首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The fluorescence emission properties of 1,6-diphenyl-1,3,5-hexatriene (DPH) in 1,2-dipalmitoyl-3-sn-phosphatidylcholine and 1,2-dimyristoyl-3-sn-phosphatidylcholine multilamellar vesicles have been measured by using multifrequency phase fluorometry. The fluorescence decay of DPH in the phospholipid vesicles has been analyzed by assuming either that the decay is made up of a discrete sum of exponential components or that the decay is made up of one or more continuous distributions of lifetime components. The fit of the decay curve using exponentials required at least two terms, and the reduced X2 was relatively large. The fit using a continuous distribution of lifetime values used two continuous components. Several symmetric distribution functions were used: uniform, Gaussian, and Lorentzian. The distribution function that best described the decay was the Lorentzian. The full width at half-maximum of the Lorentzian distribution was about 0.6 ns at temperatures below the phase transition temperature. At the phospholipid phase transition and at higher temperatures, the distribution became quite narrow, with a width of about 0.1 ns. It is proposed that the lifetime distribution is generated by a continuum of different environments of the DPH molecule characterized by different dielectric constants. Below the transition temperature in the gel phase, the dielectric constant gradient along the membrane normal determines the distribution of decay rates. Above the transition, in the liquid-crystalline phase, the translational and rotational mobility of the DPH molecule increases, and the DPH experiences an average environment during the excited-state lifetime. Consequently, the distribution becomes narrower.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Using multifrequency phase and modulation fluorometry and a nonlinear least-squares analysis of lifetime data, we were able to determine the complex decay of 1,6-diphenyl-1,3,5-hexatriene (DPH) in synthetic phospholipid bilayers. Our results showed a monoexponential decay of DPH in the pure isotropic solvents studied, over a wide temperature range, and a double-exponential decay of DPH in phospholipids, both above and below the transition. During the transition, and in mixed-phase phospholipids, a three-component analysis was successfully accomplished, and the pre-exponential factors of the two main components have been shown to be quantitatively representative of the gel and liquid-crystalline phases of the bilayer. The fractional intensity of the shorter lifetime component depends on the modalities of the sample preparation. The factors affecting this component are discussed. From the DPH fluorescence lifetime and from the anisotropy data in L-alpha-dimyristoyl-phosphatidylcholine/L-alpha-dipalmitoyl-phosphatidyl choline mixtures, a phase diagram was independently constructed. Conclusions about the sensitivity and the partition of the probe between gel and the liquid-crystalline phases of the bilayer are derived. Lifetime experiments on DPH in a L-alpha-dilauroyl-phosphatidylcholine/L-alpha-dipalmitoyl-phosphatidylch oline mixture suggested a general method for the determination and quantitation of the two different phases in the bilayer.  相似文献   

3.
Properties influencing fluorophore lifetime distributions in lipid bilayers   总被引:3,自引:0,他引:3  
B W Williams  C D Stubbs 《Biochemistry》1988,27(21):7994-7999
The fluorescence lifetime of the membrane fluorophore 1,6-diphenyl-1,3,5-hexatriene has been analyzed according to the distributional approach in a number of lipid bilayer systems. The systems included vesicles of 16:0/18:1-phosphatidylcholine (POPC), egg phosphatidylcholine (EYPC), microsomal phospholipids, and also intact microsomal membranes. With increasing complexity of composition, an increasingly broader width was found in the major component of a bimodal Lorentzian fluorescence lifetime distribution. In order to explain these findings, we propose a model based on environmental heterogeneity and environmental sampling, where the environment is defined as the lipid molecules immediately surrounding the fluorophore. Environmental heterogeneity is thought of as arising from organizational, compositional, and solvent factors. Environmental sampling pertains to the ability of a fluorophore to detect environments in a system and is a function of the fluorophore lifetime and the lipid dynamics. If the fluorescence lifetime is sufficiently short, the fluorophore will only sample a particular environment, and great compositional complexity will mean that each fluorophore in an ensemble will decay to the ground state with a different time. This appears to explain why in our results with DPH a narrow width is obtained for POPC, where vesicles are composed of a single phospholipid molecular species, compared to EYPC and microsomal phospholipid vesicles having complex molecular species composition. This model should serve as a basis for understanding the interrelationships of environmental complexity and lipid dynamics in membranes.  相似文献   

4.
The single room temperature phosphorescent (RTP) residue of horse liver alcohol dehydrogenase (LADH). Trp-314, and of alkaline phosphatase (AP), Trp-109, show nonexponential phosphorescence decays when the data are collected to a high degree of precision. Using the maximum entropy method (MEM) for the analysis of these decays, it is shown that AP phosphorescence decay is dominated by a single Gaussian distribution, whereas for LADH the data reveal two amplitude packets. The lifetime-normalized width of the MEM distribution for both proteins is larger than that obtained for model monoexponential chromophores (e.g., terbium in water and pyrene in cyclohexane). Experiments show that the nonexponential decay is fundamental; i.e., an intrinsic property of the pure protein. Because phosphorescence reports on the state of the emitting chromophore, such nonexponential behavior could be caused by the presence of excited state reactions. However, it is also well known that the phosphorescence lifetime of a tryptophan residue is strongly dependent on the local flexibility around the indole moiety. Hence, the nonexponential phosphorescence decay may also be caused by the presence of at least two states of different local rigidity (in the vicinity of the phosphorescing tryptophan) corresponding to different ground state conformers. The observation that in the chemically homogeneous LADH sample the phosphorescence decay kinetics depends on the excitation wavelength further supports this latter interpretation. This dependence is caused by the wavelength-selective excitation of Trp-314 in a subensemble of LADH molecules with differing hydrophobic and rigid environments. With this interpretation, the data show that interconversion of these states occurs on a time scale long compared with the phosphorescence decay (0.1-1.0 s). Further experiments reveal that with increasing temperature the distributed phosphorescence decay rates for both AP and LADH broaden, thus indicating that either 1) the number of conformational states populated at higher temperature increases or 2) the temperature differentially affects individual conformer states. The nature of the observed heterogeneous triplet state kinetics and their relationship to aspects of protein dynamics are discussed.  相似文献   

5.
6.
The effect of three different membrane proteins on the fluorescence lifetime heterogeneity of 1,6-diphenyl-1,3,5-hexatriene (DPH) in phospholipid vesicle systems was investigated. For large unilamellar vesicles of dimyristoylphosphatidylcholine (DMPC) and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) at 37 degrees C, the fluorescence decay was essentially monoexponential (8.6 and 8.2 ns, respectively) except for a minor component typical of DPH. For gramicidin D reconstituted into DMPC vesicles at a protein/lipid molar ratio of 1/7, the most appropriate analysis of the data was found to be in the form of a bimodal Lorentzian distribution. Centers of the major lifetime components were almost identical with those recovered for vesicles without proteins, while broad distributional widths of some 4.0 ns were recovered. Variation of the protein/lipid molar ratio in sonicated POPC vesicles revealed an abrupt increase in distributional width at ratios approximating 1/15-1/20, which leveled off at about 2.5 ns. For bacteriorhodopsin in DMPC vesicles and cytochrome b5 in POPC, the most appropriate analysis of the data was again found to be in the form of a bimodal Lorentzian also with broad distributional widths in the major component. Lifetime centers were decreased for these proteins due to fluorescence energy transfer to the retinal of the bacteriorhodopsin and heme of the cytochrome b5. Fluorescence energy transfer is distance dependent, and since a range of donor-acceptor distances would be expected in a membrane, lifetime distributions should therefore be recovered independently of other effects for proteins possessing acceptor chromophores.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The fluorescence emission of 1,6-diphenyl-1,3,5-hexatriene (DPH) in K562 cell membranes has been studied using multifrequency phase and modulation fluorimetry. The DPH decay data collected at various modulation frequencies were analysed by assuming either a model of discrete exponential components or a model of continuous lifetime distribution. The fits showed smaller values of the reduced chi square using the model of continuous lifetime distribution. The K562 cell membranes dynamics were investigated during the cell differentiation along the erythroid pathway. By using the continuous lifetime distribution method for the analysis of the DPH decay, marked variations were observed during the four initial days of the erythroid differentiation. Namely, the width of the DPH lifetime distribution increased by a factor of about two, while the center value of the distribution remained constant. By using the discrete exponential components model for the analysis of the DPH decay no variations were observed during the K562 differentiation.  相似文献   

8.
The effect of cholesterol on phospholipid acyl chain packing in bilayers consisting of highly unsaturated acyl chains in the liquid crystalline phase was examined for a series of symmetrically and asymmetrically substituted phosphatidylcholines (PCs). The time-resolved fluorescence emission and decay of fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) was used to characterize equilibrium and dynamic structural properties of bilayers containing 30 mol % cholesterol. The bilayers were composed of symmetrically substituted PCs with acyl chains of 14:0, 18:1n9, 20:4n6, or 22:6n3, containing 0, 1, 4, or 6 double bonds, respectively, and mixed-chain PCs with a saturated 16:0 sn-1 chain and 1, 4, or 6 double bonds in the sn-2 chain. DPH excited-state lifetime was fit to a Lorentzian lifetime distribution, the center of which was increased 1-2 ns by 30 mol % cholesterol relative to the cholesterol-free bilayers. Lifetime distributions were dramatically narrowed by the addition of cholesterol in all bilayers except the two consisting of dipolyunsaturated PCs. DPH anisotropy decay was interpreted in terms of the Brownian rotational diffusion model. The effect of cholesterol on both the perpendicular diffusion coefficient D perpendicular and the orientational distribution function f(theta) varied with acyl chain unsaturation. In all bilayers, except the two dipolyunsaturated PCs, 30 mol % cholesterol dramatically slowed DPH rotational motion and restricted DPH orientational freedom. The effect of cholesterol was especially diminished in di-22:6n3 PC, suggesting that this phospholipid may be particularly effective at promoting lateral domains, which are cholesterol-rich and unsaturation-rich, respectively. The results are discussed in terms of a model for lipid packing in membranes containing cholesterol and PCs with highly unsaturated acyl chains.  相似文献   

9.
Heterogeneity in the lipid organization in lipid bilayers and cell membranes was probed by using the fluorescence decay of 1,6-diphenyl-1,3,5-hexatriene (DPH) and DPH attached to the sn-2 position of phosphatidylcholine (DPH-PC). In the presence of protein, it is proposed that the bulk lipids and boundary lipids can potentially provide distinct enough fluorophore environments for two different lifetime centers to be recovered from the analysis of the fluorescence decay. To test this model experiments were performed with cytochrome b5 in 1-palmitoyl-2-oleoylphosphatidylcholine bilayers. The number of boundary lipids of cytochrome b5 is known from the literature or can be calculated from known dimensions, so that for a known protein:lipid ratio the fraction of lipids in the bulk and boundary lipid regions is known. These values were found to closely correspond to the fractions associated with the lifetime centers recovered from an analysis of the fluorescence decay assuming two major fluorophore populations. This indicated that the DPH distributed in a similar manner to the lipids and that its boundary lipid residency time was greater than the excited state lifetime, showing the validity of the approach. An important requirement was that the protein should influence the fluorophore decay sufficiently enough to enable separate lifetime centers for the bulk and boundary lipid fluorophores to be recovered by the analysis. Attempts were made to analyze the fluorescence decay of DPH in liver plasma membranes and microsomes as arising from two distinct fluorophore populations, however, the basic condition was not satisfied. By contrast, using DPH-PC it was possible to extract two separate lifetime centers. The limitations and potential of this approach are critically assessed and it is concluded that in certain circumstances information pertaining to the protein-lipid interfacial region of membranes can be extracted from fluorescence decay heterogeneity properties.  相似文献   

10.
Fluorescence measurements of 1,6-diphenyl-1,3,5-hexatriene (DPH) in large unilamellar phospholipid vesicles were performed to characterize the influence of the membrane physical properties on the short-lived lifetime component of the fluorescence decay. We have found that the short-lived component of DPH significantly shortens when the membrane undergoes a temperature-induced phase transition as it is known for the long-lived component of DPH. We induced membrane phase transitions also by alcohols, which are reported to be distributed different way in the membrane–ethanol close to the membrane-water interface and benzyl alcohol in the membrane core. A different effect of the respective alcohol on the short and long decay component was observed. Both the time-resolved fluorescence spectra of DPH taken during lipid vesicle staining and the lifetime dependences caused by changes of temperature and/or induced by the alcohols show that the short-lived fluorescence originates from the population of dye molecules distributed at the membrane–water interface.  相似文献   

11.
Measurement of multiple fluorescence decay times of 1,6-diphenyl-1,3,5-hexatriene (DPH) in membranes can in principle be used to investigate structural domains of lipid bilayers. To assess the feasibility of this approach using phase and modulation techniques, we reduced experimental errors specifically associated with performing these measurements on membrane suspensions (probe self-quenching, background fluorescence, turbidity-induced artifacts) and determined empirically the level of precision thereby obtainable. Next we used these precision limits in theoretical calculations to conclude that the ratio of two coexisting decay times must exceed 1.3 if they are to be resolved with reliable accuracy. To demonstrate that such resolutions could be accomplished experimentally in membrane suspensions, three approaches were taken. First, the fluorescence decay of aqueous quinine sulfate quenched by chloride ion was resolved from that of membrane-associated DPH as long as the lifetime ratios of these two fluorophores exceeded the predicted value. Second, populations of DPH-containing lipid vesicles with single (or nearly single) decay times were mixed together, and when there were only two major lifetime components that differed by more than 30%, the resulting heterogeneous fluorescence could be resolved into the two expected lifetime components. Finally, DPH fluorescence decay measurements were correlated with phase behavior in well-characterized lipid systems, revealing a short lifetime component of DPH fluorescence associated with gel-phase lipid vesicles. From these studies, we conclude that only in special cases can co-existing gel and fluid phases be resolved by means of DPH lifetime heterogeneity, within the limits of precision defined herein.  相似文献   

12.
all-trans-1,4-Diindanylidenyl-2-butene (ttt-stiff-5-DPH), a torsionally constrained analogue of all-trans-1,6-diphenyl-1,3,5-hexatriene (ttt-DPH), was synthesized and studied in order to evaluate the role of phenyl-vinyl torsional motions in the photophysical and photochemical responses of the DPH chromophore. Spectroscopic and photoisomerization measurements reveal that the behavior of the rigid DPH analogue is very similar to that of the parent DPH. This similarity is obtained despite the fact that the alkyl substitution from the five-membered rings selectively lowers the energy of the 1 (1)B(u)* state, leading to inversion of the order of the 1 (1)B(u)* and 2 (1)A(g)* energy levels in hydrocarbon solvents. In stiff-5-DPH, as in DPH, an increase in solvent polarity enhances terminal over central bond photoisomerization. Analyses of fluorescence and photoisomerization quantum yields show that, as in DPH, the torsional relaxation channel on the singlet excited state manifold is inefficient, falling far short of accounting for all radiationless decay. Significant ( approximately 50 and 80% of all singlet decay in Bz and AN, respectively), photochemically unproductive, radiationless decay channels exist in both molecules. Competing one bond photoisomerizations give the two major photoproducts: tct-stiff-5-DPH and ctt-stiff-5-DPH. They were isolated in pure form and were spectroscopically characterized. Biacetyl-sensitization was used to study the behavior of the stiff-5-DPH triplet state. As in the parent DPH, stiff-5-DPH triplets undergo relatively efficient concentration dependent geometric photoisomerization.  相似文献   

13.
The fluorescence decay of alkenylparinaroyl- and palmitoylparinaroyl glycerophosphocholines in vesicles of the unlabeled alkenyloleoyl and palmitoyloleoyl analogs was determined by multifrequency phase and modulation fluorometry. The measured phase angles and demodulations could be equally well fitted to a biexponential decay, as well as unimodal or bimodal continuous lifetime distributions. The latter model was applied to study the influence of cholesterol on parinaroyl phospholipid fluorescence in vesicles. The long-living component of a bimodal lifetime distribution was sensitive toward the presence of the sterol. Upon increasing cholesterol concentrations, its lifetime center increased and its distribution widths decreased. Lifetime distribution widths in vesicles of alkenyloleoyl- or palmitoyloleoyl-glycerophosphocholine (choline plasmalogen and phosphatidylcholine, respectively) were reduced by the sterol to the same extent. We interprete the sterol-induced lifetime distribution narrowing as an effect due to an increase of membrane homogeneity in cholesterol-phospholipid membranes.  相似文献   

14.
Fluorescence lifetime distributions in proteins.   总被引:10,自引:7,他引:3       下载免费PDF全文
The fluorescence lifetime value of tryptophan residues varies by more than a factor of 100 in different proteins and is determined by several factors, which include solvent exposure and interactions with other elements of the protein matrix. Because of the variety of different elements that can alter the lifetime value and the sensitivity to the particular environment of the tryptophan residue, it is likely that non-unique lifetime values result in protein systems. The emission decay of most proteins can be satisfactorily described only using several exponential components. Here it is proposed that continuous lifetime distributions can better represent the observed decay. An approach based on protein dynamics is presented, which provides fluorescence lifetime distribution functions for single tryptophan residue proteins. First, lifetime distributions for proteins interconverting between two conformations, each characterized by a different lifetime value, are derived. The evolution of the lifetime values as a function of the interconversion rate is studied. In this case lifetime distributions can be obtained from a distribution of rates of interconversion between the two conformations. Second, the existence of a continuum of energy substates within a given conformation was considered. The occupation of a particular energy substate at a given temperature is proportional to the Boltzmann factor. The density of energy states of the potential well depends upon the width of the well, which determines the degree of freedom the residue can move in the conformational space. Lifetime distributions can be obtained by association of each energy substate with a different lifetime value and assuming that the average conformation can change as the energy of the substate is increased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
We have investigated the reason for the sensitivity of the fluorescence excited-state lifetime of 1,6-diphenyl-1,3,5-hexatriene (DPH) and its phospholipid derivatives, 1-palmitoyl-2-[2-[4-(6-phenyl-trans-1,3,5- hexatrienyl)phenyl]ethyl)carbonyl)-3-sn-phosphatidylcholine (DPHpPC) and 1-palmitoyl-2-[2-[4-(6-phenyl-trans-1,3,5- hexatrienyl)phenyl]ethyl)carbonyl)-3-sn-phosphatidic acid (DPHpPA), to the concentration of these probes in dipalmitoylphosphatidylcholine (DPPC) multilamellar membranes (Barrow, D. A., and B. R. Lentz, 1985. Biophys. J. 48:221-234; Parente, R. A., and B. R. Lentz. 1985. Biochemistry. 24:6178-6185). We have interpreted self-quenching data, excitation and emission spectra, and phase and modulation lifetime data in terms of a model that envisions dimerization of these probes in a membrane bilayer. It is proposed that dimerization alters the symmetry of the DPH excited state so as to allow more rapid decay via the normally symmetry-disallowed route from the 1Ag* state. Global analysis of fluorescence phase shift and modulation ratio data for DPHpPC in terms of the dimerization model provided a good fit of these data as a function of both modulation frequency and probe concentration. Global analysis of a similar set of data for the charged phosphatide DPHpPA predicted that this probe was much less prone to dimerize than was the uncharged DPHpPC. This physically reasonable result provides support for the assumptions made in the development of our model. We conclude that the dimerization model allows rationalization of many of the anomalous photophysical properties of DPH and its derivatives in membranes.  相似文献   

17.
Multifrequency phase fluorometry was used to determine the lifetime distributions of 1,6 diphenyl-1,3,5-hexatriene in 1-palmitoyl-2 linoleoyl phosphatidylcholine small unilamellar vesicles containing 2% incorporation of phospholipid hydroperoxides. A biexponential decay was observed in both vesicle preparations over a temperature range of 5 to 35 degrees C. Vesicles containing phospholipid hydroperoxides showed an overall longer lifetime as well as a greater distribution in width. These findings suggest that phospholipid hydroperoxides create structural heterogeneity in membrane structure.  相似文献   

18.
Fluorescence energy transfer between the donor diphenylhexatriene (DPH) and the acceptor retinal and fluorescence depolarization of DPH are used to test current theories for fluorescence energy transfer in two-dimensional systems and to obtain information on the effect of the intrinsic membrane protein, bacteriorhodopsin, on the order and dynamics of the lipid phase. Increasing the surface concentration of acceptors by raising the protein to lipid ratio leads to a decrease in the mean fluorescence lifetime by up to a factor of four. When the acceptor concentration is reduced at a fixed protein to lipid ratio by photochemical destruction of retinal, the lifetime increases and reaches approximately the value observed in protein-free vesicles when the bleaching is complete. The shape of the decay curve and the dependency of the mean lifetime on the surface concentration of acceptors are in agreement with theoretical predictions for a two-dimensional random distribution of donors and acceptors. From this analysis a distance of closest approach between donors and acceptors of approximately 18 A is obtained, which is close to the effective radius of bacteriorhodopsin (17 A) and consistent with current ideas about the location of retinal in the interior of the protein. In the absence of energy transfer (bleached vesicles), the steady-state fluorescence anisotropy, -r, of DPH is considerably lower than in the corresponding unbleached vesicles, indicating that the effect of energy transfer must be taken into account when interpreting -r in terms of order and dynamics.  相似文献   

19.
The synthesis of a new stable corrole-porphyrin dyad, made up of a free-base corrole and a free-base porphyrin connected by an amide linker is presented and the characterization of the photoinduced processes taking place in the array is described. The dyad was synthesized from meso-substituted trans-A2B-corrole bearing acid chloride functionality and meso-substituted A3B-porphyrin possessing one free NH2 group. The structure of the dyad was carefully designed and optimized to ensure stability of the molecule. The preparation of the amine component was achieved via phthalimide protection strategy which occurred to be more efficient than the traditional nitro group reduction. Results obtained from time resolved and steady state spectroscopy experiments indicate the existence of an equilibrium between the two lowest singlet excited states of the dyad, one localized on the corrole and the other on the porphyrin unit, which are nearly iso-energetic (ΔG = −0.01 eV). Independently of the excited component, energy transfer occurs in both directions (very likely with a Förster mechanism) and an equilibrium with Keq close to 1 is rapidly set with back and forward rates of the order of 109 s−1. Both states decay with a common lifetime (6.2 ns) that is longer compared to the corrole model (3.9 ns) and shorter with respect to the porphyrin reference (9.9 ns). The longer lived excited state localized on porphyrin acts as a reservoir for the excited state localized on corrole. At 77 K the equilibration does not take place during the lifetime of the excited states, and the decay of the two species occurs independently.  相似文献   

20.
The effects of the chemical constitution and structure of the substituent on the excited state dynamics of several model fluorescent pyrene-labelled molecules of biophysical interest have been examined. Nine new 1-substituted pyrenyl compounds, Py-NH-CO-C2H5, Py-NH-CO-Leu-Boc, Py-CH2-NH-CO-C2H5, Py-CH2-NH-CO-Leu-Boc, Py-CO-NH-C3H7, Py-CO-NH-Leu-OMe, Py-CH2-CO-NH-C3H7, Py-CH2-CO-NH-Leu-OMe and Py-C3H6-CO-NH-Leu-OMe, have been synthesized and their electronic spectra, fluorescence quantum yields and excited state lifetimes measured. These data have been used to calculate the radiative, kr, and non-radiative decay constants of their S1 states and the values of these constants correlated with the structures of the tethers. Non-radiative S1 decay rates (mainly intersystem crossing to T1) vary in parallel with the radiative rates so that the excited state lifetimes and radiative rate constants change considerably with the structure of the substituent whereas the quantum yields of fluorescence do not. An excellent correlation between [epsilon]max of the S1-S0 transition and either kr or the excited state lifetime is observed as long as no additional intermolecular or intramolecular excited state decay process of significant rate competes with the 'normal' radiative and non-radiative (ISC) decay processes of the pyrenyl chromophore. This correlation may have predictive value. Rates of bimolecular quenching of the S1 states of these molecules by molecular oxygen have been measured. The quenching process is diffusion-controlled with a spin statistical factor of 1, indicating that the S1-T1 electronic energy spacings of all the derivatives exceed the O2(1Deltag-3Sigmag-) electronic excitation energy of ca. 1 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号