首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: The present study was aimed at the identification, differentiation and characterization of indigenous yeasts isolated from Tenerife vineyards (viticulture region that has never been characterized before). Microbiota were studied from 14 samples taken during fermentations carried out in the 2002 vintage, from 11 wineries belonging to five wine regions on Tenerife Island. METHODS AND RESULTS: Yeasts' strains were identified and characterized through restriction analysis of the 5.8S-internal transcribed spacer region and the mitochondrial DNA. At the beginning of alcoholic fermentation, 26 yeast species were found, where 14 species were present in significant frequencies in only one sample. Likewise, the Saccharomyces cerevisiae strains isolated are very specific, as they were only present in one wine region. CONCLUSIONS: There were isolated specific yeasts from each region on Tenerife Island. The founded yeasts may be responsible for distinctive and interesting properties of the studied wines. SIGNIFICANCE AND IMPACT OF THE STUDY: This study forms part of an extensive taxonomic survey within the ecological framework of vineyards in Tenerife. This investigation is an essential step towards the preservation and exploitation of the hidden oenological potential of the untapped wealth of yeast biodiversity in the grape growing regions of this island. The results obtained demonstrate the value of using molecular genetic methods in taxonomic and ecological surveys. The results also shed some light on the ecology and oenological potential of S. cerevisiae strains isolated from this unique environment.  相似文献   

2.
AIMS: The objective of this work was to study the effect of the use of Saccharomyces cerevisiae monocultures over the biodiversity of non-Saccharomyces yeasts in wine-producing areas in Chile. METHODS AND RESULTS: Microvinifications were carried out with grape musts of two areas. In one of them, the fermentation is carried out mainly in a spontaneous manner, whereas in the other the musts are inoculated with commercial yeasts. The isolated yeasts were identified by the internal transcribed (ITS)/restriction fragment length polymorphism technique. In the industrial production area less variability of yeast genera was observed as compared with the traditional area, an observation that is greatest at the end of the fermentation. Furthermore, a study of the production of extracellular enzymes was done. The majority of the yeasts showed at least one of the activities assayed with the exception of beta-glycosidase. CONCLUSION: The results suggest that in the industrialized area the diversity of yeasts is less in the traditional area. Likewise, the potentiality of the non-Saccharomyces yeasts as enzyme producers with industrial interest has been confirmed. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows the negative effect of the use of monocultures over the biodiversity of yeasts in wine-producing regions.  相似文献   

3.
We have evaluated the effect of grape maturity and cold maceration prior to fermentation on the yeast ecology during wine fermentation. Non-Saccharomyces strains were selectively isolated and identified using two rapid PCR techniques, namely enterobacterial repetitve intergenic consensus-PCR and PCR-intron splice sites, in various wine fermentation conditions. These identifications were further complemented and confirmed by restriction fragment length poymorphism and sequencing analysis of the 5.8S-ITS and D1/D2 ribosomal regions, respectively. Eleven species belonging to five genera were identified. Candida stellata, Hanseniaspora uvarum and Hanseniaspora osmophila were the dominant species, representing almost 90% of the isolates. Minor strains presented different species of the genera Candida, Issatchenkia, Zygoascus and Zygosaccharomyces. Selective isolation made it possible to isolate some species that were hardly related to the wine-making process, such as Issatchenkia hanoiensis, a new species that has only been described recently.  相似文献   

4.
AIM: To evaluate whether intraspecific diversity of Saccharomyces cerevisiae in wine fermentations is affected by initial assimilable-nitrogen content. METHODS AND RESULTS: Saccharomyces cerevisiae isolates from two spontaneous commercial wine fermentations started with adequate and inadequate nitrogen amounts were characterized by mitochondrial DNA restriction analysis. Several strains occurred in each fermentation, two strains, but not the same ones, being predominant at frequencies of about 30%. No significant differences were detected by comparing the biodiversity indices of the two fermentations. Cluster analysis demonstrated that the strain distribution was independent of nitrogen content, the two pairs of closely related dominant strains grouping into clusters at low similarity. CONCLUSIONS: The genetic variability of S. cerevisiae in wine fermentations seemed not to depend on the nitrogen availability in must. SIGNIFICANCE AND IMPACT OF THE STUDY: Nitrogen content did not affect the genetic diversity but may have induced a 'selection effect' on S. cerevisiae strains dominating wine fermentations, with possible consequences on wine properties.  相似文献   

5.
Real-time, or quantitative, PCR (QPCR) was developed for the rapid quantification of two of the most important yeast groups in alcoholic fermentation (Saccharomyces spp. and Hanseniaspora spp.). Specific primers were designed from the region spanning the internal transcribed spacer 2 (ITS2) and the 5.8S rRNA gene. To confirm the specificity of these primers, they were tested with different yeast species, acetic acid bacteria and lactic acid bacteria. The designed primers only amplified for the intended group of species and none of the PCR assays was positive for any other wine microorganisms. This technique was performed on reference yeast strains from pure cultures and validated with both artificially contaminated wines and real wine fermentation samples. To determine the effectiveness of the technique, the QPCR results were compared with those obtained by plating. The design of new primers for other important wine yeast species will enable to monitor yeast diversity during industrial wine fermentation and to detect the main spoilage yeasts in wine.  相似文献   

6.
The effect of killer strains of Saccharomyces cerevisiae on the growth of sensitive strains during must fermentation was studied by using a new method to monitor yeast populations. The capability of killer yeast strains to eliminate sensitive strains depends on the initial proportion of killer yeasts, the susceptibility of sensitive strains, and the treatment of the must. In sterile filtered must, an initial proportion of 2-6% of killer yeasts was responsible for protracted fermentation and suppression of isogenic sensitive strains. A more variable initial proportion was needed to get the same effect with non-isogenic strains. The suspended solids that remain in the must after cold-settling decreased killer toxin effect. The addition of bentonite to the must avoided protracted fermentation and the suppression of sensitive strains; however, the addition of yeast dietary nutrients with yeast cell walls did not, although it decreased fermentation lag.  相似文献   

7.
Wine yeast deals with many stress conditions during its biotechnological use. Biomass production and its dehydration produce major oxidative stress, while hyperosmotic shock, ethanol toxicity and starvation are relevant during grape juice fermentation. Most stress response mechanisms described in laboratory strains of Saccharomyces cerevisiae are useful for understanding the molecular machinery devoted to deal with harsh conditions during industrial wine yeast uses. However, the particularities of these strains themselves, and the media and conditions employed, need to be specifically looked at when studying protection mechanisms.  相似文献   

8.
9.
Aims: The aim of this study was to investigate whether grapevine variety and must characteristics influence the diversity of Saccharomyces strains and their prevalence during spontaneous fermentations. Methods and results: Musts from different grapevine varieties, all of them autochthonous from Galicia, were used to perform spontaneous fermentations. Yeasts were isolated from the must and at the beginning, in the middle and at the end of fermentations. Those yeasts identified as Saccharomyces were characterized at the strain level by analysis of mtDNA‐RFLP. The results showed a low diversity of Saccharomyces strains, which was related to must sugar content and total acidity. Moreover, from a total of 44 different Saccharomyces strains, only eleven of them appeared at frequencies higher than 20% and were able to lead fermentations. A significant correlation between yeast strains and must acidity was observed, with the predominance of certain strains at high acidity values. Conclusions: Must characteristics, such as sugar content and acidity, influence the Saccharomyces strains diversity and the leader strains during fermentation. Significance and Impact of the Study: These results showed the adaptation of certain Saccharomyces strains to must with specific characteristics; this may be considered by winemakers for yeast inocula selection. Our findings have special relevance because this is the first study carried out in Galicia dealing with the influence of must properties on yeast strains that control fermentations.  相似文献   

10.
A succession of yeasts was observed during fermentation of aguardente with Saccharomyces cerevisiae being the predominant species. Candida sake, Kluyveromyces marxianus var. drosophilarum and apiculate yeasts were also frequent. Transient yeast species were found in variable numbers, probably due to the daily addition of sugar-cane juice. Killer yeasts were isolated and may have a role in the exclusion of some transient and contaminant species.  相似文献   

11.
Total dsRNA extractions in five killer K2 strains of Saccharomyces cerevisiae isolated from spontaneous fermentations revealed the presence of a novel dsRNA fragment (which we named NS dsRNA) of approximately 1.30 kb, together with L and M2 dsRNAs. NS dsRNA appeared to be encapsidated in the same kind of viral particles as L and M2 dsRNA. Northern blot hybridization experiments indicated that NS dsRNA was derived from M2 dsRNA, likely by deletion of the internal A+U-rich region. However, unlike S dsRNAs (suppressive forms derived from M1 dsRNA in K1 killers), NS dsRNA did not induce exclusion of the parental M2 dsRNA when the host strain was maintained for up to 180 generations of growth.  相似文献   

12.
Aims: The aim of this study was to identify the non‐Saccharomyces yeast populations present in the grape must microflora from wineries from different areas around the island of Sicily. Methods and Results: Yeasts identification was conducted on 2575 colonies isolated from six musts, characterized using Wallerstein Laboratory (WL) nutrient agar, restriction analysis of the amplified 5·8S‐internal transcribed spacer region and restriction profiles of amplified 26S rDNA. In those colonies, we identified 11 different yeast species originating from wine musts from two different geographical areas of the island of Sicily. Conclusions: We isolated non‐Saccharomyces yeasts and described the microflora in grape musts from different areas of Sicily. Moreover, we discovered two new colony morphologies for yeasts on WL agar never previously described. Significance and Impact of the Study: This investigation is a first step in understanding the distribution of non‐Saccharomyces yeasts in grape musts from Sicily. The contribution is important as a tool for monitoring the microflora in grape musts and for establishing a new non‐Saccharomyces yeast collection; in the future, this collection will be used for understanding the significance of these yeasts in oenology.  相似文献   

13.
Individual yeast strains belonging to the Saccharomyces sensu stricto complex were isolated from Amarone wine produced in four cellars of the Valpolicella area (Italy) and characterized by conventional physiological tests and by RAPD-PCR and mtDNA restriction assays. Thirteen out of 20 strains were classified as Saccharomyces cerevisiae (ex S. cerevisiae p.r. cerevisiae and p.r. bayanus) and the remaining as Saccharomyces bayanus (ex S. cerevisiae p.r. uvarum). RAPD-PCR method proved to be a fast and reliable tool for identification of Saccharomyces sensu stricto strains and also gave intraspecific differentiation. Restriction analysis of mtDNA permitted to distinguish S. cerevisiae and S. bayanus species and to discern polymorphism among S. cerevisiae isolates. The assessment of the phenotypic diversity within the isolates by gas-chromatographic analysis of secondary fermentation products was explored. Small quantities of isobutanol were produced by most of the strains and higher amounts by some S. cerevisiae strains with phenotypes Gal- and Mel-; all S. bayanus strains produced low amounts of amilyc alcohols. From this study it appears that each winery owns particular strains, with different genetic and biochemical characteristics, selected by specific environmental pressures during the Amarone winemaking process carried out at low temperature in presence of high sugar content.  相似文献   

14.
AIMS: During fermentation yeast cells should cope with stress conditions. We pursue a better understanding of the stress response in wine yeasts at the beginning of vinification. METHODS AND RESULTS: We analyse by means of quantitative PCR the expression of several stress induced genes in 24 efficient commercial wine yeast strains at the beginning of vinifications performed under standard conditions or with small variations in pH and temperature. In all cases, high levels (with differences among strains) of GPD1 mRNA but quite low expression of other stress genes (TRX2, HSP104 and SSA3) were found. For all these genes, mRNA levels increase as temperature decreases or pH increases. CONCLUSIONS: Important levels of expression of GPD1 (but not of other stress genes) are required during the first hours of vinification, because of the need for glycerol production to counteract the hyperosmotic stress at this point. The differences among strains suggest that certain level of expression is enough to ensure the continuity of the process. Variations in the pH and temperature of the vinification can affect gene expression. SIGNIFICANCE AND IMPACT OF THE STUDY: A common pattern of stress response between efficient wine strains exists, which could be used as a criterion for selection. Studies of this kind can allow the establishment of connections between gene expression and physiological traits.  相似文献   

15.
16.
The origin of the Saccharomyces cerevisiae strains that are responsible for spontaneous grape must fermentation was investigated in a long-established industrial winery by means of two different approaches. First, seven selected components of the analytical profiles of the wines produced by 58 strains of S. cerevisiae isolated from different sites and phases of the production cycle of a Grechetto wine were subjected to Principal Components Analysis. Secondly, the same S. cerevisiae isolates underwent PCR fingerprinting by means of delta primers. The results obtained by both methods demonstrate unequivocally that under real vinification conditions, the S. cerevisiae strains colonising the winery surfaces are the ones that carry out the natural must fermentation.  相似文献   

17.
The influence of five yeast strains on the nitrogen fractions, amino acids, peptides and proteins, during 12 months of aging of sparkling wines produced by the traditional or Champenoise method, was studied. High-performance liquid chromatography (HPLC) techniques were used for analysis of the amino acid and peptide fractions. Proteins plus polypeptides were determined by the colorimetric Bradford method. Four main stages were detected in the aging of wines with yeast. In the first stage, a second fermentation took place; amino acids and proteins plus polypeptides diminished, and peptides were liberated. In the second stage, there was a release of amino acids and proteins, and peptides were degraded. In the third stage, the release of proteins and peptides predominated. In the fourth stage, the amino acid concentration diminished. The yeast strain used influenced the content of free amino acids and peptides and the aging time in all the nitrogen fractions. Received 25 March 2002/ Accepted in revised form 31 July 2002  相似文献   

18.
[背景]酵母菌在葡萄酒酿造中起到重要的作用,接种商业活性干酵母(active dry yeast,ADY)进行葡萄酒酿造在国内较为普遍,然而商业酿酒酵母(Saccharomyces cerevisiae)对我国本土酵母菌资源的影响及二者竞争关系的相关报道不多.[目的]比较商业酿酒酵母在不同品种葡萄酒工业化生产中的定殖差...  相似文献   

19.
AIMS: Investigation of the meiotic segregation of karyotypes and physiological traits in indigenous Saccharomyces strains isolated from Aglianico (South Italy) red wine. METHODS AND RESULTS: Segregation was studied in F1 and F2 descendants. Tetrads were isolated from sporulating cultures by micromanipulation. The spore clones were subjected to karyotype analysis by pulse-field gel electrophoresis (Bio-Rad model CHEF-DR II) and to various physiological tests. Certain chromosomes of the isolates showed 2:2 segregation patterns in F1 but proved to be stable in F2. The ability of cells to utilize maltose also segregated in a 2 : 2 manner in F1 and did not segregate in F2. Resistance to CuSO4, SO2 tolerance, the fermentative power and the production of certain metabolites segregated in both F1 and F2 generations and showed patterns indicating the involvement of polygenic regulation. CONCLUSIONS: The analysis revealed a high degree of genetic instability and demonstrated that meiosis can improve chromosomal and genetic stability. SIGNIFICANCE AND IMPACT OF THE STUDY: Winemaking is critically dependent on the physiological properties and genetic stability of the fermenting Saccharomyces yeasts. Selection of clones from F2 or later generations can be a method of reduction of genetic instability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号