首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ornithine carbamoyltransferase has been purified from the liver of the loggerhead turtle Caretta caretta by a single-step procedure using chromatography on an affinity column to which the transition-state analogue, delta-N-(phosphonoacetyl)-L-ornithine (delta-PALO), was covalently bound. The procedure employed yielded an enzyme which was purified 373-fold and was judged to be homogeneous by nondenaturing and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme showed a specific activity of 224. The molar mass of the C. caretta enzyme was approximately 112 kDa, the single band obtained by SDS-PAGE indicated a subunit molar mass of 39.5 kDa; hence, the enzyme is a trimer of identical subunits. It catalyzes an ordered sequential mechanism in which carbamoyl phosphate binds first, followed by L-ornithine. The Michaelis constants were 0.858 mM for L-ornithine and 0.22 mM for carbamoyl phosphate, the dissociation constant of the enzyme-carbamoyl phosphate complex was 0.50 mM.  相似文献   

2.
Cell-free extracts from phaseolotoxin-producing strains of Pseudomonas syringae pv. phaseolicola grown at 18 degrees C, the optimum temperature for phaseolotoxin production, contain an ornithine carbamoyltransferase activity that is insensitive to phaseolotoxin. Extracts from the same strains grown at 30 degrees C, a temperature at which little or no detectable phaseolotoxin is produced, and from phaseolotoxin-nonproducing strains contain a phaseolotoxin-sensitive ornithine carbamoyltransferase activity. The phaseolotoxin-insensitive ornithine carbamoyltransferase activity is also less senstive to N delta-(phosphonacetyl)-L-ornithine than the phaseolotoxin-sensitive ornithine carbamoyltransferase activity of the corresponding strain.  相似文献   

3.
Transcarbamylases reversibly transfer a carbamyl group from carbamylphosphate (CP) to an amine. Although aspartate transcarbamylase and ornithine transcarbamylase (OTC) are well characterized, little was known about putrescine transcarbamylase (PTC), the enzyme that generates CP for ATP production in the fermentative catabolism of agmatine. We demonstrate that PTC (from Enterococcus faecalis), in addition to using putrescine, can utilize L-ornithine as a poor substrate. Crystal structures at 2.5 Å and 2.0 Å resolutions of PTC bound to its respective bisubstrate analog inhibitors for putrescine and ornithine use, N-(phosphonoacetyl)-putrescine and δ-N-(phosphonoacetyl)-L-ornithine, shed light on PTC preference for putrescine. Except for a highly prominent C-terminal helix that projects away and embraces an adjacent subunit, PTC closely resembles OTCs, suggesting recent divergence of the two enzymes. Since differences between the respective 230 and SMG loops of PTC and OTC appeared to account for the differential preference of these enzymes for putrescine and ornithine, we engineered the 230-loop of PTC to make it to resemble the SMG loop of OTCs, increasing the activity with ornithine and greatly decreasing the activity with putrescine. We also examined the role of the C-terminal helix that appears a constant and exclusive PTC trait. The enzyme lacking this helix remained active but the PTC trimer stability appeared decreased, since some of the enzyme eluted as monomers from a gel filtration column. In addition, truncated PTC tended to aggregate to hexamers, as shown both chromatographically and by X-ray crystallography. Therefore, the extra C-terminal helix plays a dual role: it stabilizes the PTC trimer and, by shielding helix 1 of an adjacent subunit, it prevents the supratrimeric oligomerizations of obscure significance observed with some OTCs. Guided by the structural data we identify signature traits that permit easy and unambiguous annotation of PTC sequences.  相似文献   

4.
The mechanism of inhibition of ornithine transcarbamoylase by the bacterial toxin phaseolotoxin [N-delta-(phosphosulphamyl)ornithylalanylhomoarginine] was investigated. Ornithine transcarbamoylase was purified by affinity chromatography from Escherichia coli W argR- by using N-delta-(phosphonoacetyl)ornithine as the ligand. Under steady-state conditions phaseolotoxin inhibition was reversible and exhibited mixed kinetics with respect to carbamoyl phosphate. The apparent Ki and apparent K'i were 0.2 microM and 10 microM respectively. Inhibition with respect to ornithine was noncompetitive, with an apparent Ki of 0.9 microM. These data are consistent with competitive binding of phaseolotoxin to the carbamoyl phosphate-binding site of the enzyme. The toxin also appears to be able to bind to the enzyme-carbamoyl phosphate complex, although, since K'i is 50 times greater than Ki, this event is kinetically much less significant. In the presence of phaseolotoxin ornithine transcarbamoylase exhibited a transient phase of activity before a steady state. This is consistent with low rates of association and dissociation for the toxin with enzyme and the enzyme-toxin complex. Rate constants of 2.5 X 10(4)M-1 X s-1 and 5 X 10(-3)s-1 were estimated for the association and dissociation constants respectively.  相似文献   

5.
Phaseolotoxin [(N delta-phosphosulfamyl)ornithylalanylhomoarginine], a phytotoxic tripeptide produced by Pseudomonas syringae pv. phaseolicola that inhibits ornithine carbamoyltransferase, is transported into Escherichia coli and Salmonella typhimurium via the oligopeptide transport system (Opp). Mutants defective in oligopeptide permease (Opp-) were resistant to phaseolotoxin. Spontaneous phaseolotoxin-resistant mutants (Toxr) lacked the Opp function as evidenced by their cross-resistance to triornithine and failure to utilize glycylhistidylglycine as a source of histidine. Growth inhibition by phaseolotoxin was prevented by peptides known to be transported via the Opp system and by treatment of the toxin with L-aminopeptidase. In both E. coli and S. typhimurium, Toxr mutations were cotransducible with trp, suggesting that the opp locus occupies similar positions in genetic maps of these bacteria.  相似文献   

6.
The tripeptide, glycyl-d,l-leucyl-l-tyrosine was chemically synthesized in radioactive form and used to directly study the specificity, regulation, and properties of an oligopeptide transport system in Neurospora. Transport activity is sensitive to azide but does not result in the accumulation of the intact peptide; rather, the radioactive label is accumulated as free tyrosine. Inhibition studies suggest that the transport system probably has a relatively wide range of specificity and is responsible for uptake of short oligopeptides of quite distinct sequences. However, free amino acids and dipeptides are not transported significantly, if at all, by the oligopeptide transport system. A free amino group appears to be a requirement for peptide transport. A mutant strain that is unable to use various peptides for growth is further described and shown to be reduced greater than 90% in transport of the tripeptide.  相似文献   

7.
Nδ-(Phosphonacetyl)-L-ornithine, a transition state analogue for the reaction catalyzed by ornithine carbamoyltransferase (EC 2.1.3.3), was synthesized. It strongly inhibited bovine liver ornithine carbamoyltransferase. The inhibition was competitive with respect to carbamoyl-phosphate; the apparent Km values for carbamoyl-phosphate were 15 μM in 0.05 M N-2-hydroxyethylpiperazine-N′-2-ethanesulfonate (pH 7.2) and 33 μM in 0.1 M Tris-HCl (pH 8.5), and the inhibition constants at pH 7.2 and 8.5 were 7.1 and 4.7 nM, respectively. The inhibition was non-competitive with L-ornithine, the other substrate of the enzyme. This analogue may provide an effective reagent for the elucidation of carbamoyl-phosphate metabolism and its regulation in the liver of ureotelic animals.  相似文献   

8.
Phaseolotoxin, a tripeptide inhibitor of ornithine transcarbamoylase, is a phytotoxin produced by Pseudomonas syringae pv. phaseolicola, the causal agent of halo-blight in beans. In vivo the toxin is cleaved to release N delta-(N'-sulpho-diaminophosphinyl)-L-ornithine, the major toxic chemical species present in diseased leaf tissue. This paper reports on the interaction between N delta-(N'-sulpho-diaminophosphinyl)-L-ornithine and ornithine transcarbamoylase. N delta-(N'-Sulpho-diaminophosphinyl)-L-ornithine was found to be a potent inactivator of the enzyme, in contrast with phaseolotoxin, which previously has been reported to inhibit the enzyme reversibly. Inactivation by N delta-(N'-[35S]sulpho-diaminophosphinyl)-L-ornithine resulted in the incorporation of 35S into ethanol-precipitated protein. The stoicheiometry of 35S incorporation was approximately 1 mol/mol of active sites. Inactivation was second-order and a rate constant of 10(6) M-1 X s-1 at 0 degree C in 50 mM-Tris/HCl, pH 9.0, was obtained. Carbamoyl phosphate, a substrate of ornithine transcarbamoylase, protected the enzyme from inactivation. A dissociation constant of 3 microM for the enzyme-carbamoyl phosphate complex was calculated. L-Ornithine, the second substrate for ornithine transcarbamoylase, protected the enzyme only at high concentrations. The results are consistent with N delta-(N'-sulpho-diaminophosphinyl)-L-ornithine being a potent affinity label that binds via the carbamoyl phosphate-binding site of ornithine transcarbamoylase. Cleavage of phaseolotoxin to N delta-(N'-sulpho-diaminophosphinyl)-L-ornithine in vivo appears to be an important function in the physiology of the disease.  相似文献   

9.
N-Cbz-4,5-dehydro-L-prolineamide or N-Boc-4,5-dehydro-L-prolineamide are alternative key intermediates for the synthesis of saxagliptin, a dipeptidyl peptidase IV (DPP4) inhibitor recently approved for treatment of type 2 diabetes mellitus. An efficient biocatalytic method was developed for conversion of L-ornithine, N-α-benzyloxycarbonyl (Cbz)-L-ornthine, and N-α-tert-butoxycarbonyl (Boc)-L-ornithine to 5-hydroxy-L-proline, N-Cbz-5-hydroxy-L-proline, and N-Boc-5-hydroxy-L-proline, respectively. Rec. Escherichia coli expressing lysine-ε-aminotransferase and rec Pichia pastoris expressing L-ornithine oxidase were used for these conversions. N-Cbz-5-hydroxy-L-proline, and N-Boc-5-hydroxy-L-proline were chemically converted to key intermediates N-Cbz-4,5-dehydro-L-prolineamide and N-Boc-4,5-dehydro-L-prolineamide, respectively.  相似文献   

10.
Multiplicity of oligopeptide transport systems in Escherichia coli.   总被引:13,自引:10,他引:3       下载免费PDF全文
The ability of Escherichia coli K-12 4212 to utilize a variety of oligopeptides as sources of required amino acids was examined. Triornithine-resistant mutants of this strain were oligopeptide permease deficient (Opp-) as judged by their inability to utilize (Lys)3 and (Lys)4 as sources of lysine and their resistance to the toxic tripeptide (Val)3. These same mutants were able to grow when Met-Met-Met, Met-Gly-Met, Met-Gly-Gly, Gly-Met-Gly, Gly-Gly-Met, Gly-Met-Met, Met-Met-Gly, or Leu-Leu-Leu were supplied in place of the requisite amino acid. The system mediating the uptake of these peptides, herein designated Opr I, was not able to transport N-alpha-acetylated peptides, nor the tetrapeptides Met-Gly-Met-Met, Met-Met-Gly-Met, or Met-Met-Met-Gly. Competition experiments indicated that trimethionine and trileucine enter E. coli K-12 via either Opp or Opr I. Analogous results were found using the methionine, leucine-requiring auxotroph E. coli B163. It appears that more than one oligopeptide transport system exists in E. coli and that the system mediating peptide uptake is complex.  相似文献   

11.
Two transport systems for L-arginine were evident in Anabaena sp. strain PCC 7120: a high-affinity one (Km, 1.7 microM) that accumulated arginine within the cells through an energy-requiring process and another one that exhibited low affinity for L-arginine (Km, 0.75 mM) and was unable to accumulate the substrate. Both systems were inhibited by L-canavanine, L-lysine, and L-ornithine. Two systems were also evident for L-lysine uptake (Km, 1.9 and 110 microM, respectively). After selection for resistance to canavanine or hydroxylysine, independent mutants were isolated which were impaired in the high-affinity uptake of arginine and lysine. A common permease appears, therefore, to be involved in the high-affinity transport of these basic amino acids. Both the high- and the low-affinity systems can contribute to the growth of Anabaena sp. on L-arginine. However, arginine did not effectively repress either nitrogenase or nitrate reductase.  相似文献   

12.
N5-(L-1-Carboxyethyl)-L-ornithine:NADP+ oxidoreductase (EC 1.5.1.-) from Streptococcus lactis K1 has been purified 8,000-fold to homogeneity. The NADPH-dependent enzyme mediates the reductive condensation between pyruvic acid and the delta- or epsilon-amino groups of L-ornithine and L-lysine to form N5-(L-1-carboxyethyl)-L-ornithine and N6-(L-1-carboxyethyl)-L-lysine, respectively. The five-step purification procedure involves ion-exchange (DE52 and phosphocellulose P-11), gel filtration (Ultrogel AcA 44), and affinity chromatography (2',5'-ADP-Sepharose 4B). Approximately 100-200 micrograms of purified enzyme of specific activity 40 units/mg were obtained from 60 g of cells, wet weight. Anionic polyacrylamide gel electrophoresis revealed a single enzymatically active protein band, whereas three species (pI 4.8-5.1) were detected by analytical electrofocusing. The purified enzyme is active over a broad pH range of 6.5-9.0 and is stable to heating at 50 degrees C for 10 min. Substrate Km values were determined to be: NADPH, 6.6 microM; pyruvate, 150 microM; ornithine, 3.3 mM; and lysine, 18.2 mM. The oxidoreductase has a relative molecular mass (Mr = 150,000) as estimated by high pressure liquid chromatography exclusion chromatography and by polyacrylamide gradient gel electrophoresis. Conventional gel filtration indicated an Mr = 78,000, and a single protein band of Mr = 38,000 was revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme is composed of identical subunits of Mr = 38,000, which may associate to yield both dimeric and tetrameric forms. Polyclonal antibody to the purified protein inhibited enzyme activity. The amino acid composition of the enzyme is reported, and the sequence of the first 37 amino acids from the NH2 terminus has been determined by stepwise Edman degradation.  相似文献   

13.
In Agrobacterium tumefaciens and Rhizobia arginine can be used as the sole nitrogenous nutrient via degradation by an inducible arginase. These microorganisms were found to exhibit arginine inhibition of ornithine carbamoyltransferase activity. This inhibition is competitive with respect to ornithine (Km for ornithine = 0.8 mM; Ki for arginine = 0.05 mM). This type of urea cycle regulation has not been observed among other microorganisms which degrade arginine via an arginase. The competitive pattern of this inhibition leads to its being inoperative in ornithine-grown cells, where the intracellular concentration of ornithine is high. In arginine-grown cells, however, the intracellular arginine and ornithine concentrations are compatible with inhibition and ornithine recycling appears to be effectively blocked in vivo.  相似文献   

14.
In Pseudomonas aeruginosa arginine can be degraded by the arginine "dihydrolase" system, consisting of arginine deiminase, catabolic ornithine carbamoyltransferase, and carbamate kinase. Mutants of P. aeruginosa strain PAO affected in the structural gene (arcB) of the catabolic ornithine carbamoyltransferase were isolated. Firt, and argF mutation (i.e., a block in the anabolic ornithine carbamoyltransferase) was suppressed specifically by a mutationally altered catabolic ornithine carbamoyltransferase capable of functioning in the anabolic direction. The suppressor locus arcB (Su) was mapped by transduction between hisII and argA. Second, mutants having lost suppressor activity were obtained. The Su- mutations were very closely linked to arcB (Su) and caused strongly reduced ornithine carbamoyltransferase activities in vitro. Under aerobic conditions, a mutant (PA0630) which had less than 1% of the wild-type catabolic ornithine carbamoyltransferase activity grew on arginine as the only carbon and nitrogen source, at the wild-type growth rate. When oxygen was limiting, strain PA0630 grown on arginine excreted citrulline in the stationary growth phase. These observations suggest that during aerobic growth arginine is not degraded exclusively via the dihydrolase pathway.  相似文献   

15.
After injection of insulin into chickens, a new form of arginase with a 16-fold increase of activity appears in the liver. The new form has a different chromatographic behaviour on DEAE-cellulose. The low activity enzyme has a very high Km value (60mM), and is poorly inhibited by L-ornithine. The induced form of arginase is strongly inhibited by L-ornithine and has an allosteric behaviour which can be described by a Monod-Wyman-Changeux model. 1,4-Diaminobutane, spermine have practically no effect on either form of arginase.  相似文献   

16.
We have determined the complete nucleotide sequence of the arcB gene from Pseudomonas aeruginosa strain PAO and we have purified the arcB product, the catabolic ornithine carbamoyltransferase (EC 2.1.3.3), to apparent homogeneity from the same strain. The N-terminal amino acid sequence, the total amino acid composition and the subunit size of the purified enzyme were in agreement with nucleotide sequencing results, which predict a polypeptide of 336 amino acids (Mr 38,108). Crosslinking experiments suggest that the native enzyme (apparent Mr approx. 420,000) basically consists of a trimer aggregating to form nonamers or dodecamers. The arcB gene of P. aeruginosa had strong homology with the argF and argI genes which code for the anabolic ornithine carbamoyltransferase isoenzymes in Escherichia coli; 63% of the nucleotides and 57% of the amino acids were absolutely conserved in arcB and argF. This indicates a close evolutionary relationship between these genes although their products have different physiological functions in the cell. Under conditions of induction (energy depletion) the catabolic ornithine carbamoyltransferase represented greater than or equal to 10% of the total cellular protein. Like other highly expressed Pseudomonas genes, the arcB gene was found not to use seven codons which correspond to minor or weakly interacting tRNA species in E. coli.  相似文献   

17.
Glutamate availability in the argF-argR-proBDelta strain of Corynebacterium glutamicum was increased by addition of glutamate to the cell or inactivation of the phosphoenolpyruvate carboxykinase activity and simultaneous overexpression of the pyruvate carboxylase activity to assess its effect on Lornithine production. When glutamate was increased in an Lornithine- producing strain, the production of L-ornithine was not changed. This unexpected result indicated that the intracellular concentration and supply of glutamate is not a rate-limiting step for the L-ornithine production in an L-ornithine-producing strain of C. glutamicum. In contrast, overexpression of the L-ornithine biosynthesis genes (argCJBD) resulted in approximately 30% increase of L-ornithine production, from 12.73 to 16.49 mg/g (dry cell weight). These results implied that downstream reactions converting glutamate to L-ornithine, but not the availability of glutamate, is the rate-limiting step for elevating L-ornithine production in the argF-argR-proBDelta strain of C. glutamicum.  相似文献   

18.
Summary Some of the properties of the tetrapeptide tuftsin, Thr-Lys-Pro-Arg, are discussed. We describe three phases of tuftsin activation of the macrophage. Tuftsinyltuftsin, the octapeptide Thr-Lys-Pro-Arg-Thr-LysPro-Arg, was synthesized with a view of minimizing the formation of Lys-Pro-Arg, from tuftsin by tissue aminopeptidases. The tripeptide is a tuftsin inhibitor. The octapeptide proved to be quite effective in prolonging the life of syngeneic mice injected with L1210 leukemia cells. Its effect in our laboratory, was considerably better than we could obtain with tuftsin. A simple method for purifying tuftsin by high performance liquid chromatography is described using 0.75% trifluoroacetic acid in water.The tuftsin sequence Thr-Lys-Pro-Arg is present in P 12 protein of Rausher murine leukemia virus. A close analog Thr-Arg-Pro-Lys appears in yet another virus protein the haemagglutinin of influenza virus. A second close analog Thr-Arg-Pro-Arg forms the penultimate carboxyterminal of a pancreatic polypeptide found in human and several animals.  相似文献   

19.
Human adenylate cyclase (ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1) has been studied in preparations of fat cell membranes ("ghosts"). As reported earlier, under ordinary assay conditions (1.0 mM ATP, 5 mM Mg2+, 30 degrees C, 10 min incubation) the enzyme was activated 6-fold by epinephrine in the presence of the GTP analog, 5'-guanylyl-imidodiphosphate [GMP-P(NH)P] (Cooper, B. et al. (1975) J. Clin. Invest. 56, 1350-1353). Basal activity was highest during the first 2 min of incubation then slowed and was linear for at least the next 18 min. Epinephrine, added alone, was often without effect. but sometimes maintained the initial high rate of basal activity. GMP-P(NH)P alone produced inhibition ("lag") of basal enzyme early in the incubation periods. Augmentation of epinephrine effect by GMP-P(NH)P, which also proceeded after a brief (2 min) lag period, was noted over a wide range of substrate (ATP) concentrations. GTP inhibited basal levels of the enzyme by about 50%. GTP also allowed expression of an epinephrine effect, but only in the sense that the hormone abolished the inhibition by GTP. Occasionally a slight stimulatory effect on epinephrine action was seen with GTP. At high Mg2+ concentration (greater than 10 mM) or elevated temperatures (greater than 30 degrees C) GMP-P(NH)P alone activated the enzyme. Maximal activity of human fat cell adenylate cyclase was seen at 50 mM Mg2+, 1.0 mM ATP, pH 8.2, and 37 degrees C in the presence of 10(-4) M GMP-P(NH)P; under these conditions addition of epinephrine did not further enhance activity. Human fat cell adenylate cyclase of adults was insensitive to ACTH and glucagon even in the presence of GMP-P(NH)P.  相似文献   

20.
Ornithine transcarbamylase (OTCase) was purified from the small intestine of rat and the properties of the gut enzyme were compared with those of the enzyme from liver. The enzymes from both sources bound to the transition-state analog inhibitor, delta-N-(phosphonoacetyl)-L-ornithine, immobilized on Sepharose and eluted with carbamyl phosphate as a homogeneous preparation. The specific activities of the pure enzymes were 966 mumol min-1 mg-1 and 928 mumol min-1 mg-1 from liver and gut respectively, and the molecular mass, based on electrophoretic mobility, was 38 000 Da. The isoelectric point of the enzymes from both sources was 7.3. The enzymes from both sources cross-react to the same extent with antibodies against the liver enzyme on Western transfers and the size of the mRNA was identical on Northern transfers probed with a cDNA for the liver enzyme. Although OTCase is apparently the same gene product in both liver and gut, the enzyme levels respond differently to alterations in the protein content of the diet. OTCase in liver increased from 0.76 mumol min-1 microgram-1 DNA on 15% casein to 1.3 mumol min-1 microgram-1 DNA on 60% casein (P less than 0.01) whereas in small intestine the level decreased from 8.8 nmol min-1 microgram DNA on 15% casein to 5.7 nmol min-1 microgram-1 DNA on 60% casein (P less than 0.05). When expressed on a fresh-weight basis, the enzyme activity in liver shows the characteristic increase with increasing protein, whereas the activity in gut does not. The connection between these differences in gene expression and the different physiological roles of OTCase in liver and gut is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号