首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The resonance Raman spectra of ferric derivatives of myeloperoxidase at pH 8 show ligand-dependent differences. The data are consistent with the resting enzyme and the chloride and fluoride derivatives all having 6-coordinated high-spin configurations. At pH 4 we find that the resting enzyme is susceptible to photodegradation from our low power incident laser beam. Chloride binding inhibits this denaturation. Our data support direct binding of chloride to the enzyme under physiological conditions.  相似文献   

2.
Mutational analyses have suggested that BK channels are regulated by three distinct divalent cation-dependent regulatory mechanisms arising from the cytosolic COOH terminus of the pore-forming alpha subunit. Two mechanisms account for physiological regulation of BK channels by microM Ca2+. The third may mediate physiological regulation by mM Mg2+. Mutation of five aspartate residues (5D5N) within the so-called Ca2+ bowl removes a portion of a higher affinity Ca2+ dependence, while mutation of D362A/D367A in the first RCK domain also removes some higher affinity Ca2+ dependence. Together, 5D5N and D362A/D367A remove all effects of Ca2+ up through 1 mM while E399A removes a portion of low affinity regulation by Ca2+/Mg2+. If each proposed regulatory effect involves a distinct divalent cation binding site, the divalent cation selectivity of the actual site that defines each mechanism might differ. By examination of the ability of various divalent cations to activate currents in constructs with mutationally altered regulatory mechanisms, here we show that each putative regulatory mechanism exhibits a unique sensitivity to divalent cations. Regulation mediated by the Ca2+ bowl can be activated by Ca2+ and Sr2+, while regulation defined by D362/D367 can be activated by Ca2+, Sr2+, and Cd2+. Mn2+, Co2+, and Ni2+ produce little observable effect through the high affinity regulatory mechanisms, while all six divalent cations enhance activation through the low affinity mechanism defined by residue E399. Furthermore, each type of mutation affects kinetic properties of BK channels in distinct ways. The Ca2+ bowl mainly accelerates activation of BK channels at low [Ca2+], while the D362/D367-related high affinity site influences both activation and deactivation over the range of 10-300 microM Ca2+. The major kinetic effect of the E399-related low affinity mechanism is to slow deactivation at mM Mg2+ or Ca2+. The results support the view that three distinct divalent-cation binding sites mediate regulation of BK channels.  相似文献   

3.
4.
R J Coll  A J Murphy 《Biochemistry》1991,30(6):1456-1461
The CaATPase of sarcoplasmic reticulum was reacted with [gamma-32P]ATP to form the covalent phosphoenzyme intermediate. Noncompetitive inhibition by reactive red-120 and chelation of calcium allowed us to monitor single-turnover kinetics of the phosphoenzyme reacting with water or added ADP at 0 degrees C. When ADP was added and the amount of product, [gamma-32P]ATP, formed was measured, we found that added cold ATP did not interfere with the phosphoenzyme reacting with ADP. We conclude that ATP cannot bind where ADP binds, the phosphorylated active site. This implies that when ATP at high concentrations causes an acceleration of phosphoenzyme hydrolysis, it must do so by binding to an allosteric site. Considering the monoexponential nature of product formation we observed, simple one-nucleotide-site models cannot account for the above result.  相似文献   

5.
Seven neutralizing murine monoclonal antibodies specific for the glycoprotein H of human cytomegalovirus were produced and used to construct a topological map of two nonoverlapping antigenic sites that are bridged by a third antigenic site. Neutralization assays with 15 laboratory or clinical human cytomegalovirus strains indicated that the monoclonal antibodies recognize three antigenically variable and three conserved epitopes within the three antigenic sites. The variable-domain genes encoding monoclonal antibodies representing each of the three antigenic sites were cloned and sequenced, and molecular models of their binding sites were generated. Conformational differences in the antibody-binding sites suggested a structural basis for experimentally observed differences in gH epitope recognition.  相似文献   

6.
Glycoprotein VI (GPVI) has a crucial role in platelet responses to collagen. Still, little is known about its interaction with its ligands. In binding assays using soluble or cell-expressed human GPVI, we observed that (i) collagen, and the GPVI-specific ligands collagen-related peptides (CRP) and convulxin, competed with one another for the binding to GPVI and (ii) monoclonal antibodies directed against the extracellular part of the human receptor displayed selective inhibitory properties on GPVI interaction with its ligands. Monoclonal antibody 9E18 strongly reduced the binding of GPVI to collagen/CRP, 3F8 inhibited its interaction with convulxin, whereas 9O12 prevented all three interactions. These observations suggest that ligand-binding sites are distinct, exhibiting specific features but at the same time also sharing some common residues participating in the recognition of these ligands. The epitope of 9O12 was mapped by phage display, along with molecular modeling of human GPVI, which allowed the identification of residues within GPVI potentially involved in ligand recognition. Site-directed mutagenesis revealed that valine 34 and leucine 36 are critical for GPVI interaction with collagen and CRP. The loop might thus be part of a collagen/CRP-binding site.  相似文献   

7.
A decapeptide (1182-1191) derived from the bovine interphotoreceptor retinoid-binding protein (IRBP) was found to contain two completely distinct antigenic sites when tested in Lewis rats. One site, localized in sequence 1182-1191, is the core of the immunodominant and highly uveitogenic determinant of IRBP. The second site localizes within sequence 1183-1191 and becomes detectable only when tryptophan at position 1182 is deleted. Lymphocytes sensitized against the first, larger site recognized all longer peptides within sequence 1169-1191, as well as whole IRBP. In contrast, lymphocytes sensitized against the second, short epitope recognized only two peptides, 1184-1191 and (to a lesser degree) 1183-1191. The responses to both sites were restricted by the same major histocompatibility complex (MHC) product (I-A), as shown by monoclonal antibody blocking and by the finding that the lymphocyte response to 1184-1191 was competitively inhibited by peptide 1181-1191. The unique finding of two completely distinct antigenic sites within a decapeptide could be explained by the hypothesis that peptides of the two sites combine with the MHC molecule on antigen-presenting cells by different configurations, thus forming two distinct antigenicities.  相似文献   

8.
9.
Phenylphosphate, a structural analog of phosphoenolpyruvate (PEP), was found to be an activator of phosphoenolpyruvate carboxylase (PEP carboxylase) purified from maize leaves. This finding suggested the presence in the enzyme of a regulatory site, to which PEP could bind. We carried out kinetic studies on this enzyme using controlled concentrations of free PEP and of Mg-PEP complex and developed a theoretical kinetic model of the reaction. In summary, the main conclusions drawn from our results, and taken as assumptions of the model, were the following: (i) The affinity of the active site for the complex Mg-PEP is much higher than that for free PEP and Mg2+ ions, and therefore it can be considered that the preferential substrate of the PEP-catalyzed reaction is Mg-PEP. (ii) The enzyme has a regulatory site specific for free PEP, to which Mg2+ ions can not bind. (iii) The binding of free PEP, or an analog molecule, to this regulatory site yields a modified enzyme that has much lower apparent Km values and apparent Vmax values than the unmodified enzyme. So, free PEP behaves as an excellent activator of the reaction at subsaturating substrate concentrations, and as an inhibitor at saturating substrate concentrations. These findings may have important physiological implications on the regulation of the PEP carboxylase in vivo activity and, consequently, of the C4 pathway, since increased reaction rates would be obtained when the concentration of PEP rises, even at limiting Mg2+ concentrations.  相似文献   

10.
A wide variety of viruses require the transient presence of scaffolding proteins to direct capsid assembly. In the case of bacteriophage P22, a model in which the scaffolding protein selectively stabilizes on-pathway growing intermediates has been proposed. The stoichiometry and thermodynamics of binding of the bacteriophage P22 scaffolding protein within the procapsid were analyzed by light scattering and isothermal titration calorimetry. Calorimetric experiments carried out between 10 and 37 degrees C were consistent with the presence of at least two distinct populations of binding sites, in agreement with kinetic evidence obtained by a light scattering assay. Binding to the high-affinity sites occurred at 20 degrees C with a stoichiometry of approximately 60 scaffolding molecules per procapsid and an apparent K(d) of approximately 100-300 nM and was almost completely enthalpy-driven. For the second binding population, precise fitting of the data was impossible due to small heats of binding, but the thermodynamics of binding were clearly distinct from the high-affinity phase. The heat capacity change (DeltaC(p)()) of binding was large for the high-affinity sites and negative for both sets of sites. Addition of sodium chloride (1 M) greatly reduced the magnitude of the apparent DeltaH, in agreement with previous evidence that electrostatic interactions play a major role in binding. A mutant scaffolding protein that forms covalent dimers (R74C/L177I) bound only to the high-affinity sites. These data comprise the first quantitative measurements of the energetics of the coat protein/scaffolding protein interaction.  相似文献   

11.
Synopsis The genetic and morphological features ofGasterosteus aculeatus were investigated for 29 populations around Japan. Allozyme analyses recognized two groups (Pacific Ocean group and Japan Sea group) that had distinct characteristic features, and showed high genetic differentiation between them (D = 0.482). The Pacific Ocean group had a wide range, from North America to Japan, along the Pacific coast. The distribution of the Japan Sea group was limited around the Sea of Japan and the Sea of Okhotsk. The distribution of these groups were found to be sympatric on the Pacific coast of Hokkaido Island, Japan. From this area, genetic analyses demonstrated that the sympatric populations of the two groups formed independent breeding stocks, and it is considered that the two groups were reproductively isolated from each other. Additionally, each group had distinctive morphological features of lateral plates and caudal keels in the sympatric area. These results suggested that these two groups of the threespine stickleback comprise different species and that the Japan Sea group is taxonomically distinguishable fromG. aculeatus.  相似文献   

12.
After having suggested a kinetic model with two binding sites for acetylcholinesterase, the authors obtained the various function of [I] (1/vi; (vo/vi-1)/[I]; 1/Vi; Ki/Vi) starting from the velocity equation. An analytical study was then carried out showing the theoretical shape of such functions at different values of the kinetic parameters.  相似文献   

13.
The metabolic profile of benzo[a]pyrene (BP) in cumene hydroperoxide-(CHP)-dependent reaction by male rat liver microsomes was dependent on CHP concentration. At 0.05 mM CHP, 3-hydroxy-BP was the major metabolite. Increase in CHP reduced 3-hydroxy-BP formation but increased BP quinone formation simultaneously. This change in metabolic profile was reversed by preincubation with pyrene. Pyrene (PY) selectively inhibited quinone formation but enhanced 3-hydroxy-BP formation. Naphthalene (NP) had no effect on BP quinone formation but inhibited BP 3-hydroxylation. Phenanthrene (PA) and benz[a]anthracene (BA) inhibited effectively 3-hydroxy-BP formation but only slightly quinone formation. BP binding to microsomal protein correlated to quinone formation and not BP 3-hydroxylation. BP metabolism by female rat liver microsomes also depended on CHP concentration but was much less efficient than the male. Quinones were consistently predominant metabolites and their formation was also inhibited by pyrene. Our data provide evidence that regioselectivity in BP metabolism involves at least two distinct binding sites. One site recognizes the benzo region of BP in BP 3-hydroxylation and the other recognizes the pyrene region in quinone formation. The different ratios of 3-hydroxy-BP to quinone formation by male and female rat liver microsomes suggest that the two binding sites are probably located at separate cytochrome P-450 isozymes.  相似文献   

14.
Cotranslational protein targeting in bacteria is mediated by the signal recognition particle (SRP) and FtsY, the bacterial SRP receptor (SR). FtsY is homologous to the SRalpha subunit of eukaryotes, which is tethered to the membrane via its interaction with the membrane-integral SRbeta subunit. Despite the lack of a membrane-anchoring subunit, 30% of FtsY in Escherichia coli are found stably associated with the cytoplasmic membrane. However, the mechanisms that are involved in this membrane association are only poorly understood. Our data indicate that membrane association of FtsY involves two distinct binding sites and that binding to both sites is stabilized by blocking its GTPase activity. Binding to the first site requires only the NG-domain of FtsY and confers protease protection to FtsY. Importantly, the SecY translocon provides the second binding site, to which FtsY binds to form a carbonate-resistant 400-kD FtsY-SecY translocon complex. This interaction is stabilized by the N-terminal A-domain of FtsY, which probably serves as a transient lipid anchor.  相似文献   

15.
The low-frequency FeCN vibrations of cyanoferric myeloperoxidase (MPO) and horseradish peroxidase (HRP) have been measured by resonance Raman spectroscopy. The ordering of the frequencies of the predominantly FeC stretching and FeCN bending normal vibrational modes in the two peroxidases differs. These normal mode vibrations are identified by their wavenumber shifts upon isotopic substitution of the cyanide ligand. For MPO, the stretching mode nu 1 (361 cm-1) occurs at a lower frequency than the bending mode delta 2 (454 cm-1). For HRP, the order is reversed as nu 1 (456 cm-1) is at a higher frequency than delta 2 (404 cm-1). Normal coordinate analyses and model complexes have been used to address the origin of this behavior. The nu 1 stretching frequencies in cyanide complexes of iron porphyrin and iron chlorin model compounds are similar to one another and to that of HRP. Thus, the inverted order and altered frequencies of the nu 1 and delta 2 vibrations in MPO, relative to those in HRP and the model compounds, are not inherent to the proposed iron chlorin prosthetic group in MPO but, rather, are attributed to distinct distal environmental effects in the MPO active site. The normal coordinate analyses for MPO and HRP showed that the nu 1 and delta 2 vibrational frequencies are not pure; the potential energy distributions for these modes respond not only to the geometry but also to the force constants of the nu(FeC) and delta(FeCN) internal coordinates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We examined the effect of intracellular acidification on the reverse mode of Na+/H+ exchange by measuring 22Na+ efflux from 22Na+-loaded PS120 cells expressing the Na+/H+ exchanger (NHE) isoforms NHE1, NHE2, and NHE3. The 5-(N-ethyl-N-isopropyl)amiloride (EIPA)- or amiloride-sensitive fraction of 22Na+ efflux was dramatically accelerated by cytosolic acidification as opposed to thermodynamic prediction, supporting the concept that these NHE isoforms are activated by protonation of an internal binding site(s) distinct from the H+ transport site. Intracellular pH (pHi) dependence of 22 Na+ efflux roughly exhibited a bell-shaped profile; mild acidification from pHi 7.5 to 7 dramatically accelerated 22Na+ efflux, whereas acidification from pHi 6.6 gradually decreased it. Alkalinization above pHi 7.5 completely suppressed EIPA-sensitive 22Na+ efflux. Cell ATP depletion and mutation of NHE1 at Arg440 (R440D) caused a large acidic shift of the pHi profile for 22Na+ efflux, whereas mutation at Gly455 (G455Q) caused a significant alkaline shift. Because these mutations and ATP depletion cause correspondingly similar effects on the forward mode of Na+/H+ exchange, it is most likely that they alter exchange activity by modulating affinity of the internal modifier site for protons. The data provide substantial evidence that a proton modifier site(s) distinct from the transport site controls activities of at least three NHE isoforms through cooperative interaction with multiple protons.  相似文献   

17.
The binding of [3H]dexamethasone (DEX) to rat liver nuclei in vitro and in vivo have been compared. In vitro, purified nuclei displayed a single class of specific glucocorticoid binding sites with a dissociation constant (Kd) of approximately 10(-7) M for [3H]DEX at 4 degrees C. The glucocorticoid agonists prednisolone, cortisol, and corticosterone and the antagonists progesterone and cortexolone competed avidly for this site, but the potent glucocorticoid triamcinolone acetonide (TA) competed poorly in vitro. Nuclei isolated from the livers of intact rats contained 1-2 X 10(4) [3H]DEX binding sites/nucleus. Up to 85% of the binding sites were recovered in the nuclear envelope (NE) fraction when NE were prepared either before or after labeling with [3H]DEX in vitro. After adrenalectomy, the specific [3H]DEX binding capacity of both nuclei and NE decreased to 15-20% of control values, indicating sensitivity of the binding sites to hormonal status of the animals. Efforts to restore the binding capacity by administration of exogenous glucocorticoids, however, were unsuccessful. After labeling of rat liver nuclei in vivo by intraperitoneal injection of [3H]DEX or [3H]TA into living animals, the steroid specificity and subnuclear localization of radiolabel were different. Both [3H]TA (which did not bind in vitro) and [3H]DEX became localized to nuclei in a saturable fashion in vivo. With either of these ligands, approximately 20% of the total nuclear radiolabel was recovered in the NE fraction. These results suggest the presence of two separate and distinct binding sites in rat liver nuclei, one which is localized to the NE and binds [3H]DEX (but not [3H]TA) in vitro, and another which is not localized to the NE but binds [3H]DEX and [3H]TA in vivo.  相似文献   

18.
Kinetic studies of pyridoxal 5'-phosphate binding to glutamate dehydrogenase (EC 1.4.1.3) has provided evidence for two specific binding sites, chemically identified as Lys 126 and Lys 333. Use of protecting ligands permitted the selective modification of only one of these lysines, and showed that (1) Lys 333 modification results in depolymerisation of the enzyme into active hexamers; (2) Lys 126-modified enzyme was 92% inactivated. The residual activity was desensitized to GTP. The inactivation process was cooperative, maximum inactivation occurring as soon as half of the Lys 126 were modified.  相似文献   

19.
X-Ray analysis of the ferritin of Escherichia coli (Ec-FTN) and of Ec-FTN crystals soaked in (NH4)2Fe(SO4)2 has revealed the presence of three iron-binding sites per subunit. Two of these form a di-iron site in the centre of the subunit as has been proposed for the ‘ferroxidase centres’ of human ferritin H chains. This di-iron site, lying within the 4-alpha-helix bundle, resemble those of ribonucleotide reductase, methane monoxygenase and haemerythrin. The third iron is bound by ligands unique to Ec-FTN on the inner surface of the protein shell. It is speculated that this state may represent the nucleation centre of a novel type of Fe(III) cluster, recently observed in Ec-FTN.  相似文献   

20.
We characterized heme binding in the bacterial iron response regulator (Irr) protein, which is a simple heme-regulated protein having a single "heme-regulatory motif", HRM, and plays a key role in the iron homeostasis of a nitrogen-fixing bacterium. The heme titration to wild-type and mutant Irr clearly showed that Irr has two heme binding sites: one of the heme binding sites is in the HRM, where (29)Cys is the axial ligand, and the other one, the secondary heme binding site, is located outside of the HRM. The Raman line for the Fe-S stretching mode observed at 333 cm(-1) unambiguously confirmed heme binding to Cys. The lower frequency of the Fe-S stretching mode corresponds to the weaker Fe-S bond, and the broad Raman line of the Fe-S bond suggests multiple configurations of heme binding. These structural characteristics are definitely different from those of typical hemoproteins. The unusual heme binding in Irr was also evident in the EPR spectra. The characteristic g-values of the 5-coordinate Cys-ligated heme and 6-coordinate His/His-ligated heme were observed, while the multiple configurations of heme binding were also confirmed. Such multiple heme configurations are not encountered for typical hemoproteins where the heme functions as the active center. Therefore, we conclude that heme binding to HRM in the heme-regulated protein, Irr, is quite different from that in conventional hemoproteins but characteristic of heme-regulated proteins using heme as the signaling molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号