首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: Isolation and characterization of indigenous Saccharomyces cerevisiae strains from 12 grape varieties grown in an experimental vineyard of Apulia. METHODS AND RESULTS: Thirty to 40 colonies from each of the 12 fermentations were obtained at the end stage of spontaneous fermentation. By using morphological and physiological methods and by the PCR analysis of internal transcribed ITS1-5,8S-ITS2, the isolates belonging to Saccharomyces genus were identified. These isolates were further characterized by amplification with S. cerevisiae species- and delta element-specific primers, thus allowing the identification of S. cerevisiae strains selected from each of the 12 fermentations. By means of RFLP analysis of mtDNA, each S. cerevisiae population isolated from a single fermentation appeared to constitute a genetically homogenous group. The comparison of the 12 cultivar-specific mtDNA RFLP patterns, allowed classifying the 12 S. cerevisiae populations into three genetically homogenous groups. The isolated strains fermented vigorously in synthetic and grape juice medium and showed high alcohol and sulphur dioxide (SO(2)) resistance and low hydrogen sulphite (H(2)S) production. CONCLUSIONS: The molecular analysis, in conjunction with the traditional morphological and physiological methods, was useful in discriminating at strain level the indigenous population of S. cerevisiae present in a vineyard of Apulia. The dominant S. cerevisiae strains identified in the 12 fermented musts showed potentially important oenological characteristics. SIGNIFICANCE AND IMPACT OF THE STUDY: The characterization of natural S. cerevisiae strains from several typical Italian grapes grown in a restricted experimental vineyard is an important step towards the preservation and exploitation of yeast biodiversity of Apulia, a relevant wine-producing region. The close relationship between the S. cerevisiae strains from different grapes grown in the same vineyard indicated that the occurrence of native strains is representative of the area rather than of the variety of grapes.  相似文献   

2.
Yeast colonies isolated from vineyard and cellar substrates were analysed in the present study. Yeast species assessment was carried out by amplification and digestion of a region of the ribosomal RNA gene repeat unit. Saccharomyces strains were also characterised using mitochondrial DNA restriction analysis. Oxidative basidiomycetous yeasts without enological potential were predominant in the vineyard environment. Yeasts associated with grape skin depend on grape variety, vintage and degree of grape maturation. These species from grape surface constituted the predominant microbiota in must and they developed during the first stages of the process. Yeasts colonies were also isolated and identified from the walls of a fermentation vat some days before the harvest. Contrary to what was expected, Saccharomyces cerevisiae was not the major species isolated as Candida sorbosa represented 76% of the species isolated. Saccharomyces strains isolated from the fermentation vat had been previously isolated in wine fermentations in this cellar. Therefore, these strains should be considered as constant residents of this winery.  相似文献   

3.
接种发酵和自然发酵中酿酒酵母菌株多样性比较   总被引:1,自引:0,他引:1  
何荣荣  彭婧  孙悦 《微生物学报》2021,61(5):1211-1221
[目的]探究自然发酵和接种发酵两种发酵方式,对霞多丽葡萄发酵中酵母菌种多样性和酿酒酵母菌株遗传多样性的影响.[方法]以霞多丽葡萄为原料,分别进行自然发酵和接种不同酿酒酵母菌株(NXU 17-26、UCD522和UCD2610)的发酵,利用26S rDNA D1/D2区序列分析和Interdelta指纹图谱技术分别进行酵...  相似文献   

4.
The diversity of yeast species and strains was monitored by physiological tests and a simplified method of karyotyping of yeast chromosomes. During the first phase of investigated alcoholic fermentations, the yeast species Metschnikowia pulcherrima and Hanseniaspora uvarum were predominant, irrespective of the origin of the grape must. At the beginning of fermentation H. uvarum was even present in the case of induced fermentations with dried yeast. Middle and end phase of the alcoholic fermentation were clearly dominated by the yeast species Saccharomyces cerevisiae . In the case of spontaneous fermentations, several different strains of S. cerevisiae were present and competed with each other, whereas in induced fermentations only the inoculated strain of S. cerevisiae was observed. A competition of strains of S. cerevisiae also occurred during the fermentation with dried yeast product consisting of two different strains. An effect of H. uvarum on taste and flavour of wines can be postulated according to the frequency of its appearance during the first phase of fermentation. With the method of rapid karyotyping and supplementary physiological tests it was possible to make reliable assertions about the yeast diversity during alcoholic fermentation.  相似文献   

5.
Wine yeasts were isolated from spontaneous alcoholic fermentations performed with white and red grape musts from vintages 1991 and 1992. Yeast cells were analysed by physiological tests and gel electrophoretic karyotyping. It was shown that there is a succession of different strains in the yeast population during the time course of the fermentation process. Furthermore, the composition of the yeast strain population differs from grape must to grape must and from year to year, and may therefore be considered vineyard (terrain)- and vintage-dependent.  相似文献   

6.
Genetic diversity of wine Saccharomyces cerevisiae strains involved in spontaneous fermentations was studied by analysis of mitochondrial DNA restriction patterns. Yeasts were isolated at different stages of fermentations with must from three different white grapevine varieties, Albariño, Godello and Treixadura, which are autochthonous from Galicia. Nineteen different patterns out of a total of 446 strains analysed were identified, but only a few of them appeared at high frequency and therefore were able to lead the fermentation process. Some strains were common to all fermentations; however, most of them were a minority being only found at low frequency for one or two specific grape varieties. The dominant strain was different for each variety except in one case, suggesting that some strains are better adapted to certain must conditions.  相似文献   

7.
AIMS: The purpose of this study was to determine the origin of the yeasts involved in the spontaneous alcoholic fermentation of an Alsatian wine. METHODS AND RESULTS: During three successive years, must was collected at different stages of the winemaking process and fermented in the laboratory or in the cellar. Saccharomyces yeasts were sampled at the beginning and at the end of the fermentations. Saccharomyces cerevisiae clones were genetically characterized by inter-delta PCR. Non-S. cerevisiae clones were identified as Saccharomyces uvarum by PCR-RFLP on MET2 gene and characterized at the strain level by karyotyping. The composition of the Saccharomyces population in the vineyard, after crushing and in the vat was analyzed. This led to three main results. First, the vineyard Saccharomyces population was rather homogeneous. Second, new non-resident strains had appeared in the must during the winemaking process. Finally, the yeast population in the vat only consisted in S. uvarum strains. CONCLUSION: This 3-year study has enabled us to show the involvement of indigenous S. uvarum in the alcoholic fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: This study gives a first insight into the polymorphism of S. uvarum strains involved in a spontaneous alcoholic fermentation.  相似文献   

8.
Yeast species of sound and sour rot-damaged grapes were analysed during fermentation and grape ripening in the vineyard, using general and selective culture media. During 2003 and 2004 vintages, microvinifications were carried out with sound grapes to which different amounts of grapes with sour rot were added. The wine spoilage species Zygosaccharomyces bailii was only recovered during fermentations with sour rot, reaching 5.00 log CFU mL(-1) (2003) and 2.48 log CFU mL(-1) (2004) at the end of fermentation. The study of yeast populations during the sour rot ripening process (2005 vintage) showed that the veraison-damaged grapes always exhibited higher total yeast counts and a much greater diversity of species. From a total of 22 ascomycetous species, 17 were present only in damaged grapes. The most frequent species were Issatchenkia occidentalis and Zygoascus hellenicus. The spoilage species Z. bailii and Zygosaccharomyces bisporus were consistently isolated exclusively from damaged grapes. This work demonstrates that one of the most dangerous wine spoilage species, Z. bailii, is strongly associated with sour rot grapes and survives during fermentation with Saccharomyces cerevisiae. The use of selective media provides a more accurate characterization of grape contamination species.  相似文献   

9.
The use of commercial wine yeast strains as starters has grown extensively over the past two decades. In this study, a large-scale sampling plan was devised over a period of 3 years in three different vineyards in the south of France, to evaluate autochthonous wine yeast biodiversity in vineyards around wineries where active dry yeasts have been used as fermentation starters for more than 5 years. Seventy-two spontaneous fermentations were completed from a total of 106 grape samples, and 2160 colonies were isolated. Among these, 608 Saccharomyces strains were identified and 104 different chromosomal patterns found. The large majority of these (91) were found as unique patterns, indicating great biodiversity. There were differences in biodiversity according to the vineyard and year, showing that the biodiversity of Saccharomyces strains is influenced by climatic conditions and specific factors associated with the vineyards, such as age and size. Strains that were terroir yeast candidates were not found. The biodiversity of S. cerevisiae strains after harvest was similar to that in the early campaign; moreover, a temporal succession of S. cerevisiae strains is shown. This fact, together with the differences in biodiversity levels verifies that other factors were more important than commercial yeast utilization in the biodiversity of the vineyard.  相似文献   

10.
Indigenous yeast population dynamics during the fermentation of healthy and Botrytis-affected grape juice samples from two regions in Greece, Attica and Arcadia, were surveyed. Species diversity was evaluated by using restriction fragment length polymorphism and sequence analyses of the 5.8S internal transcribed spacer and the D1/D2 ribosomal DNA (rDNA) regions of cultivable yeasts. Community-level profiles were also obtained by direct analysis of fermenting samples through denaturing gradient gel electrophoresis of 26S rDNA amplicons. Both approaches revealed structural divergences in yeast communities between samples of different sanitary states or geographical origins. In all cases, Botrytis infection severely perturbed the bioprocess of fermentation by dramatically altering species heterogeneity and succession during the time course. At the beginning and middle of fermentations, Botrytis-affected samples possessed higher levels of biodiversity than their healthy counterparts, being enriched with fermentative and/or spoilage species, such as Zygosaccharomyces bailii and Issatchenkia spp. or Kluyveromyces dobzhanskii and Kazachstania sp. populations that have not been reported before for wine fermentations. Importantly, Botrytis-affected samples exposed discrete final species dominance. Selection was not species specific, and two different populations, i.e., Saccharomyces cerevisiae in samples from Arcadia and Z. bailii in samples from Attica, could be recovered at the end of Botrytis-affected fermentations. The governing of wine fermentations by Z. bailii is reported for the first time and could elucidate the origins and role of this particular spoilage microbe for the wine industry. This is the first survey to compare healthy and Botrytis-affected spontaneous fermentations by using both culture-based and -independent molecular methods in an attempt to further illuminate the complex yeast ecology of grape must fermentations.  相似文献   

11.
New PCR-based methods for yeast identification   总被引:2,自引:0,他引:2  
AIMS: To characterize reference yeast strains and identify indigenous strains isolated from wine fermentations by PCR methods. METHODS AND RESULTS: We compared several PCR techniques for yeast identification. We used oligonucleotide primers that are complementary to (i) intron splice sites, (ii) REP and (iii) ERIC elements to produce PCR fingerprints that display specific patterns between the different yeast species. These three techniques were used to characterize 41 reference yeast strains belonging to 15 different species and to identify 40 indigenous strains isolated from grape must and wine fermentations. Species-specific banding patterns were obtained with the three PCR-techniques with different degrees of intraspecific differentiation depending on the method. By comparing the PCR fingerprints of unknown isolates with those produced by reference strains, we identified yeast strains isolated from an industrial wine fermentation. CONCLUSIONS: All three PCR techniques are rapid, reliable and simple methods of yeast identification. As far as we know, this is the first time that the primers designed for amplifying repetitive elements in bacteria have been successfully used in yeast. SIGNIFICANCE AND IMPACT OF THE STUDY: Industry needs rapid, reliable and simple methods of yeast identification. The proposed PCR techniques will allow to achieve this objective.  相似文献   

12.
Sun  Yue  Li  Erhu  Qi  Xiaotao  Liu  Yanlin 《Annals of microbiology》2015,65(2):911-919
Mixed inoculation of Saccharomyces cerevisiae strains is used in winemaking for achieving high sensory quality of the wine. However, information on the diversity and population of yeasts during inoculated fermentation is very limited. In this study, we evaluated the effect of mixed inocula with different inoculation timing on the yeast community during fermentations of Cabernet Sauvignon. Grape must was inoculated with pure cultures of S. cerevisiae RC212 or S. cerevisiae R312, and simultaneous and sequential inoculation of both strains. Wallersterin Laboratory Nutrient (WLN) medium and sequence of the 26S rDNA D1/D2 domain were used to compare the diversity of yeast species. Five species, including Candida diversa, Hanseniaspora opuntiae, H. uvarum, Issatchenkia orientalis and I. terricola, were identified in the grape must, with Issatchenkia sp. being predominant (67.5 %). Three to four species were involved in each fermentation treatment. The fermentations by mixed inocula presented more yeast species than by pure inocula. Interdelta sequence typing was used to identify S. cerevisiae strains. Ten genotypes were identified among 322 isolated S. cerevisiae strains. Their distribution varied among different stages of fermentations and different inoculation treatments. The inoculated strains were not predominant, while indigenous genotypes I, III, and V showed strong competitiveness during fermentation. In general, this study provided information on the change of population structure and genetic diversity of yeasts in fermentations inoculated with pure and mixed S. cerevisiae strains.  相似文献   

13.
AIMS: To analyse the genetic diversity and the dynamics of Saccharomyces strains in spontaneous fermentation in ciders. The effect of the cellar, harvest and cider-making technology were evaluated. METHODS AND RESULTS: The ecology of spontaneous cider fermentations in the same cellar (Asturias) was studied for two consecutive harvests (2000 and 2001) by using mtDNA restriction analysis. Our results showed that there was a succession of genetically different strains of Saccharomyces during cider production. In general, strains of Saccharomyces bayanus species predominated at the early fermentation steps (begining and/or tumultuous fermentations), while Saccharomyces cerevisiae yeasts were the most abundant at the end of the fermentation. Five S. bayanus strains (patterns III, VII, VIII, XV and XVII) were present at significant frequencies in all the experimental tanks during the two consecutive years. The results of the cluster analysis (unweighted pair group method using average linkage) showed higher similarities for the patterns III, XV, VII and VIII. Therefore, these strains should be considered associated with the microbiota of this cellar. CONCLUSIONS: A high polymorphism within populations of Saccharomyces was found throughout the different stages of Asturian production of cider. In all the cider fermentations, a variable number of S. bayanus and S. cerevisiae strains was always present. Our results indicate, over the period of time studied, the existence of the natural microbiota in the cellar. SIGNIFICANCE AND IMPACT OF THE STUDY: This study has allowed us to gain a better understanding of the role of wild Saccharomyces yeast in Asturian cider fermentations.  相似文献   

14.
The diversity and composition of yeast populations may greatly impact wine quality. This study investigated the yeast microbiota in two different types of wine fermentations: direct inoculation of a commercial starter versus pied de cuve method at an industrial scale. The pied de cuve fermentation entailed growth of the commercial inoculum used in the direct inoculation fermentation for further inoculation of additional fermentations. Yeast isolates were collected from different stages of wine fermentation and identified to the species level using Wallersterin Laboratory nutrient (WLN) agar followed by analysis of the 26S rDNA D1/D2 domain. Genetic characteristics of the Saccharomyces cerevisiae strains were assessed by a rapid PCR-based method, relying on the amplification of interdelta sequences. A total of 412 yeast colonies were obtained from all fermentations and eight different WL morphotypes were observed. Non-Saccharomyces yeast mainly appeared in the grape must and at the early stages of wine fermentation. S. cerevisiae was the dominant yeast species using both fermentation techniques. Seven distinguishing interdelta sequence patterns were found among S. cerevisiae strains, and the inoculated commercial starter, AWRI 796, dominated all stages in both direct inoculation and pied de cuve fermentations. This study revealed that S. cerevisiae was the dominant species and an inoculated starter could dominate fermentations with the pied de cuve method under controlled conditions.  相似文献   

15.
Yeast identification in grape juice concentrates from Argentina   总被引:1,自引:0,他引:1  
Aims: The purpose of this study was to identify yeast species present in spoiled and unspoiled grape juice concentrates from Argentine industries. Methods and Results: Osmophilic and osmotolerant yeasts were isolated from spoiled – visually effervescent – and unspoiled – without any visible damage – grape juice concentrates by the spread‐plate technique in two culture media. Yeast identification was done by classical and molecular methods. Zygosaccharomyces rouxii was the only species isolated from spoiled grape juice concentrates. In unspoiled samples, five different species were identified: Z. rouxii was isolated at a higher frequency, followed in decreasing order by Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia anomala and Kluyveromyces delphensis. Conclusions: Yeasts isolated from grape juice concentrates were characterized by a limited taxonomic diversity, where Z. rouxii was the main species isolated. Significance and Impact of the Study: Grape production in Argentina is mainly devoted to the industry where wine and grape juice concentrates represent major types of commercial products. Little information on common yeast contaminants is available for grape juice concentrates. This study constitutes the first report of osmophilic yeast species present in spoiled and unspoiled grape juice concentrates elaborated in Argentina.  相似文献   

16.
AIMS: Characterization of yeast populations and genetic polymorphism of Saccharomyces cerevisiae strains collected during the short fermentative cycles from the spontaneous fermentations during the artisanal cacha?a production. METHODS AND RESULTS: The prevalent S. cerevisiae strains were analysed by PFG and RAPD-PCR using primers EI1 and M13. The molecular analysis have showed a high degree of genetic polymorphism among the strains within a 24 h fermentative cycle. CONCLUSION: The genetic diversity observed in the S. cerevisiae strains may be occurring due to the existence of a large number of individual genotypes within the species. The unique characteristics of the cacha?a fermentation process probably allows for a faster detection of molecular polymorphisms of yeast strains than other types of fermentations. SIGNIFICANCE AND IMPACT OF THE STUDY: Spontaneous fermentations to produce cacha?a, due to their characteristics, are an excellent model for the study of molecular diversity of S. cerevisiae strains during the production of fermented beverages.  相似文献   

17.
Aims: The aim of this study was to investigate whether grapevine variety and must characteristics influence the diversity of Saccharomyces strains and their prevalence during spontaneous fermentations. Methods and results: Musts from different grapevine varieties, all of them autochthonous from Galicia, were used to perform spontaneous fermentations. Yeasts were isolated from the must and at the beginning, in the middle and at the end of fermentations. Those yeasts identified as Saccharomyces were characterized at the strain level by analysis of mtDNA‐RFLP. The results showed a low diversity of Saccharomyces strains, which was related to must sugar content and total acidity. Moreover, from a total of 44 different Saccharomyces strains, only eleven of them appeared at frequencies higher than 20% and were able to lead fermentations. A significant correlation between yeast strains and must acidity was observed, with the predominance of certain strains at high acidity values. Conclusions: Must characteristics, such as sugar content and acidity, influence the Saccharomyces strains diversity and the leader strains during fermentation. Significance and Impact of the Study: These results showed the adaptation of certain Saccharomyces strains to must with specific characteristics; this may be considered by winemakers for yeast inocula selection. Our findings have special relevance because this is the first study carried out in Galicia dealing with the influence of must properties on yeast strains that control fermentations.  相似文献   

18.
Yeast diversity and persistence in botrytis-affected wine fermentations   总被引:1,自引:0,他引:1  
Culture-dependent and -independent methods were used to examine the yeast diversity present in botrytis-affected ("botrytized") wine fermentations carried out at high ( approximately 30 degrees C) and ambient ( approximately 20 degrees C) temperatures. Fermentations at both temperatures possessed similar populations of Saccharomyces, Hanseniaspora, Pichia, Metschnikowia, Kluyveromyces, and Candida species. However, higher populations of non-Saccharomyces yeasts persisted in ambient-temperature fermentations, with Candida and, to a lesser extent, Kluyveromyces species remaining long after the fermentation was dominated by SACCHAROMYCES: In general, denaturing gradient gel electrophoresis profiles of yeast ribosomal DNA or rRNA amplified from the fermentation samples correlated well with the plating data. The direct molecular methods also revealed a Hanseniaspora osmophila population not identified in the plating analysis. rRNA analysis also indicated a large population (>10(6) cells per ml) of a nonculturable Candida strain in the high-temperature fermentation. Monoculture analysis of the Candida isolate indicated an extreme fructophilic phenotype and correlated with an increased glucose/fructose ratio in fermentations containing higher populations of CANDIDA: Analysis of wine fermentation microbial ecology by using both culture-dependent and -independent methods reveals the complexity of yeast interactions enriched during spontaneous fermentations.  相似文献   

19.
田间施药对自然发酵葡萄酒酵母菌群落结构的影响   总被引:2,自引:1,他引:1  
【背景】酵母菌是葡萄酒发酵过程中一类非常重要的微生物,其多样性及群体组成对葡萄酒的质量有重要贡献。影响葡萄酒中酵母菌组成的因素有很多,但目前尚未见葡萄园田管理对葡萄酒酵母菌群落结构影响方面的报道。【目的】探索田间施药对自然发酵葡萄酒酵母菌群落结构的影响。【方法】采用分离培养、常规分子生物学鉴定和Illumina MiSeq宏基因组测序结合的方法分析不同样品中的酵母菌群落结构情况。【结果】从不使用内吸收型化学农药的葡萄样品自然发酵液中分离鉴定出Pichia、Hanseniaspora、Schizosaccharomyces、Candida、Saccharomyces、Zygoascus、Issatchenkia等7个属8个种的酵母菌,宏基因组测序结果表明有Pichia(29.42%)、Saccharomyces(21.91%)、Issatchenkia(17.99%)、 Hanseniaspora(12.10%)、 Candida(7.47%)、 Zygosaccharomyces(5.32%)、Schizosaccharomyces (3.07%)、Aureobasidium (0.29%)等属的酵母菌参与发酵;使用常规化学农药的葡萄样品自然发酵液中分离鉴定出Pichia、Hanseniaspora、Schizosaccharomyces、Candida、Cryptococcus等5个属6个种的酵母菌,宏基因组测序结果表明有Pichia (41.66%)、Hanseniaspora (21.54%)、Candida(19.11%)、 Zygosaccharomyces(7.78%)、 Schizosaccharomyces(4.04%)、 Cryptococcus(3.21%)、Saccharomyces (1.12%)、Aureobasidium (0.49%)等属的酵母菌参与发酵。【结论】两样品中酵母菌比例有显著差异,表明在酿酒葡萄的园田管理中化学农药的使用对自然发酵葡萄酒的酵母菌群落结构有较大影响。  相似文献   

20.
Many different yeast species can take part in spontaneous fermentations, but the species of the genus Saccharomyces, including Saccharomyces cerevisiae in particular, play a leading role in the production of fermented beverages and food. In recent years, the development of whole-genome scanning techniques, such as DNA chip-based analysis and high-throughput sequencing methods, has considerably increased our knowledge of fermentative Saccharomyces genomes, shedding new light on the evolutionary history of domesticated strains and the molecular mechanisms involved in their adaptation to fermentative niches. Genetic exchange frequently occurs between fermentative Saccharomyces and is an important mechanism for generating diversity and for adaptation to specific ecological niches. We review and discuss here recent advances in the genomics of Saccharomyces species and related hybrids involved in major fermentation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号