共查询到20条相似文献,搜索用时 0 毫秒
1.
MOTIVATION: Our aim was to predict protein interdomain linker regions using sequence alone, without requiring known homology. Identifying linker regions will delineate domain boundaries, and can be used to computationally dissect proteins into domains prior to clustering them into families. We developed a hidden Markov model of linker/non-linker sequence regions using a linker index derived from amino acid propensity. We employed an efficient Bayesian estimation of the model using Markov Chain Monte Carlo, Gibbs sampling in particular, to simulate parameters from the posteriors. Our model recognizes sequence data to be continuous rather than categorical, and generates a probabilistic output. RESULTS: We applied our method to a dataset of protein sequences in which domains and interdomain linkers had been delineated using the Pfam-A database. The prediction results are superior to a simpler method that also uses linker index. 相似文献
2.
Background
Secondary structure prediction is a useful first step toward 3D structure prediction. A number of successful secondary structure prediction methods use neural networks, but unfortunately, neural networks are not intuitively interpretable. On the contrary, hidden Markov models are graphical interpretable models. Moreover, they have been successfully used in many bioinformatic applications. Because they offer a strong statistical background and allow model interpretation, we propose a method based on hidden Markov models. 相似文献3.
Background
One of the most powerful methods for the prediction of protein structure from sequence information alone is the iterative construction of profile-type models. Because profiles are built from sequence alignments, the sequences included in the alignment and the method used to align them will be important to the sensitivity of the resulting profile. The inclusion of highly diverse sequences will presumably produce a more powerful profile, but distantly related sequences can be difficult to align accurately using only sequence information. Therefore, it would be expected that the use of protein structure alignments to improve the selection and alignment of diverse sequence homologs might yield improved profiles. However, the actual utility of such an approach has remained unclear. 相似文献4.
Prediction of protein secondary structure content 总被引:5,自引:0,他引:5
All existing algorithms for predicting the content of protein secondary structure elements have been based on the conventional amino-acid-composition, where no sequence coupling effects are taken into account. In this article, an algorithm was developed for predicting the content of protein secondary structure elements that was based on a new amino-acid-composition, in which the sequence coupling effects are explicitly included through a series of conditional probability elements. The prediction was examined by a self-consistency test and an independent dataset test. Both indicated a remarkable improvement obtained when using the current algorithm to predict the contents of alpha-helix, beta-sheet, beta-bridge, 3(10)-helix, pi-helix, H-bonded turn, bend and random coil. Examples of the improved accuracy by introducing the new amino-acid-composition, as well as its impact on the study of protein structural class and biologically function, are discussed. 相似文献
5.
Prediction of mitochondrial proteins using support vector machine and hidden Markov model 总被引:1,自引:0,他引:1
Mitochondria are considered as one of the core organelles of eukaryotic cells hence prediction of mitochondrial proteins is one of the major challenges in the field of genome annotation. This study describes a method, MitPred, developed for predicting mitochondrial proteins with high accuracy. The data set used in this study was obtained from Guda, C., Fahy, E. & Subramaniam, S. (2004) Bioinformatics 20, 1785-1794. First support vector machine-based modules/methods were developed using amino acid and dipeptide composition of proteins and achieved accuracy of 78.37 and 79.38%, respectively. The accuracy of prediction further improved to 83.74% when split amino acid composition (25 N-terminal, 25 C-terminal, and remaining residues) of proteins was used. Then BLAST search and support vector machine-based method were combined to get 88.22% accuracy. Finally we developed a hybrid approach that combined hidden Markov model profiles of domains (exclusively found in mitochondrial proteins) and the support vector machine-based method. We were able to predict mitochondrial protein with 100% specificity at a 56.36% sensitivity rate and with 80.50% specificity at 98.95% sensitivity. The method estimated 9.01, 6.35, 4.84, 3.95, and 4.25% of proteins as mitochondrial in Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, mouse, and human proteomes, respectively. MitPred was developed on the above hybrid approach. 相似文献
6.
Prediction of protein binding sites in protein structures using hidden Markov support vector machine
Background
Predicting the binding sites between two interacting proteins provides important clues to the function of a protein. Recent research on protein binding site prediction has been mainly based on widely known machine learning techniques, such as artificial neural networks, support vector machines, conditional random field, etc. However, the prediction performance is still too low to be used in practice. It is necessary to explore new algorithms, theories and features to further improve the performance. 相似文献7.
Lee A Newberg 《BMC bioinformatics》2009,10(1):212
Background
Hidden Markov models and hidden Boltzmann models are employed in computational biology and a variety of other scientific fields for a variety of analyses of sequential data. Whether the associated algorithms are used to compute an actual probability or, more generally, an odds ratio or some other score, a frequent requirement is that the error statistics of a given score be known. What is the chance that random data would achieve that score or better? What is the chance that a real signal would achieve a given score threshold? 相似文献8.
9.
Motivation: A growing number of genomes are sequenced. The differences in evolutionary pattern between functional regions can thus be observed genome-wide in a whole set of organisms. The diverse evolutionary pattern of different functional regions can be exploited in the process of genomic annotation. The modelling of evolution by the existing comparative gene finders leaves room for improvement. Results: A probabilistic model of both genome structure and evolution is designed. This type of model is called an Evolutionary Hidden Markov Model (EHMM), being composed of an HMM and a set of region-specific evolutionary models based on a phylogenetic tree. All parameters can be estimated by maximum likelihood, including the phylogenetic tree. It can handle any number of aligned genomes, using their phylogenetic tree to model the evolutionary correlations. The time complexity of all algorithms used for handling the model are linear in alignment length and genome number. The model is applied to the problem of gene finding. The benefit of modelling sequence evolution is demonstrated both in a range of simulations and on a set of orthologous human/mouse gene pairs. AVAILABILITY: Free availability over the Internet on www server: http://www.birc.dk/Software/evogene. 相似文献
10.
Computational model of neural network is used for prediction of secondary structure of globular proteins of known sequence. In contrast to earlier works some information about expected tertiary interactions were built in into the neural network. As a result the prediction accuracy was improved by 3% to 5%. Possible applications of this new approach are briefly discussed. 相似文献
11.
12.
Hidden Markov Models (HMMs) are practical tools which provide probabilistic base for protein secondary structure prediction. In these models, usually, only the information of the left hand side of an amino acid is considered. Accordingly, these models seem to be inefficient with respect to long range correlations. In this work we discuss a Segmental Semi Markov Model (SSMM) in which the information of both sides of amino acids are considered. It is assumed and seemed reasonable that the information on both sides of an amino acid can provide a suitable tool for measuring dependencies. We consider these dependencies by dividing them into shorter dependencies. Each of these dependency models can be applied for estimating the probability of segments in structural classes. Several conditional probabilities concerning dependency of an amino acid to the residues appeared on its both sides are considered. Based on these conditional probabilities a weighted model is obtained to calculate the probability of each segment in a structure. This results in 2.27% increase in prediction accuracy in comparison with the ordinary Segmental Semi Markov Models, SSMMs. We also compare the performance of our model with that of the Segmental Semi Markov Model introduced by Schmidler et al. [C.S. Schmidler, J.S. Liu, D.L. Brutlag, Bayesian segmentation of protein secondary structure, J. Comp. Biol. 7(1/2) (2000) 233-248]. The calculations show that the overall prediction accuracy of our model is higher than the SSMM introduced by Schmidler. 相似文献
13.
The GOR program for predicting protein secondary structure is extended to include triple correlation. A score system for a residue pair to be at certain conformation state is derived from the conditional weight matrix describing amino acid frequencies at each position of a window flanking the pair under the condition for the pair to be at the fixed state. A program using this score system to predict protein secondary structure is established. After training the model with a learning set created from PDB_SELECT, the program is tested with two test sets. As a method using single sequence for predicting secondary structures, the approach achieves a high accuracy near 70%. 相似文献
14.
Prediction of protein secondary structure at 80% accuracy 总被引:11,自引:0,他引:11
Petersen TN Lundegaard C Nielsen M Bohr H Bohr J Brunak S Gippert GP Lund O 《Proteins》2000,41(1):17-20
Secondary structure prediction involving up to 800 neural network predictions has been developed, by use of novel methods such as output expansion and a unique balloting procedure. An overall performance of 77.2%-80.2% (77.9%-80.6% mean per-chain) for three-state (helix, strand, coil) prediction was obtained when evaluated on a commonly used set of 126 protein chains. The method uses profiles made by position-specific scoring matrices as input, while at the output level it predicts on three consecutive residues simultaneously. The predictions arise from tenfold, cross validated training and testing of 1032 protein sequences, using a scheme with primary structure neural networks followed by structure filtering neural networks. With respect to blind prediction, this work is preliminary and awaits evaluation by CASP4. 相似文献
15.
Jen Tsi Yang 《Journal of Protein Chemistry》1996,15(2):185-191
The conformational parametersP
k
for each amino acid species (j=1–20) of sequential peptides in proteins are presented as the product ofP
i,k
, wherei is the number of the sequential residues in thekth conformational state (k=-helix,-sheet,-turn, or unordered structure). Since the average parameter for ann-residue segment is related to the average probability of finding the segment in the kth state, it becomes a geometric mean of (P
k
)av=(P
i,k
)
1/n
with amino acid residuei increasing from 1 ton. We then used ln(Pk)av to convert a multiplicative process to a summation, i.e., ln(P
k
)
av
=(1/n)P
i,k
(i=1 ton) for ease of operation. However, this is unlike the popular Chou-Fasman algorithm, which has the flaw of using the arithmetic mean for relative probabilities. The Chou-Fasman algorithm happens to be close to our calculations in many cases mainly because the difference between theirP
k
and our InP
k
is nearly constant for about one-half of the 20 amino acids. When stronger conformation formers and breakers exist, the difference become larger and the prediction at the N- and C-terminal-helix or-sheet could differ. If the average conformational parameters of the overlapping segments of any two states are too close for a unique solution, our calculations could lead to a different prediction. 相似文献
16.
17.
Background
Most profile and motif databases strive to classify protein sequences into a broad spectrum of protein families. The next step of such database studies should include the development of classification systems capable of distinguishing between subfamilies within a structurally and functionally diverse superfamily. This would be helpful in elucidating sequence-structure-function relationships of proteins. 相似文献18.
A hidden Markov model for progressive multiple alignment 总被引:4,自引:0,他引:4
MOTIVATION: Progressive algorithms are widely used heuristics for the production of alignments among multiple nucleic-acid or protein sequences. Probabilistic approaches providing measures of global and/or local reliability of individual solutions would constitute valuable developments. RESULTS: We present here a new method for multiple sequence alignment that combines an HMM approach, a progressive alignment algorithm, and a probabilistic evolution model describing the character substitution process. Our method works by iterating pairwise alignments according to a guide tree and defining each ancestral sequence from the pairwise alignment of its child nodes, thus, progressively constructing a multiple alignment. Our method allows for the computation of each column minimum posterior probability and we show that this value correlates with the correctness of the result, hence, providing an efficient mean by which unreliably aligned columns can be filtered out from a multiple alignment. 相似文献
19.
Kikuchi N Kwon YD Gotoh M Narimatsu H 《Biochemical and biophysical research communications》2003,310(2):574-579
In order to investigate the relationship between glycosyltransferase families and the motif for them, we classified 47 glycosyltransferase families in the CAZy database into four superfamilies, GTS-A, -B, -C, and -D, using a profile Hidden Markov Model method. On the basis of the classification and the similarity between GTS-A and nucleotidylyltransferase family catalyzing the synthesis of nucleotide-sugar, we proposed that ancient oligosaccharide might have been synthesized by the origin of GTS-B whereas the origin of GTS-A might be the gene encoding for synthesis of nucleotide-sugar as the donor and have evolved to glycosyltransferases to catalyze the synthesis of divergent carbohydrates. We also suggested that the divergent evolution of each superfamily in the corresponding subcellular component has increased the complexities of eukaryotic carbohydrate structure. 相似文献
20.
Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes 总被引:61,自引:0,他引:61
We describe and validate a new membrane protein topology prediction method, TMHMM, based on a hidden Markov model. We present a detailed analysis of TMHMM's performance, and show that it correctly predicts 97-98 % of the transmembrane helices. Additionally, TMHMM can discriminate between soluble and membrane proteins with both specificity and sensitivity better than 99 %, although the accuracy drops when signal peptides are present. This high degree of accuracy allowed us to predict reliably integral membrane proteins in a large collection of genomes. Based on these predictions, we estimate that 20-30 % of all genes in most genomes encode membrane proteins, which is in agreement with previous estimates. We further discovered that proteins with N(in)-C(in) topologies are strongly preferred in all examined organisms, except Caenorhabditis elegans, where the large number of 7TM receptors increases the counts for N(out)-C(in) topologies. We discuss the possible relevance of this finding for our understanding of membrane protein assembly mechanisms. A TMHMM prediction service is available at http://www.cbs.dtu.dk/services/TMHMM/. 相似文献