首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present study, we examined the effect of soluble CD4 (sCD4) on host resistance and delayed-type hypersensitivity (DTH) response to Cryptococcus neoformans using a novel mutant mouse that exhibits a defect in the expression of membrane-bound CD4 but secretes high levels of sCD4 in the serum. In these mice, host resistance to this pathogen was impaired as indicated by an increased number of live pathogens in the lung. To elucidate the mechanism of immunodeficiency, three different sets of experiments were conducted. First, administration of anti-CD4 mAb restored the attenuated host defense. Second, in CD4 gene-disrupted (CD4KO) mice, host resistance was not attenuated compared to control mice. Third, implantation of sCD4 gene-transfected myeloma cells rendered the CD4KO mice susceptible to this infection, while similar treatment with mock-transfected cells did not show such an effect. These results indicated that immunodeficiency in the mutant mice was attributed to the circulating sCD4 rather than to the lack of CD4+ T cells. In addition, DTH response to C. neoformans evaluated by footpad swelling was reduced in the mutant mice compared to that in the control, and the reduced response was restored by the administration of anti-CD4 mAb. Finally, serum levels of IFN-gamma, IL-12 and IL-18 in the mutant mice were significantly reduced, while there was no difference in Th2 cytokines, such as IL-4 and IL-10. Considered collectively, our results demonstrated that sCD4 could directly prevent host resistance and DTH response to C. neoformans through interference with the production of Th1-type cytokines.  相似文献   

2.
In the present study, we examined whether natural killer (NK) cells have direct fungicidal activity against Cryptococcus neoformans. Splenic NK cells were obtained from SCID mice and stimulated with a combination of interleukin (IL)-12 and IL-18 in flat culture plates or round tubes. They were then or at the same time cultured with the yeast cells and the number of viable yeast cells was examined. We could not detect direct fungicidal activity by NK cells under any culture condition, although they produced a large amount of IFN-gamma and exerted marked cytotoxic activity against YAC-1 cells. On the other hand, NK cells significantly potentiated the nitric oxide-mediated cryptococcocidal activity of thioglycolate-elicited peritoneal macrophages obtained from SCID mice upon stimulation with IL-12 and IL-18. The culture supernatants of NK cells stimulated with IL-12 and IL-18 provided similar results when used in place of NK cells. The induction of macrophage anticryptococcal activity by NK cells and NK cell culture supernatants were both mediated by IFN-gamma because the specific mAb almost completely abrogated such effect. Considered collectively, our results suggested that NK cells may play a regulatory role in potentiating macrophage-mediated fungicidal mechanisms in host resistance to infection with C. neoformans rather than exerting a direct killing activity against the fungal pathogen.  相似文献   

3.
目的 研究miR-146a是否参与新生隐球菌感染免疫应答过程.方法 采用RT-PCR检测了6例新生隐球菌性脑膜炎患者和6名健康个体外周血单个核细胞(PBMC)中miR-146a的表达.以热灭活新生隐球菌刺激来自健康个体的PB-MC,并加入Dectin-1抑制剂昆布多糖,采用RT-PCR检测热灭活新生隐球菌和昆布多糖对PBMC中miR-146a表达的影响.结果 新生隐球菌性脑膜炎患者PBMC中miR-146a的表达较健康个体明显增高.热灭活新生隐球菌可以上调PBMC中miR-146a的表达,昆布多糖可以削弱其上调miR-146a表达的能力.结论 热灭活新生隐球菌可以通过Dectin-1受体上调miR-146a的表达.miR-146a参与了新生隐球菌感染免疫应答过程,值得进一步研究.  相似文献   

4.
Using interleukin (IL)-18 deficient (IL-18(-/-)) mice, we examined the role of IL-18 in the host resistance and Th1 response against infection with Cryptococcus neoformans. Fungal clearance in the lung was reduced in IL-18(-/-) mice, although there was no significant change in the level of dissemination to the brain. The DTH response, as determined by footpad swelling, was also diminished in IL-18(-/-) mice compared to control wild-type (WT) mice. The levels of IL-12 and interferon (IFN)-gamma in the sera were significantly lower in IL-18(-/-) mice than in WT mice. Spleen cells from infected WT mice produced a high level of IFN-gamma upon stimulation with the microbe, while only a low level of IFN-gamma production was detected in spleen cells from infected IL-18(-/-) mice. Administration of IL-18 almost completely restored the reduced response in IL-18(-/-) mice, while IL-12 showed a marginal effect. These results demonstrated the important role of IL-18 in the resistance and Th1 response of mice to C. neoformans by potentiating the production of IFN-gamma.  相似文献   

5.
6.
The present study was designed to elucidate the role of Toll-like receptor (TLR) 2 and TLR4 in the host response to Cryptococcus neoformans. Both TLR2 knockout (KO) and TLR4KO mice produced interleukin-1beta (IL-1beta), IL-6, IL-12p40 and tumor necrosis factor-alpha (TNF-alpha) in sera and cleared this fungal pathogen from infected lungs at a comparable level to control littermate (LM) mice. Synthesis of these cytokines was not significantly different in the lungs of these KO mice and LM mice, although IL-1beta, IL-6 and IL-12p40 tended to be lower in TLR2KO, but not TLR4KO, mice than in controls. In addition, there was no significant reduction detected in the synthesis of IL-12 and TNF-alpha by bone marrow-derived dendritic cells from TLR2KO and TLR4KO mice upon stimulation with live yeast cells. Finally, HEK293 cells expressing either TLR2/dectin-1 or TLR4/MD2/CD14 did not respond to C. neoformans in the activation of nuclear factor kappa B (NFkappaB) detected by a luciferase assay. Our results suggest that TLR2 and TLR4 do not or only marginally contribute to the host and cellular response to this pathogen.  相似文献   

7.
Th1 immune response plays an important role in protection against infection with Cryptococcus neoformans in mice. We investigated the effect of virulence of C. neoformans on cytokine production in the lung of a mouse model of pulmonary cryptococcosis. BALB/c mice were inoculated intratracheally with a high or low virulence strain of C. neoformans, followed by serial measurements of Th1 and Th2 cytokine concentrations in the bronchoalveolar lavage (BAL) fluid using appropriate enzyme-linked immunosorbent assay kits. The number of colony-forming units (CFU) increased with time, and all mice infected with the highly virulent strain were dead at 28 days after inoculation. In contrast, the number of microorganisms diminished with time in the mice infected with the low virulence strain during the 4-week study. The numbers of neutrophils and lymphocytes in the BAL fluid paralleled those of CFU. High neutrophil counts were observed in the BAL fluid of mice infected with the highly virulent strain, while lymphocyte counts were increased only in the later part of the study in mice infected with the high and low virulence strains. The concentrations of Th2 cytokine, interleukin (IL)-4 were significantly higher in mice infected with the highly virulent strain at days 14 and 21 of infection, whereas the level of Th1 cytokine, interferon-gamma, was significantly higher in the latter strain at days 7 and 14. Our results suggest that strain-specific difference in the organism's ability to induce (or evade) the host immune system contributes to the outcome of infection.  相似文献   

8.

Background

Cryptococcus neoformans has a predilection for central nervous system infection. C. neoformans traversal of the blood brain barrier, composed of human brain microvascular endothelial cells (HBMEC), is the crucial step in brain infection. However, the molecular mechanism of the interaction between Cryptococcus neoformans and HBMEC, relevant to its brain invasion, is still largely unknown.

Methods

In this report, we explored several cellular and molecular events involving the membrane lipid rafts and caveolin-1 (Cav1) of HBMEC during C. neoformans infection. Immunofluorescence microscopy was used to examine the roles of Cav1. The knockdown of Cav1 by the siRNA treatment was performed. Phosphorylation of Cav1 relevant to its invasion functions was investigated.

Results

We found that the host receptor CD44 colocalized with Cav1 on the plasma membrane, and knockdown of Cav1 significantly reduced the fungal ability to invade HBMEC. Although the CD44 molecules were still present, HBMEC membrane organization was distorted by Cav1 knockdown. Concomitantly, knockdown of Cav1 significantly reduced the fungal crossing of the HBMEC monolayer in vitro. Upon C. neoformans engagement, host Cav1 was phosphorylated in a CD44-dependent manner. This phosphorylation was diminished by filipin, a disrupter of lipid raft structure. Furthermore, the phosphorylated Cav1 at the lipid raft migrated inward to the perinuclear localization. Interestingly, the phospho-Cav1 formed a thread-like structure and colocalized with actin filaments but not with the microtubule network.

Conclusion

These data support that C. neoformans internalization into HBMEC is a lipid raft/caveolae-dependent endocytic process where the actin cytoskeleton is involved, and the Cav1 plays an essential role in C. neoformans traversal of the blood-brain barrier.  相似文献   

9.
10.
We investigated the susceptibility of three clinically isolated strains of Cryptococcus neoformans with different virulences to reactive nitrogen and oxygen intermediates (RNI and ROI, respectively), representing two important mediators of macrophage microbicidal activity. All mice infected with the highly virulent strain of C. neoformans, YC-11, died within 3 to 6 weeks because of rapid multiplication of the organism in the lungs and dissemination to the brain. In contrast, a weakly virulent strain, YC-13, was almost completely eradicated from the lungs and did not disseminate to the brain, leading to survival of all infected animals during the period of observation (15 weeks). The virulence of the third strain, YC-5, was intermediate between the other two strains. To examine the susceptibility of C. neoformans to the fungicidal effect of nitric oxide (NO) and superoxide anions (O2-), the organisms were exposed to these oxidants, which were chemically generated in a cell-free system. Interestingly, the number of live YC-13 yeast cells was markedly reduced after exposure to NO and O2?. In contrast, YC-11 was almost completely resistant to the killing effect of these oxidants. YC-5 showed an intermediate susceptibility. Our results demonstrate that the resistance of C. neoformans to the fungicidal effects of RNI and ROI is related to virulence, and suggest that the resistance to nitrogen- and oxygen-derived oxidants may be one of the factors to determine the outcome of infection with C. neoformans.  相似文献   

11.
Histone H1 is located at the inter-nucleosome and more correctly at both ends of the double-stranded DNA that protrude from the nucleosome unit. It has long been recognized to be localized only inside the nuclei as a constituent for packaging nucleosome into chromatin. Thus, it could be hardly believed that detatched or solubilized histone H1 plays the role of a host defense molecule. Given the old reports on histone-like basic proteins that show bacteriostatic functions, I herein chose some recent related articles and tried review them. Recent advances in research on the cell death mechanism makes it possible to understand that programmed cell death, (i.e. apoptosis) could serve as a good source of soluble histones. Some forms of them are highly probable to be bacteriostatic.  相似文献   

12.
【背景】目前艾滋病和新型隐球菌性脑膜炎共病因素导致其高发病率和死亡率的机制尚不明确。【目的】探索S100B抑制剂SBi4211对HIV-1 gp41促进新生隐球菌黏附人脑微血管内皮细胞的影响和可能机制。【方法】黏附实验分析SBi4211是否能阻断HIV-1 gp41诱导下新生隐球菌黏附人脑微血管内皮细胞。使用免疫印迹方法进一步检测在此过程中SBi4211对脑微血管内皮细胞上新生隐球菌透明质酸受体CD44表达的影响。【结果】SBi4211可显著抑制HIV-1gp41对新生隐球菌黏附脑微血管内皮细胞的增强作用,且呈时间、剂量效应(P0.05);免疫印迹结果显示SBi4211可抑制新生隐球菌和/或HIV-1 gp41增加脑微血管内皮细胞上新生隐球菌透明质酸受体CD44的表达。【结论】SBi4211可通过下调受体CD44来阻断HIV-1 gp41对新生隐球菌黏附人脑微血管内皮细胞的增强效应,这为了解HIV-1与新生隐球菌共病机制及其防治策略提供了新思路。  相似文献   

13.
IL-4 is required for defense against mycobacterial infection   总被引:9,自引:0,他引:9  
Although the involvement of T helper (Th1) cells is central to protection against intracellular bacteria, including Mycobacterium tuberculosis, the involvement of Th2 cells, characterized by potent interleukin (IL)-4 secretion in mycobacterial infection is still unclear. In order to clarify the role of IL-4 in murine tuberculosis, IL-4-deficient mutant mice, IL-4 knockout (IL-4 KO) mice, were utilized. The mice were infected with H37Rv, Kurono or BCG Pasteur via an airborne infection route by placing them in the exposure chamber of a Middlebrook airborne infection apparatus. Their capacity to control mycobacterial growth, granuloma formation, cytokine secretion, and nitric oxide (NO) production were examined. These mice developed large granulomas, but not necrotic lesions in the lungs, liver or spleen (P<0.05). This was consistent with a significant increase in lung colony-forming units (CFU). Compared with levels in wild-type mice, upon stimulation with mycobacteria, splenic IL-10 levels were low and IL-6 levels were intermediate, but interferon (IFN)-gamma and IL-12 levels were significantly higher. IL-18 levels were within the normal range. The level of NO production by alveolar macrophages of the IL-4 KO mice was similar to that of the wild-type mice. Granulomatous lesion development by IL-4 KO mice was inhibited significantly by treatment with exogenous recombinant IL-4. These findings were not specific to the IL-4 KO mice used. Our data show that IL-4 may play a protective role in defense against mycobacteria, although IFN-gamma and TNF-alpha play major roles in it. Our data do not rule out an IFN-gamma-independent function of IL-4 in controlling tuberculosis.  相似文献   

14.
There is interest in identifying the pattern recognition receptors involved in initiating protective or non-protective host responses to Mycobacterium tuberculosis (Mtb). Here we explored the role of the Syk/CARD9-coupled receptor, Dectin-1, using an aerosol model of Mtb infection in wild-type and Dectin-1 deficient mice. We observed a reduction in pulmonary bacilli burdens in the Dectin-1 deficient animals, but this did not correlate with significant changes in pulmonary pathology, cytokine levels or ability of these animals to survive the infection. Thus Dectin-1 makes a minor contribution to susceptibility to Mtb infections in mice.  相似文献   

15.
We previously demonstrated that interleukin (IL)-12 protected mice against fatal pulmonary infection with a highly virulent strain of Cryptococcus neoformans, which correlated well with the production of interferon (IFN)-gamma as well as IL-18 in the primary infected site. In the present study, we examined the role of endogenously synthesized IL-18 in IL-12-induced host resistance to this pathogen. There was little or no production of IFN-gamma and IL-18 both at mRNA and protein levels in lungs of mice infected with C. neoformans, while treatment with IL-12 induced a marked production of these cytokines. Caspase-1 mRNA was expressed in infected mice even without IL-12 treatment. Administration of neutralizing anti-IFN-gamma monoclonal antibody (mAb) clearly inhibited production of IFN-gamma and IL-18 induced by IL-12, while control IgG did not show such an effect. However, administration of IFN-gamma did not induce the production of both cytokines in infected mice, although tumor necrosis factor (TNF)-alpha and IFN-gamma-inducible protein (IP)-10 were synthesized by the same treatment. Finally, neutralizing anti-IL-18 antibody (Ab) significantly interfered with the production of IFN-gamma and elimination of the microorganism from the lung induced by IL-12 treatment. Furthermore, both IFN-gamma synthesis and host protection caused by IL-12 were profoundly diminished in IL-18 gene-disrupted mice. Considered collectively, our results indicated that host protection against C. neoformans induced by IL-12 involved endogenously synthesized IL-18 and that the production of IL-18 was mediated at least in part by endogenous IFN-gamma.  相似文献   

16.
We elucidated the contribution of Valpha14 NKT cells to Th1 response and host resistance against mycobacterial infection. In Valpha14 NKT cell-deficient mice, host defense and DTH response to Mycobacterium bovis BCG were not different from wild-type mice after pulmonary infection. There was no significant difference in the lung concentrations of IFN-gamma between the two strains of mice. In addition, host defense to systemic infection with M. tuberculosis was similar to that of M. bovis. Our results indicate that Valpha14 NKT cells play only a marginal role, if any, in the Th1 response and host resistance to mycobacterial infection.  相似文献   

17.
《Autophagy》2013,9(5):785-802
AMP-activated protein kinase (AMPK) is a crucial energy sensor and plays a key role in integration of cellular functions to maintain homeostasis. Despite this, it is largely unknown whether targeting the AMPK pathway can be used as a therapeutic strategy for infectious diseases. Herein, we show that AMPK activation robustly induces antibacterial autophagy, which contributes to antimicrobial defense against Mycobacterium tuberculosis (Mtb). AMPK activation led to inhibition of Mtb-induced phosphorylation of the mechanistic target of rapamycin (MTOR) in macrophages. In addition, AMPK activation increased the genes involved in oxidative phosphorylation, mitochondrial ATP production, and biogenesis in Mtb-infected macrophages. Notably, peroxisome proliferator-activated receptor-gamma, coactivator 1α (PPARGC1A) was required for AMPK-mediated antimicrobial activity, as well as enhancement of mitochondrial function and biogenesis, in macrophages. Further, the AMPK-PPARGC1A pathway was involved in the upregulation of multiple autophagy-related genes via CCAAT/enhancer binding protein (C/EBP), β (CEBPB). PPARGC1A knockdown inhibited the AMPK-mediated induction of autophagy and impaired the fusion of phagosomes with MAP1LC3B (LC3B) autophagosomes in Mtb-infected macrophages. The link between autophagy, mitochondrial function, and antimicrobial activity was further demonstrated by studying LysMCre-mediated knockout of atg7, demonstrating mitochondrial ultrastructural defects and dysfunction, as well as blockade of antimicrobial activity against mycobacteria. Collectively, our results identify the AMPK-PPARGC1A axis as contributing to autophagy activation leading to an antimicrobial response, as a novel host defense mechanism.  相似文献   

18.
Urokinase-type plasminogen activator (uPA)(-/-) mice cannot mount protective host defenses during infection with the opportunistic yeast Cryptococcus neoformans (52D). Because effective host defense against C. neoformans requires specific immune responses and the generation of type 1 (T1) cytokines, we determined how the absence of uPA impacts these processes. Wild-type (WT) and uPA(-/-) mice were inoculated with C. neoformans. Macrophage antifungal activity was assessed histologically, T lymphocyte responses in vivo and proliferation in vitro were quantified, and cytokine concentrations were determined by ELISA. uPA(-/-) macrophages have impaired antimicrobial activity. Regional lymph nodes of infected uPA(-/-) mice contained fewer cells than WT, suggesting impaired T cell proliferation in response to the pathogen in vivo. In vitro, uPA(-/-) T lymphocytes had impaired proliferative responses to C. neoformans rechallenge compared with WT. Infected WT mice generated T1 cytokines in the lung, characterized by high levels of IFN-gamma and IL-12. uPA(-/-) mice had decreased levels of IFN-gamma and IL-12, and increased IL-5, a type 2 cytokine. In the absence of uPA, the cytokine profile of regional lymph nodes shifted from a T1 pattern characterized by IFN-gamma and IL-2 to a weak, nonpolarized response. We conclude that in the absence of uPA, lymphocyte proliferative responses are diminished, and mice fail to generate protective T1 cytokines, resulting in impaired antimicrobial activity. This study provides novel evidence that uPA is a critical modulator of immune responses and of immune cell effector functions in vivo.  相似文献   

19.
The cytokine interleukin IL‐35 is known to exert strong immunosuppressive functions. Indoleamine 2,3‐dioxygenase 1 (IDO1) and Arginase 1 (Arg1) are metabolic enzymes that, expressed by dendritic cells (DCs), contribute to immunoregulation. Here, we explored any possible link between IL‐35 and the activity of those enzymes. We transfected a single chain IL‐35Ig gene construct in murine splenic DCs (DC35) and assessed any IDO1 and Arg1 activities as resulting from ectopic IL‐35Ig expression, both in vitro and in vivo. Unlike Ido1, Arg1 expression was induced in vitro in DC35, and it conferred an immunosuppressive phenotype on those cells, as revealed by a delayed‐type hypersensitivity assay. Moreover, the in vivo onset of a tolerogenic phenotype in DC35 was associated with the detection of CD25+CD39+, rather than Foxp3+, regulatory T cells. Therefore, Arg1, but not Ido1, expression in DC35 appears to be an early event in IL‐35Ig–mediated immunosuppression.  相似文献   

20.
The pathogenic yeast Cryptococcus neoformans has evolved several strategies to survive within phagocytes. Recently, it has been demonstrated that upregulation of the ATP binding cassette transporter-encoding gene antifungal resistance 1 ( AFR1 ) is important not only for determining the resistance of C. neoformans to fluconazole but also in influencing fungal virulence. In the present study, we showed that the fluconazole-resistant AFR1- overexpressing mutant strain was not sensitive to microglia-mediated anticryptococcal activity, as compared with the fluconazole-susceptible isogenic strains, the wild type and the afr1 Δ mutant. Interestingly, although the three strains were phagocytosed to a similar extent, reduced acidification and delayed maturation were observed in phagosomes containing the AFR1 -overexpressing strain with respect to the others. These findings provide the first evidence that upregulation of the AFR1 gene affects C. neoformans –microglia interplay, adding insights to the complexity of cryptococcal virulence and to its unexpected link with azole resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号