首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
光强度对大草蛉成虫感光性和趋光性行为的影响   总被引:3,自引:0,他引:3  
运用视网膜电位(electroretinogram, ERG)技术和行为学方法研究了大草蛉Chrysopa pallens Ramber成虫的光强度反应。结果显示: (1)白光(Log I= 4.5~0.0)可引发2 h暗适应的大草蛉复眼的电位反应。随光强增强其ERG值呈近线性增大, 最强时未出现高端平台, 表明该光强范围内其感光性基本一致, 且可感受更强的光; (2)一定光强度(Log I= 4.0)以上的白光可引发大草蛉较明显的趋光性行为, 该行为具有光强域值特征和较明显的光强度依赖性。弱光时(Log I=4.5)无趋光性行为, 随光强增大趋光性反应率增大, 光较弱(Log I= 4.5~1.5)时增大缓慢, 较强(Log I=1.5~0.0)时迅速增大, 至最强(Log I=0.0)时最大(37.1%), 呈一近“J”型式样。避光行为无或很低, 且无规律, 最大值仅为4.5%。这些结果表明: 光强度是大草蛉感光性与趋光性行为的重要决定因素, 强光时感光性电位反应与趋光性行为反应基本一致, 弱光时则不同, 暗示了光强度信息在感光性和趋光性间作用的有条件性和复杂性。  相似文献   

2.
ERRATA     
P. 65, line 8, for 86-215 lx read 8,50-21,50 lx P. 66, Table I, for 96 lx read 9,600 lx Table 2, All valuesof light intensity to be multiplied by 100 line 16, for 107lx read 10,700 lx line 17, for 107 lx read 10,700 lx P. 67, Table 3, All values of light intensity to be multipliedby 100 P. 68, Table 4, All values of light intensity to be multipliedby 100 Table 5, All values of light intensity to be multipliedby 100  相似文献   

3.
WILSON  D.; COOPER  J. P. 《Annals of botany》1969,33(5):951-965
Using growth-analysis techniques, the variation in relativegrowth-rate (RGR) and its components, net assimilation rate(NAR), and leaf-area ratio (LAR), was examined in 18 populationsof L. perenne, six of L. multiflorum, and two hybrid cultivarsfrom contrasting climatic and agronomic origins, grown at lowand high light intensities in the glasshouse. Significant differences between populations were found for RGR,NAR, and LAR at both light intensities. At both intensitiesthe annual or biennial multiflorum group had a greater LAR anda lower specific leaf weight and chlorophyll content than theperennial perenne group. At the low intensity this was compensatedby a greater NAR in the perenne group, with no resultant differencein RGR. At the high intensity there was no difference betweenthe groups in NAR, and hence a greater RGR in the multiflorumgroup. Within the perenne and multiflorum groups, at both light intensities,the variation between populations in RGR was based on differencesin NAR rather than in LAR. There was no regular correlationof NAR with either specific leaf weight, or chlorophyll contentat either light intensity, though at low light intensity itwas significantly correlated with shoot-root ratio.  相似文献   

4.
Plants of Plantago lanceolata L. and Zea mays L., cv. ‘Campo’were grown at two levels of light intensity. Especially in theroots, the rate of dry matter accumulation decreased at lowlight intensity. The carbohydrate content of both roots andshoots of P. lanceolata was not affected by light intensity.The relative contribution of SHAM1-sensitive respiration, thealternative chain, to total root respiration of both P. lanceolataand Z. mays, was not affected by light intensity during thedaytime. The alternative pathway was somewhat decreased at theend of the dark period, but not in the root tips (0–5mm) where it still contributed 56% in respiration. It was, therefore,concluded that photosynthesis is not a major factor in regulationof root growth in the species investigated. To see whether the effect of light intensity on root growthrate was via transpiration, plants of Z. mays were grown atdifferent air humidities. Both high humidity and low light intensityaffected the root morphology in such a way that the distancebetween the apex and the first laterals on the primary rootaxis increased. It is suggested that this effect on root morphologyis due to transpiration and the subsequent removal of root-producedinhibitors of lateral root growth; although light intensityalso affected the rate of dry matter accumulation of roots andthe rate was not affected by the humidity of the air. It is,therefore, concluded that the effect of light intensity on therate of dry matter accumulation of roots of Z. mays is not viaan effect on transpiration.  相似文献   

5.
6.
Changes in size of the light-harvesting Chl-protein complex(LHC) induced by changes in light intensity were studied withthe green alga Chlorella pyrenoidosa. The Chi a/b ratio, whichis correlated with the size of LHC, varied over a wide range(2.5–5.0) when the light intensity for autotrophic growthwas changed. Comparison of properties of LHC II isolated fromcells grown under light of high and low intensity indicatedthat the large difference in Ch1 a/b ratios in cells grown underlight of different intensities is due mainly to changes in levelsof LHC. Reduction in levels of LHC under light of high intensitydid not occur when proliferation of cells was suppressed. Thisresult indicates that reduction in levels of LHC is not attributableto acceleration of the degradation of LHC under light of highintensity. Stimulation of formation of LHC occurred even underlight of high intensity when formation of photosystems was suppressedby chloram-phenicol (CAP). Analysis of the CAP-induced formationof LHC indicated that (1) such formation of LHC was regulatedby light intensity, being less active under higher intensity,and (2) the suppressive effect of gabaculine, an inhibitor ofthe synthesis of porphyrin, and thus of Ch1, was greater underlight of high intensity while the suppressive effect of cycloheximide,an inhibitor of the synthesis of apoprotein, was slightly greaterunder light of low intensity. The results described in thisreport indicate that (1) intensity-induced changes in the sizeof LHC in Chlorella pyrenoidosa are due to regulation of theassembly of LHC and (2) the regulation occurs primarily at thelevel of the synthesis of Ch1. (Received June 1, 1989; Accepted August 21, 1989)  相似文献   

7.
Transient variations in the fluorescence from intact Phytolaccaamericana leaves after the onset of illumination were measuredunder various light and dark conditions. Dark-adapted leaveswhen illuminated with strong light underwent an intensity variationwith a peak; the fluorescence intensity reaching its peak severalseconds after the onset of illumination then decreasing to asteady level. The peak height relative to the steady level increasedwith the increasing intensity of actinic light. Pre-illuminationof the dark-adapted leaves with strong light caused a markedlowering of the peak. About 20 min of dark incubation was requiredfor the light-adapted leaves to return to the dark-adapted state.All of the action spectra, for the peak, the steady level andthe effect of light in post-illumination to inhibit recoveryto the dark state, showed high bands due to chlorophyll b andcarotenoid absorption and low bands due to chlorophyll a absorption.We concluded that the light absorbed by photosystem 2 is responsiblefor these phenomena. (Received April 21, 1975; )  相似文献   

8.
The success of Triticum aestivumxZea mays crosses, used to producewheat doubled haploids, is influenced by light intensity. Toexamine the basis for this response, pollen tube growth, embryosurvival and indicators of photosynthetic rate were measuredin two wheat cultivars (‘Karamu’ and ‘Kotuku’)crossed with maize at two irradiance levels (250 or 750 µmolm-2s-1, PAR). Pollen tube growth was significantly affectedby light intensity in ‘Karamu’ plants but not in‘Kotuku’ plants, despite both cultivars being pollinatedby the same maize source. The percentage of pollen tubes reachingthe cavity between the ovarian wall and integuments, or in themicropyle of ‘Karamu’ plants at high light intensity(65%) was nearly three-times greater than that at low lightintensity (22%). Thus, either low light intensity can affectthe maternal wheat plant in a way that inhibits pollen tubegrowth and/or high light intensity may promote pollen tube growthin ‘Karamu’ plants. Significant differences in ratesof electron transport in plants grown at the two light intensitiesindicated that the rate of photosynthesis may also have an effecton pollen tube growth. These results have importance for improvingthe efficiency of wheat x maize crosses and other wide cerealcrosses. Copyright 2001 Annals of Botany Company Intergeneric hybridization, light intensity, pollen tube growth, embryo survival, Triticum aestivum, wheat,Zea mays , maize  相似文献   

9.
Terrestrial snails choose their microhabitat according to anumber of environmental factors. We evaluated the effect oflight intensity and substratum complexity on microhabitat preferenceof the terrestrial snail Helix aspersa using a multi-factorialdesign. The snails were offered two levels of light intensityand two types of structural complexity, hence 16 treatmentsin total were used: 12 in which choice was offered and 4 inwhich no choice was offered. The snails preferred ambient lightover dim light, regardless of substratum complexity, and complexover smooth substrata, regardless of light intensity. The levelof one factor did not affect the response to the other. Thus,the results revealed a preference for microhabitats with greaterlight intensity and that were structurally complex, and a rejectionof dimly lit microhabitats with smooth substrates. (Received 17 March 2006; accepted 21 September 2006)  相似文献   

10.
Triticum aestivumxZea mayscrosses are now widely used in theproduction of wheat doubled haploids to produce homozygous lines.Seasonal effects are known to influence the number of haploidembryos produced through wheatxmaize crosses, but the effectsof temperature and light have not been quantified. This studyinvestigated the effect of temperature and light intensity onhaploid embryo production. New Zealand wheat cultivars weregrown in a glasshouse until booting when they were transferredto growth cabinets at three temperatures (day/night; 17/12,22/17 or 27/22 °C at an irradiance of 250 µmol m-2s-1PAR).In another experiment, wheat lines were transferred to a growthcabinet at one of three light intensities (300, 500 or 1000µmol m-2s-1PAR at 22/17 °C day/night, with a photoperiodof 16 h). The temperature and light intensity at which pollinationswere made and subsequent fertilisation and embryo developmentoccurred, significantly (P<0.01) influenced the frequencyof haploid embryo production. The optimal temperature for embryorecovery was 22/17 °C. The greatest number of embryos wasproduced at a light intensity of 1000 µmol m-2s-1. Thesefindings will result in improvements in the overall efficiencyof the wheatxmaize system for wheat doubled haploid production.Copyright1998 Annals of Botany Company Intergeneric crossing, temperature, light intensity,Triticum aestivum,wheat,Zea mays,maize.  相似文献   

11.
The potassium uptake activity of the "flow-medium culture" ofa long-day duckweed, Lemna gibba G3, followed a circadian rhythmwhich persisted for more than 5 days under continuous light.The period of the rhythm was about 25 hr under 3000 lux at 26?Cand was slightly over-compensated against temperature, Q10 beinga little less than 1.0. The amplitude of the rhythm was dependenton light intensity, and there was no potassium uptake in thedark. Magnesium uptake was affected by the potassium movementand showed circadian rhythmicity with a small amplitude underconditions where the potassium uptake was already saturated.Calcium uptake did not show any obvious rhythm. In Contrastto L. gibba, a short-day duckweed L. perpusilla 6746 displayedcircadian rhythm of potassium uptake only in the dark and notin the light. This rhythm did not persist beyond the secondcycle. (Received June 13, 1978; )  相似文献   

12.
邱明生  赵志模 《昆虫学报》1999,42(2):145-149
研究了环境因子对角倍蚜Schlechtendalia chinensis (Bell) 秋迁蚜生殖和雌性蚜发育的影响。温、湿度单因子试验表明,秋迁蚜在26℃和80%RH条件下有最大生殖量;温、湿度对秋迁蚜生殖量的影响均符合开口向下的二次抛物线变化趋势,极端温、湿度会导致生殖量的下降。采用三元一次正交组合设计,研究了环境温度(X1)、湿度(X2)和光照强度(X3)三因子不同水平组合对雌性蚜发育的影响,表明温度是影响发育历期的主要因子,其次是光照强度,最后是湿度。因此,适当高温、强光照条件可以加快雌性蚜发育;而适当高湿条件可以降低雌性蚜的发育速率而延长其发育历期。在人工培育角倍蚜生产中,创造有利于秋迁蚜生殖的温、湿度条件可以使秋迁蚜产下较多的越冬侨蚜;在适当降低温度、增加湿度的阴暗条件下贮留雌性蚜可以适当延长其发育,以使角倍蚜与盐肤木在物候上达到最佳吻合。  相似文献   

13.
Since relative growth rate is the product of net assimilationrate and leaf-area ratio (leaf area/plant weight), it followsthat if the effects of shading on both net assimilation rateand leaf-area ratio can be expressed mathematically, then therelationship between light intensity and relative growth ratecan be derived from the product of the two mathematical expressions. For all the ten species investigated in field and pot cultureexperiments, it has been found that during the early vegetativephase both the changes in leaf-area ratio and net assimilationrate, over the range of 0·1 to full daylight, are linearlyrelated to the logarithm of the light intensity. In consequence,the relationship between relative growth rate and the logarithmof light intensity—being the product of the two linearregressions—is curvilinear. For species of shady habitats (Geum urbanum, Solamun dulcamara)neither the levels of assimilation rate nor the ‘compensation-point’values are very different from those of the eight species fromopen situations (e.g. Hordeum vulgare, Pisum sativum, Fagopyrumesculentum). Nevertheless the intensity at which growth rateis maximal varies between species: it is 0•5 for G. urbanum,0•7 for H. annuus, full daylight for F. esculentum, whilefor Trifolium subterraneum the calculated value is 1·8daylight. Such specific differences can be largely accountedfor in terms of the differences in leaf-area ratio at the differentlight levels. On the basis of this analysis of the light factor, a ‘shade’plant is best redefined as a species in which a reduction ofthe light intensity causes a rapid rise in the leaf-area ratiofrom an initial low value in full daylight: for a ‘sun’plant the converse definition holds.  相似文献   

14.
The Regulation of Root Growth in Cress Seedlings by Light and Gravity   总被引:3,自引:0,他引:3  
Horizontal growth of seedling roots of Lepidium sativum L. cv.Curled is sensitive to white light with a photon flux densityas low as 7.5 µEinsteins m–2 S–1. Inhibitionof growth is positively correlated with light intensity. Rootsgrowing in the vertical plane are much less sensitive to light.The light inhibition of horizontal root growth can be overcomeby the application of an axial force. The effects of light andaxial force are reversible. Although geotropic responsivenessis not dependent on exposure to light, there is evidence thatlight induces a heightened geosensitivity. The results are discussedin relation to the counter-current theory of the regulationof root growth.  相似文献   

15.
Light intensity limits foraging activity in nocturnal and crepuscular bees   总被引:4,自引:0,他引:4  
A crepuscular or nocturnal lifestyle has evolved in bees severaltimes independently, probably to explore rewarding pollen sourceswithout competition and to minimize predation and nest parasites.Despite these obvious advantages, only few bee species are nocturnal.Here we show that the sensitivity of the bee apposition eyeis a major factor limiting the ability to forage in dim light.We present data on eye size, foraging times, and light levelsfor Megalopta genalis (Augochlorini, Halictidae) in Panama,and Lasioglossum (Sphecodogastra) sp. (Halictini, Halictidae)in Utah, USA. M. genalis females forage exclusively during twilight,but as a result of dim light levels in the rain forest, theyare adapted to extremely low intensities. The likely factorlimiting their foraging activity is finding their nest entranceon return from a foraging trip. The lowest light intensity atwhich they can do this, both in the morning and the evening,is 0.0001 cd m–2. Therefore, they leave the nest at dimmerlight levels in the morning than in the evening. Lasioglossum(Sphecodogastra) foraging is limited by light intensity in theevening, but probably by temperature in the morning in the temperateclimate of Utah. We propose that the evolution of nocturnalityin bees was favored by the large variance in the size of females.  相似文献   

16.
Further Observations on Light and Spore Discharge in Certain Pyrenomycetes   总被引:1,自引:0,他引:1  
A ‘spore-clock’ for studying the hourly rate ofspore discharge over a 24-hour period is described. A numberof the experiments reported in this paper have involved theuse of this apparatus. In Sordaria fimicola there is a distinct positive light-dischargereaction in a dark-conditioned culture, the rate of spore dischargeincreasing steeply to a peak 2–3 hours after brief stimulationby bright light. Although darkening a light-conditioned cultureleads to an immediate decrease in the rate of discharge, thereis no evidence of a delayed negative dark-discharge reaction. In S. verruculosa with a 12-hours light: 12-hours dark dailyreëgime, more spores are discharged in the dark than inthe light periods if the intensity of illumination is low. Withhigher light intensity there is no significant difference betweenthe number of spores discharged in light and dark periods. Asin S. fimicola there is a positive light-discharge reaction,the interval between stimulus and maximum response being muchlonger (8–12 hours). When a dark-conditioned culture istransferred to light for 48 hours and then returned to darknessfor a further 48 hours it is apparent that not only is therea positive light-discharge reaction but also a negative dark-dischargeresponse. The ‘plateau’ level of discharge is essentiallythe same in light and darkness. It is confirmed that in Hypoxylon fuscum light inhibits discharge.  相似文献   

17.
Light-dependent active uptake of pyruvate was reported in mesophyllchloroplasts of a C4 plant, Panicum miliaceum [Ohnishi and Kanai(1987) Plant Cell Physiol. 28: 1]. The present study tried toclarify the energy source of this active uptake. Preilluminationof the mesophyll chloroplasts increased over tenfold their pyruvateuptake in the light and dark. This indicates that light itselfis not essential for the enhancement. The pyruvate uptake capacity(the initial uptake rate) of the mesophyll chloroplasts increasedon illumination and reached a steady-state level after a fewminutes; this rise was faster under higher light intensities.When the chloroplasts were returned to darkness, the uptakecapacity decayed with a half-life of about 1 min; this was independentof the light intensity of preillumination. Illumination of thechloroplasts also increased the stromal pH from about 7 to 8and the stromal ATP level from about 5 to 15–25 nmol.(mg chl)–1. The change of the former during dark-to-lightand light-to-dark transitions occurred within 2 to 5 min, whilethe change of the latter took place much faster within 1 min.The steady-state levels of the pyruvate uptake capacity andstromal pH were saturated at a light intensity of 3 µE.m–2.s–1,while the ATP level increased with a further increase in thelight intensity. The former two parameters also showed similarsensitivity to the inhibition by carbonylcyanide-m-chlorophenylhydrazone,while a higher concentration of the inhibitor was needed toreduce the ATP level. Nitrite at 4 mM inhibited the light-dependentpyruvate uptake and stromal alkalization but had little effecton the stromal ATP level, while 2 mM arsenate decreased thestromal ATP without significant effects on pyruvate uptake andstromal pH. The good correlation of pyruvate uptake and stromalpH suggests that the active pyruvate uptake by the mesophyllchloroplasts is primarily driven by the pH gradient across theenvelope. (Received August 15, 1986; Accepted December 8, 1986)  相似文献   

18.
In a further analysis of the effects of varying light intensityon growth and development in the vegetative phase the reactionsof thirteen herbaceous species have been recorded. In some experimentsthe degree of shading has been extended to 0.055 daylight, alevel near or below the compensation point. For Lathyrus maritimus, Trifolium pratense, and Vicia faba,the net assimilation rate is directly related to the logarithmof the light intensity, but for Helianthus annuus, T. repent,T. hybridum, Medicago sativa, Phaseolus multiflorus, and Loliummultiflorum the relationship, though curvilinear, is not logarithmic.It is concluded that for all species the assimilation rate ofunshaded plants was limited by light even though in high summerthe recorded light energy between 4,000–7,000 A averaged1,900–2,200 foot-candles. For all these species between daylight and 0.12 daylight theleaf-area ratio rises as the intensity decreases and in generalthe trend is logarithmic. When the degree of shading is increasedto 0.055 daylight the logarithmic relationship still holds forL. maritimus and V. faba though this level is below the compensationpoint. For other species, such as P. multiflorus andH. annuusthe trend may be reversed below 0.12 daylight and the ratiothen falls. When the light intensity is reduced from daylight to 0.5 daylight,then for the species already cited and for Lolium perenne, Phleumpratcnse, and Festuca pratensis the relative growth-rate isinvariably depressed. At 0.055 daylight the relative growth-ratenever exceeded 1 per cent. per day. For L. perennet, P. pratense,and Dactylis glomerata the reactions to shading of ‘hay’and ‘grazing’ strains were different. The ecological and physiological implications of these findingsare discussed.  相似文献   

19.
Environmental Influences on CAM Activity of Cissus quadrangularis   总被引:1,自引:0,他引:1  
Cissus quadrangularis, Vitacea, has a succulent stem and showsCrassulacean Acid Metabolism (CAM). Environmental control ofCAM is shown with respect to water supply, day temperature,and light intensity. C. quadrangularis, under moderate drought,has a high capacity for dark CO2 fixation and high efficiencyof water use (nocturnal transpiration ratio = 8). Severely droughtedplants of C. quadrangularis still show dark CO2 fixation althoughat a reduced rate, which allows a maintenance level metabolism.On the other hand, high temperature and light intensity promoteCAM activity in well-watered plants resulting in luxuriant andfast growth. Data indicate that under natural conditions CAMshould effectively contribute to the successful adaptation ofC. quadrangularis to its environment.  相似文献   

20.
When Lemna minor and Salvinia natans, grown in a constant environment,are subjected to sub-lethal concentrations of 2,2-dichioropropionicacid (DCPA), the relative growth-rates are progressively reduced.These cumulative reductions, which are greater for S. natans,are correlated with decreases in (1) the rate of leaf or frondformation, (2) the mean area per leaf or frond, and (3) thenet assimilation rate. Of these components, the first is themost important and the third is the least. The effects of light intensity (300, 600, 900 f.c.), temperature(20, 25, and 30°C), and concentration of DCPA on both therelative growth-rate and rate of leaf or frond multiplicationhave been examined in multi-factorial experiments. Over theconcentration range selected (100, 200, and 400 mg/l for S.natans and 100, 300, and 6oo mg/l for L. minor) there are positiveeffects of light intensity, temperature, and concentration.For each concentration the order of the depression is maximalunder a combination of the highest temperature and the greatestintensity. Using radioactive DCPA it has been established that uptake isalso a cumulative process, and that S. natans has a greatercapacity to absorb DCPA. The rate of uptake is independent ofthe light intensity but increases with temperature and concentration. DCPA brings about morphological and structural changes. In S.natans, many of the leaves become submerged and the proportionis positively dependent on light, temperature, and concentration.This failure to float is associated with a reduction in thedensity of epiderrnal hairs. It is concluded that the inhibitory effects of DCPA are maximalunder conditions which are optimal for both meristematic activityand accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号