首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid and simple HPLC assay has been developed to separate and quantify N-acyl glutamates and the corresponding carboxylic acids of the acyl moiety. This method was specifically developed to assay hydrolytic activity for glutamate carboxypeptidases. Although established assays for specific substrates of such enzymes exist, they may not be amenable for examining the hydrolytic activity of new substrate probes. This assay was developed to accommodate such probes.  相似文献   

2.
An assay has been developed utilizing the pH-dependent fluorescence of enhanced green fluorescent protein (EGFP). This photoprotein allows for the study of kinetic properties of hydrolytic enzymes based on the production of protons. As a model system, beta-lactamase, a well-characterized enzyme responsible for antibiotic resistance in many bacteria, was used. More specifically, EGFP and beta-lactamase were genetically fused using overlap extension PCR and incorporated into a bacterial expression vector. The vector was subsequently transformed into Escherichia coli, and the fusion protein was expressed and purified. beta-Lactamase catalyzes the hydrolysis of the beta-lactam ring of ampicillin. This causes a decrease in the local pH, which in turn changes the spectral properties of EGFP. This property was utilized to perform enzyme kinetic studies on the new fusion protein as well as on the beta-lactamase inhibitor, sulbactam. The assay can be used to evaluate substrates and inhibitors of beta-lactamase in a format that should be amenable to high-throughput screening.  相似文献   

3.
Two assays for the plasminogen activator urokinase using peptide fluorogenic substrates are described. N-carbobenzoxy-glycyl-glycyl-l-arginine-4-methoxy-β-naphthylamide (CBZ-Gly-Gly-Arg-4MβNA) can be used in a direct assay that is simple, rapid, and sensitive to as little as 0.5 IU/ml urokinase. Additional sensitivity, to 0.01 IU/ml urokinase, is obtained in a second method that uses plamsinogen as the primary substrate followed by a fluorogenic substrate assay employing N-carbobenzoxy-l-alanyl-l-alanyl-l-lysine-4-methoxy-β-naphthylamide (CBZ-Ala-Ala-Lys-4MβNA) as a specific substrate for the activated plasmin. These assays are as sensitive as the best assays presently in use and are simpler to perform. In addition, these assays can readily be used for kinetic analysis of the hydrolytic activity of urokinase or other plasminogen activators.  相似文献   

4.
Initial evaluations of large microbial libraries for potential producers of novel antimicrobial proteins require both qualitative and quantitative methods to screen for target enzymes prior to investing greater research effort and resources. The goal of this protocol is to demonstrate two complementary assays for conducting these initial evaluations. The microslide diffusion assay provides an initial or simple detection screen to enable the qualitative and rapid assessment of proteolytic activity against an array of both viable and heat-killed bacterial target substrates. As a counterpart, the increased sensitivity and reproducibility of the dye-release assay provides a quantitative platform for evaluating and comparing environmental influences affecting the hydrolytic activity of protein antimicrobials. The ability to label specific heat-killed cell culture substrates with Remazol brilliant blue R dye expands this capability to tailor the dye-release assay to characterize enzymatic activity of interest.  相似文献   

5.
The presence of neutral DNase activity in bivalves is reported for the first time. The enzyme activity in four tissues of the mussel Mytilus galloprovincialis was analyzed by three different methods (i) specific denaturating SDS-PAGE zymogram, (ii) sensitive single radial enzyme diffusion (SRED) assay and (iii) rapid and sensitive fluorimetric determination of DNase activity with PicoGreen. The fluorimetric assay was rapid and sensitive enough for determination of hydrolytic activity of dsDNA in mussel hepatopancreas, adductor, gills and mantle. Maximal activity in all mussel tissue extracts was obtained in the presence of Ca(2+) and Mg(2+) at pH 7.0 with dsDNA as substrate. The neutral DNase activity in mussel tissue decreases in order hepatopancreas, mantle>gills>adductor. The enzyme activity displays interindividual variability in particular tissue as well as variability among tissues within one specimen. In the hepatopancreas one to three distinct proteins expressing neutral, Ca(2+), Mg(2+)-dependent, DNase activity were detected by denaturating SDS-PAGE zymogram. This heterogeneity of neutral nucleases involved in DNA hydrolysis in hepatopancreas could reflect interindividual variability in mussel food utilization and nutrient requirement.  相似文献   

6.
New fluorogenic peptide substrates for plasmin   总被引:3,自引:0,他引:3  
Fluorogenic peptides, peptidyl-4-methylcoumaryl-7-amides (MCA), containing COOH-terminal lysine residues, were newly synthesized and tested as substrates for plasmin. Among six peptidyl-MCA's, Boc-Val-Leu-Lys-MCA and Boc-Glu-Lys-Lys-MCA were found to be useful for the specific and sensitive assay of plasmin. The Km values estimated from Line-weaver-Burk plots for these substrates using human and bovine plasmins were in the region of 10(-4) M. Boc-Glu-Lys-Lys-MCA was slightly hydrolyzed by bovine plasma kallikrein, and Boc-Val-Leu-Lys-MCA was slightly hydrolyzed by human and hog urinary kallikreins and hog pancreatic kallikrein. However, both of the fluorogenic peptides were essentially unaffected by urokinase, alpha-thrombin, Factor Xa, Factor IXa, Factor XIa, and Factor XIIa. It was confirmed that plasmin hydrolyzed Boc-Glu-Lys-Lys-MCA, cleaving the lysyl-MCA bond, but not the lysyl-lysyl bond. These fluorogenic peptides were resistant to human plasmin activated by streptokinase. Boc-Glu-Lys-Lys-MCA was not hydrolyzed by human plasmin or plasminogen in the presence of more than a 5-fold molar excess of streptokinase. The sensitivity of Boc-Val-Leu-Lys- of more than a 5-fold molar excess of streptokinase. The sensitivity of Boc-Val-Leu-Lys-MCA to human plasmin was also reduced, but plasmin retained 35% of the maximum activity even in the presence of a 20-fold molar excess of streptokinase. These results suggest that streptokinase-plasmin complex has essentially no activity towards Boc-Glu-Lys-Lys-MCA.  相似文献   

7.
The recent paper of Sherr and Sherr on detecting low-affinity beta-glucosaminidase activity in several marine microbes extends current knowledge about hydrolytic enzyme activities in natural aquatic systems. However, their conclusions regarding the whole-cell assay with MUF-N-acetyl-beta-D-glucosaminide (MUF-[GlcNAc]) cannot be accepted. First, we explicitly demonstrate a strong correlation between extracellular activities of the high-affinity enzymes and grazing rates of bacterivorous protists. Therefore, the assay can still be recommended for the estimation of total protistan grazing on prokaryotic picoplankton. Second, the ability of many aquatic organisms to produce enzymes which cleave fluorogenic substrates, such as MUF-[GlcNAc] and/or MUF-beta-D-N,N',N"-triacetylchitotriose (MUF-[GlcNAc](3)), has been well-documented during the last decade. Thus, neither of the two substrates may be considered as exclusively specific for targeting either lysozymes or beta-N-acetylhexosaminidases.  相似文献   

8.
We developed a novel on-chip activity assay using protein arrays for quantitative and rapid analysis of transglutami-nase activity in mammalian cells. Transglutaminases are a family of Ca2+-dependent enzymes involved in cell regulation as well as human diseases such as neurodegenerative disorders, inflammatory diseases and tumor progression. We fabricated the protein arrays by immobilizing N,N′-dimethylcasein (a substrate) on the amine surface of the arrays. We initiated transamidating reaction on the protein arrays and determined the transglutaminase activity by analyzing the fluorescence intensity of biotinylated casein. The on-chip transglutaminase activity assay was proved to be much more sensitive than the [3H]putrescine-incorporation assay. We successfully applied the on-chip assay to a rapid and quantitative analysis of the transgluta-minase activity in all-trans retinoic acid-treated NIH 3T3 and SH-SY5Y cells. In addition, the on-chip transglutaminase activity assay was sufficiently sensitive to determine the transglutaminase activity in eleven mammalian cell lines. Thus, this novel on-chip transglutaminase activity assay was confirmed to be a sensitive and high-throughput approach to investigating the roles of transglutaminase in cellular signaling, and, moreover, it is likely to have a strong potential for monitoring human diseases. These authors contributed equally to this work.  相似文献   

9.
Trypanothione reductases (TR; EC 1.6.4.8) and thioredoxin reductases (TrxR; EC 1.6.4.5.) are enzymes central to cellular thiol metabolism. Trypanosoma cruzi TR (TcTR) is therefore considered as a potential candidate for drug design against trypanosomiasis. Inhibition of human TrxR (hTrxR) is likely to be beneficial in psoriasis, cancer, and autoimmune diseases, while inhibition of a putative TrxR from Plasmodium falciparum (PfTrxR) might prove effective against malaria. The natural substrates of the first two enzymes are very expensive and difficult to obtain; in the case of PfTrxR, the physiological substrate has not yet been identified. We have therefore synthesized and tested three different 5,5'-dithiobis(2-nitrobenzamides) as alternative substrates of the above enzymes. As with 5, 5'-dithiobis(2-nitrobenzoate) (DTNB), which can be reduced by TRs and TrxRs, the new compounds are converted to their corresponding chromophoric thiolates; however, they have much lower Km values and are therefore less likely to interfere with inhibitor testing. Using the new substrates, a novel enzyme assay has been developed which is identical for all three enzymes, can be performed in a microtiter plate, and is amenable to automation. Thus, the assay provides a versatile and inexpensive tool for kinetic studies and high-throughput inhibitor screening.  相似文献   

10.
We introduce a highly potent fibrinolytic serine protease from Streptomyces omiyaensis (SOT), which belongs to the trypsin family. The fibrinolytic activity of SOT was examined using in vitro assays and was compared with those of known fibrinolytic enzymes such as plasmin, tissue-type plasminogen activator (t-PA), urokinase, and nattokinase. Compared to other enzymes, SOT showed remarkably higher hydrolytic activity toward mimic peptides of fibrin and plasminogen. The fibrinolytic activity of SOT is about 18-fold higher than that of plasmin, and is comparable to that of t-PA by fibrin plate assays. Furthermore, SOT had some plasminogen activator-like activity. Results show that SOT and nattokinase have very different fibrinolytic and fibrinogenolytic modes, engendering significant synergetic effects of SOT and nattokinase on fibrinolysis. These results suggest that SOT presents important possibilities for application in the therapy of thrombosis.  相似文献   

11.
A novel microarray-based proteolytic profiling assay enabled the rapid determination of protease substrate specificities with minimal sample and enzyme usage. A 722-member library of fluorogenic protease substrates of the general format Ac-Ala-X-X-(Arg/Lys)-coumarin was synthesized and microarrayed, along with fluorescent calibration standards, in glycerol nanodroplets on microscope slides. The arrays were then activated by deposition of an aerosolized enzyme solution, followed by incubation and fluorometric scanning. The specificities of human blood serine proteases (human thrombin, factor Xa, plasmin, and urokinase plasminogen activator) were examined. The arrays provided complete maps of protease specificity for all of the substrates tested and allowed for detection of cooperative interactions between substrate subsites. The arrays were further utilized to explore the conservation of thrombin specificity across species by comparing the proteolytic fingerprints of human, bovine, and salmon thrombin. These enzymes share nearly identical specificity profiles despite approximately 390 million years of divergent evolution. Fluorogenic substrate microarrays provide a rapid way to determine protease substrate specificity information that can be used for the design of selective inhibitors and substrates, the study of evolutionary divergence, and potentially, for diagnostic applications.  相似文献   

12.
Deoxyribonuclease I (DNase I) activity in serum has been shown to be a novel diagnostic marker for the early detection of acute myocardial infarction (AMI). However, the conventional method to measure DNase I activity is time-consuming. In the current study, to develop a rapid assay method for DNase I activity for clinical purposes, a microchip electrophoresis device was used to measure DNase I activity. Because DNase I is an endonuclease that degrades double-stranded DNA endo-nucleolytically to produce oligonucleotides, degradation of the DNA standard caused by DNase I action was detected using microchip electrophoresis. We detected DNase I activity within 10 min. This is the first study to apply microchip electrophoresis for the detection of DNase I activity; furthermore, it seems plausible that reduction of analysis time for DNase I activity could make this novel assay method using microchip electrophoresis applicable in clinical use.  相似文献   

13.
Lucilia sericata Meigen (Diptera: Calliphoridae) larvae are manufactured worldwide for the treatment of chronic wounds. Published research has confirmed that the primary clinical effect of the product, debridement (the degradation of non‐viable wound tissue), is accomplished by a range of enzymes released by larvae during feeding. The quality assessment of larval activity is currently achieved during production using meat‐based assays, which monitor insect growth and/or the reduction in substrate mass. To support this, the present authors developed a complementary radial diffusion enzymatic assay to produce a visual and measureable indication of the activity of larval alimentary products (LAP) collected under standardized conditions, against a gelatin substrate. Using basic laboratory equipment and reagents, the assay is rapid and suited to high throughput. Assay reproducibility is high (standard deviation: 0.06–0.27; coefficient of variation: 0.75–4.31%) and the LAP collection procedure does not adversely affect larval survival (mortality: < 2%). Because it is both cost‐ and time‐effective, this method is suited to both academic and industrial use and supports good manufacturing and laboratory practice as a quality control assay.  相似文献   

14.
The potential hydrolysis rates of five different hydrolytic enzymes were determined in deep-sea sediments from the northeast Atlantic (BIOTRANS area) in March 1992. Fluorogenic substrates were used to assay extracellular α- and β-glucosidase, chitobiase, lipase and aminopeptidase. The potential activity of most of the enzymes investigated decreased to a minimum within the upper two centimetre range, whereas aminopeptidase was high over the upper five centimetre range. Exceptions were found when macrofaunal burrows occurred in the cores, always increasing the activities of some hydrolases, and therefore indicating the impact of bioturbation on degradation rates. The most striking feature of the investigated enzyme spectrum was the 50–2000 times higher specific activity of the aminopeptidase, compared with the other hydrolases. The activity of hydrolytic enzymes most likely reflects the availability of their respective substrates and is not a function of bacterial biomass.  相似文献   

15.
A real-time DNase assay (ReDA) based on PicoGreen fluorescence   总被引:1,自引:0,他引:1  
DNA nucleases (DNases) perform a wide variety of important cellular functions and are also very useful for research and in biotechnological applications. Due to the biological and technological importance of DNases and their use in a wide range of applications, DNase activity assays are essential. Traditional DNase assays employ radiolabeled DNA substrates and require separation of the products of the reaction from the unreacted substrate before quantification of enzyme activity. As a consequence, these methods are discontinuous. In this report, we describe a continuous DNase assay based on the differential fluorescence output of a DNA dye ligand called PicoGreen. The assay was developed to characterize a processive dsDNA exonuclease, lambda exonuclease. The assay appears to have general utility as it is also suitable for measuring the DNA digestion activities of a processive helicase/nuclease, RecBCD, a distributive exonuclease, T7 gene 6 exonuclease, and an endonuclease, DNaseI. The benefits of, and limitations to, the method are discussed.  相似文献   

16.
Developing enzyme cocktails for cellulosic biomass hydrolysis complementary to current cellulase systems is a critical step needed for economically viable biofuels production. Recent genomic analysis indicates that some plant pathogenic fungi are likely a largely untapped resource in which to prospect for novel hydrolytic enzymes for biomass conversion. In order to develop high throughput screening assays for enzyme bioprospecting, a standardized microplate assay was developed for rapid analysis of polysaccharide hydrolysis by fungal extracts, incorporating biomass substrates. Fungi were grown for 10 days on cellulose- or switchgrass-containing media to produce enzyme extracts for analysis. Reducing sugar released from filter paper, Avicel, corn stalk, switchgrass, carboxymethylcellulose, and arabinoxylan was quantified using a miniaturized colorimetric assay based on 3,5-dinitrosalicylic acid. Significant interactions were identified among fungal species, growth media composition, assay substrate, and temperature. Within a small sampling of plant pathogenic fungi, some extracts had crude activities comparable to or greater than T. reesei, particularly when assayed at lower temperatures and on biomass substrates. This microplate assay system should prove useful for high-throughput bioprospecting for new sources of novel enzymes for biofuel production.  相似文献   

17.
We have developed a strategy for the synthesis of positional-scanning synthetic combinatorial libraries (PS-SCL) that does not depend on the identity of the P1 substituent. To demonstrate the strategy, we synthesized a tetrapeptide positional library in which the P1 amino acid is held constant as a lysine and the P4-P3-P2 positions are positionally randomized. The 6,859 members of the library were synthesized on solid support with an alkane sulfonamide linker, and then displaced from the solid support by condensation with a fluorogenic 7-amino-4-methylcoumarin-derivatized lysine. This library was used to determine the extended substrate specificities of two trypsin-like enzymes, plasmin and thrombin, which are involved in the blood coagulation pathway. The optimal P4 to P2 substrate specificity for plasmin was P4-Lys/Nle (norleucine)/Val/Ile/Phe, P3-Xaa, and P2-Tyr/Phe/Trp. This cleavage sequence has recently been identified in some of plasmin's physiological substrates. The optimal P4 to P2 extended substrate sequence determined for thrombin was P4-Nle/Leu/Ile/Phe/Val, P3-Xaa, and P2-Pro, a sequence found in many of the physiological substrates of thrombin. Single-substrate kinetic analysis of plasmin and thrombin was used to validate the substrate preferences resulting from the PS-SCL. By three-dimensional structural modeling of the substrates into the active sites of plasmin and thrombin, we identified potential determinants of the defined substrate specificity. This method is amenable to the incorporation of diverse substituents at the P1 position for exploring molecular recognition elements in proteolytic enzymes.  相似文献   

18.
A rapid and quantitative method for measuring the activity and fractional inhibition of enzymes within their natural cellular environment remains an unmet need in drug discovery. We describe the use of a nonradioactive quantitative enzyme-linked immunosorbent assay (ELISA) for measuring intracellular caspase activity that is amenable to robotic automation. The ELISA specifically detects active-caspase-3 and was used to correlate the in-cell activity of caspase-3 with the progress of caspase-3-mediated events under varying concentrations of caspase-3 inhibitors in NT2 cells. We examined the cleavage of endogenous substrates (poly(ADP-ribose)polymerase and alphaII-spectrin), the extent of DNA fragmentation, and the autocatalytic removal of the caspase-3 prodomain as markers of caspase-3 activity. To impart inhibition of the downstream markers, a greater level of caspase-3 inhibition was required. Although the functional markers were found not to accurately predict intracellular caspase-3 activity, we found that the inhibition of intracellular caspase-3 was highly correlated (R(2) = 0.96) to the inhibition of DNA fragmentation. Also, by comparing the potency of the different inhibitors against the intracellular enzyme versus the purified enzyme, the effects of inhibitor functional groups on whole-cell activity were addressed.  相似文献   

19.
Thiobenzyl benzyloxycarbonyl-l-lysinate (Z-Lys-SBzl), a substrate for trypsin-likeproteases, was synthesized. In the presence of 5,5′-dithiobis(2-nitrobenzoic acid) the hydrolysis of the thiol ester by trypsin-like enzymes provides a continuous colorimetric assay with a sensitivity comparable to the best fluorometric substrates. Z-Lys-SBzl is readily synthesized in good yield, is water soluble, and has a low rate of spontaneous hydrolysis even at pH 8.0. This assay procedure has been routinely used with urokinase, human urinary and human plasma kallikrein, thrombin, plasmin, β-trypsin, factor Xa, and crotalase. Levels of detection of these enzymes are in the range 10?14 to 10?13 mol.  相似文献   

20.
Carboxylesterases hydrolyze many pharmaceuticals and agrochemicals and have broad substrate selectivity, requiring a suite of substrates to measure hydrolytic profiles. To develop new esterase substrates, a series of alpha-cyanoesters that yield fluorescent products upon hydrolysis was evaluated for use in carboxylesterase assays. The use of these substrates as surrogates for Type II pyrethroid hydrolysis was tested. The results suggest that these novel analogs are appropriate for the development of high-throughput assays for pyrethroid hydrolase activity. A set of human liver microsomes was then used to determine the ability of these substrates to report esterase activity across a small population. Results were compared against standard esterase substrates. A number of the esterase substrates showed correlations, demonstrating the broad substrate selectivity of these enzymes. However, for several of the substrates, no correlations in hydrolysis rates were observed, suggesting that multiple carboxylesterase isozymes are responsible for the array of substrate hydrolytic activity. These new substrates were then compared against alpha-naphthyl acetate and 4-methylumbelliferyl acetate for their ability to detect hydrolytic activity in both one- and two-dimensional native electrophoresis gels. Cyano-2-naphthylmethyl butanoate was found to visualize more activity than either commercial substrate. These applications demonstrate the utility of these new substrates as both general and pyrethroid-selective reporters of esterase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号