., controls). In vessels obtained after 15 min of reperfusion, the maximal response to acetylcholine-induced relaxation (10(-8)-10(-4) M) was blunted (P < 0.05) in vessels from vehicle- (approximately 35%) and cariporide-treated rats (approximately 55%) compared with controls (approximately 85%). However, the percent relaxation to acetylcholine was greater (P < 0.05) in cariporide-treated rats compared with vehicle-treated rats. Maximal contractile responses to endothelin-1 (10(-11)-10(-7) M) were increased (P < 0.05) similarly in vehicle- and cariporide-treated rats compared with controls. Relaxation to sodium nitroprusside (10(-4) M) was not different among groups. Results were similar in vessels obtained from animals after 60 min of reperfusion. These findings suggest that NHE(1) inhibition before coronary occlusion lessens ischemia-induced microvascular dysfunction for 15-60 min after reperfusion but does not alter myocardial contractile function in the area at risk.  相似文献   

14.
The purpose of this study was to determine whether the adenosine A1/A2a receptor agonist AMP-579 induces acute and delayed preconditioning against in vivo myocardial stunning. Regional stunning was produced by 15 min of coronary artery occlusion and 3 h of reperfusion (RP) in anesthetized open-chest pigs. In acute protection studies, animals were pretreated with saline, low-dose AMP-579 (15 microg/kg iv bolus 10 min before ischemia), or high-dose AMP-579 (50 microg/kg iv at 14 microg/kg bolus + 1.2 microg.kg(-1).min(-1) for 30 min before coronary occlusion). The delayed preconditioning effects of AMP-579 were evaluated 24 h after administration of saline vehicle or high-dose AMP-579 (50 microg/kg iv). Load-insensitive contractility was assessed by measuring regional preload recruitable stroke work (PRSW) and PRSW area. Acute preconditioning with AMP-579 dose dependently improved regional PRSW: 129 +/- 5 and 100 +/- 2% in high- and low-dose AMP-579 groups, respectively, and 78 +/- 5% in the control group at 3 h of RP. Administration of the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (0.7 mg/kg) blocked the acute protective effect of high-dose AMP-579, indicating that these effects are mediated through A1 receptor activation. Delayed preconditioning with AMP-579 significantly increased recovery of PRSW area: 64 +/- 5 vs. 33 +/- 5% in control at 3 h of RP. In isolated perfused rat heart studies, kinetics of the onset and washout of AMP-579 A1 and A2a receptor-mediated effects were distinct compared with those of other adenosine receptor agonists. The unique nature of the adenosine agonist AMP-579 may play a role in its ability to induce delayed preconditioning against in vivo myocardial stunning.  相似文献   

15.
Phillips AB  Ko W 《Life sciences》2007,81(17-18):1355-1361
Preconditioning (PC) is a potential approach to myocardial protection. We hypothesize that brief ischemia or adenosine given prior to an extended period of warm ischemia may prevent myocardial stunning by altering myocardial metabolism. Using a global ischemia model, 19 dogs were subjected to no PC(control), two episodes of ischemia (2 min of global ischemia followed by 3 min of reperfusion) (IPC), or 30 min of pulmonary artery adenosine infusion (AP), to a maximum of 350 microg/kg/min, followed by 20 min of global warm ischemia on cardiopulmonary bypass. Left ventricular pressure-volume loops and myocardial oxygen consumption (MVO(2)) were measured at baseline and after 60 min of reperfusion, on right heart bypass. All data were compared between baseline and reperfusion. Load independent left ventricular function, defined as preload recruitable stroke work (PRSW), decreased in control and IPC groups (72+/-7%, 71+/-12%, respectively). AP blunted the decrease in PRSW (45+/-9%, p<.05 compared to control). Myocardial energetic conversion efficiency, defined as the slope of the MVO(2)-Stroke work relationship was not significantly changed for controls (2.17+/-0.47 to 1.84+/-0.68) and IPC (2.99+/-0.45 to 2.16+/-0.65), but was for AP (1.16+/-0.88 to 5.71+/-1.66, p<0.04). IPC did not prevent ventricular stunning or alter myocardial energetics. AP reduced ventricular stunning but resulted in worsened myocardial energy efficiency. The benefits to ventricular function of the adenosine pretreatment protocol used in this study were only possible at a cost of higher metabolic requirements.  相似文献   

16.
Although ischemic preconditioning induces bioenergetic tolerance and thereby remodels energy metabolism that is crucial for postischemic recovery of the heart, the molecular components associated with preservation of cellular energy production, transfer, and utilization are not fully understood. Here myocardial bioenergetic dynamics were assessed by (18)O-assisted (31)P-NMR spectroscopy in control or preconditioned hearts from wild-type (WT) or Kir6.2-knockout (Kir6.2-KO) mice that lack metabolism-sensing sarcolemmal ATP-sensitive K(+) (K(ATP)) channels. In WT vs. Kir6.2-KO hearts, preconditioning induced a significantly higher total ATP turnover (232 +/- 20 vs. 155 +/- 15 nmol x mg protein(-1) x min(-1)), ATP synthesis rate (58 +/- 3 vs. 46 +/- 3% (18)O labeling of gamma-ATP), and ATP consumption rate (51 +/- 4 vs. 31 +/- 4% (18)O labeling of P(i)) after ischemia-reperfusion. Moreover, preconditioning preserved cardiac creatine kinase-catalyzed phosphotransfer in WT (234 +/- 26 nmol x mg protein(-1) x min(-1)) but not Kir6.2-KO (133 +/- 18 nmol x mg protein(-1) x min(-1)) hearts. In contrast with WT hearts, preconditioning failed to preserve contractile recovery in Kir6.2-KO hearts, as tight coupling between postischemic performance and high-energy phosphoryl transfer was compromised in the K(ATP)-channel-deficient myocardium. Thus intact K(ATP) channels are integral in ischemic preconditioning-induced protection of cellular energetic dynamics and associated cardiac performance.  相似文献   

17.
This study evaluated the validity of the desktop CardioCoach metabolic system to measure VO2max and VEmax. Sixteen subjects (mean age = 19.5 +/- 3.2 years) completed 2 maximal graded exercise tests following the same protocol before and after 7 and 14 weeks of endurance training. Subjects' VO2max and VEmax were measured by either the CardioCoach or the ParvoMedics TrueOne 2400 metabolic measurement system (TrueOne). An alpha level of significance of p < 0.05 was maintained for all statistical analyses. The time to test completion and the final treadmill grade of the exercise tests performed by both the CardioCoach and the TrueOne increased over the 3 testing periods, confirming an improvement in cardiorespiratory fitness resulting from the 14 weeks of training. A linear growth curve analysis indicated that there were statistically significant differences between VO2max (ml x kg(-1) x min(-1)) as measured by the TrueOne and the CardioCoach before (44.4 +/- 5.0 and 49.3 +/- 5.4) and after 7 weeks (46.0 +/- 5.2 and 48.2 +/- 5.4) of training but not after 14 weeks of training (47.8 +/- 5.6 and 48.4 +/- 5.2). Significant differences also existed in VEmax (L x min(-1)) as measured by the TrueOne and the CardioCoach before (76.8 +/- 17.7 and 71.9 +/- 13.7), after 7 weeks (81.4 +/- 16.2 and 72.8 +/- 14.1), and after 14 weeks (86.8 +/- 19.4 and 74.2 +/- 13.1) of training. Although significant growth of VO2max (0.24 ml x kg(-1) x min(-1) x wk(-1)) and VEmax (0.71 L x min(-1) x wk(-1)) was measured by the TrueOne over 14 weeks of training, the CardioCoach was unable to detect growth in VO2max (-0.02 ml x kg(-1) x min(-1) x wk(-1)) or VEmax (0.17 L x min(-1) x wk(-1)). This study indicates that the CardioCoach did not accurately measure or monitor changes in VO2max or VEmax resulting from training.  相似文献   

18.
This study investigates whether a 6-wk intermittent hypoxia training (IHT), designed to avoid reductions in training loads and intensities, improves the endurance performance capacity of competitive distance runners. Eighteen athletes were randomly assigned to train in normoxia [Nor group; n = 9; maximal oxygen uptake (VO2 max) = 61.5 +/- 1.1 ml x kg(-1) x min(-1)] or intermittently in hypoxia (Hyp group; n = 9; VO2 max = 64.2 +/- 1.2 ml x kg(-1) x min(-1)). Into their usual normoxic training schedule, athletes included two weekly high-intensity (second ventilatory threshold) and moderate-duration (24-40 min) training sessions, performed either in normoxia [inspired O2 fraction (FiO2) = 20.9%] or in normobaric hypoxia (FiO2) = 14.5%). Before and after training, all athletes realized 1) a normoxic and hypoxic incremental test to determine VO2 max and ventilatory thresholds (first and second ventilatory threshold), and 2) an all-out test at the pretraining minimal velocity eliciting VO2 max to determine their time to exhaustion (T(lim)) and the parameters of O2 uptake (VO2) kinetics. Only the Hyp group significantly improved VO2 max (+5% at both FiO2, P < 0.05), without changes in blood O2-carrying capacity. Moreover, T(lim) lengthened in the Hyp group only (+35%, P < 0.001), without significant modifications of VO2 kinetics. Despite similar training load, the Nor group displayed no such improvements, with unchanged VO2 max (+1%, nonsignificant), T(lim) (+10%, nonsignificant), and VO2 kinetics. In addition, T(lim) improvements in the Hyp group were not correlated with concomitant modifications of other parameters, including VO2 max or VO2 kinetics. The present IHT model, involving specific high-intensity and moderate-duration hypoxic sessions, may potentialize the metabolic stimuli of training in already trained athletes and elicit peripheral muscle adaptations, resulting in increased endurance performance capacity.  相似文献   

19.
Because the cardiocirculatory response of heart transplant recipients (HTR) to exercise is delayed, we hypothesized that their O(2) uptake (VO(2)) kinetics at the onset of subthreshold exercise are slowed because of an impaired early "cardiodynamic" phase 1, rather than an abnormal subsequent "metabolic" phase 2. Thus we compared the VO(2) kinetics in 10 HTR submitted to six identical 10-min square-wave exercises set at 75% (36 +/- 5 W) of the load at their ventilatory threshold (VT) to those of 10 controls (C) similarly exercising at the same absolute (40 W; C40W group) and relative load (67 +/- 14 W; C67W group). Time-averaged heart rate, breath-by-breath VO(2), and O(2) pulse (O(2)p) data yielded monoexponential time constants of the VO(2) (s) and O(2)p increase. Separating phase 1 and 2 data permitted assessment of the phase 1 duration and phase 2 VO(2) time constant (). The VO(2) time constant was higher in HTR (38.4 +/- 7.5) than in C40W (22.9 +/- 9.6; P < or = 0. 002) or C67W (30.8 +/- 8.2; P < or = 0.05), as was the O(2)p time constant, resulting from a lower phase 1 VO(2) increase (287 +/- 59 vs. 349 +/- 66 ml/min; P < or = 0.05), O(2)p increase (2.8 +/- 0.6 vs. 3.6 +/- 1.0 ml/beat; P < or = 0.0001), and a longer phase 1 duration (36.7 +/- 12.3 vs. 26.8 +/- 6.0 s; P < or = 0.05), whereas the was similar in HTR and C (31.4 +/- 9.6 vs. 29.9 +/- 5.6 s; P = 0.85). Thus the HTR have slower subthreshold VO(2) kinetics due to an abnormal phase 1, suggesting that the heart is unable to increase its output abruptly when exercise begins. We expected a faster in HTR because of their prolonged phase 1 duration. Because this was not the case, their muscular metabolism may also be impaired at the onset of subthreshold exercise.  相似文献   

20.
This study tested the hypotheses that (i) lipophilic statins (atorvastatin and simvastatin) impair ventricular recovery from myocardial ischemia-reperfusion, owing to their greater myocyte permeability, compared with a hydrophilic statin (pravastatin), and (ii) statins enhance endothelium-dependent vasodilation of isolated coronary arteries from the ischemic region. Farm pigs consumed chow supplemented with atorvastatin (2.5 mg.kg(-1).d(-1); n=6), pravastatin (10 (n=3) or 20 (n=2) mg.kg(-1).d(-1)), simvastatin (5 mg.kg(-1).d(-1); n=6), or no statin (control; n=6) for 3 weeks. Animals were anesthetized and instrumented to measure regional (% segment shortening) and global (dP/dt max) left ventricular (LV) function during coronary artery occlusion (10 min) and reperfusion (30 min). Coronary resistance (i.d. = 119 +/- 3 microm) and conductance (i.d. = 487 +/- 11 microm) arteries were isolated from the ischemic region to measure receptor-dependent (acetylcholine (ACh)) and -independent (KCl) vasoconstriction, and endothelium-dependent (bradykinin (BK)) and -independent (sodium nitroprusside (SNP)) vasodilation. At 30 min reperfusion, neither percent recovery of regional ventricular function (atorvastatin, 24% +/- 15%; pravastatin, 36% +/- 13%; simvastatin, 29% +/- 13%; control, 36% +/- 13%) nor percent recovery of global LV cardiac function differed among groups. However, BK-induced vasorelaxation of coronary conductance vessels was greater (P<0.05) in statins versus controls, and ACh-induced vasoconstriction was less in simvastatin-treated animals, suggesting the potential for enhanced coronary arterial blood flow to the jeopardized region. In conclusion, our data suggest that ischemia-induced myocardial stunning is similar among pigs treated for 3 weeks with atorvastatin, pravastatin, or simvastatin, even though statin treatment appears to augment endothelium-dependent vasodilation of conductance, but not resistance, vessels subjected to ischemia-reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号