首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xanthobacter polyaromaticivorans sp. nov. 127W is a bacterial strain that is capable of degrading a wide range of cyclic aromatic compounds such as dibenzothiophene, biphenyl, naphthalene, anthracene, and phenanthrene even under extremely low oxygen [dissolved oxygen (DO)≤0.2 ppm] conditions (Hirano et al., Biosci Biotechnol Biochem 68:557–564, 2004). A major protein fraction carrying dibenzothiophene degradation activity was purified. Based on its partial amino acid sequences, dbdCa gene encoding alpha subunit terminal oxygenase (DbdCa) and its flanking region were cloned and sequenced. A phylogenetic analysis based on the amino acid sequence demonstrates that DbdCa is a member of a terminal oxygenase component of group IV ring-hydroxylating dioxygenases for biphenyls and monocyclic aromatic hydrocarbons, rather than group III dioxygenases for polycyclic aromatic hydrocarbons. Gene disruption in dbdCa abolished almost of the degradation activity against biphenyl, dibenzothiophene, and anthracene. The gene disruption also impaired degradation activity of the strain under extremely low oxygen conditions (DO≤0.2 ppm). These results indicate that Dbd from 127W represents a group IV dioxygenase that is functional even under extremely low oxygen conditions.  相似文献   

2.
Anaerobic oxidation of aromatic compounds and hydrocarbons   总被引:10,自引:0,他引:10  
Aromatic compounds and hydrocarbons have in common a great stability due to resonance energy and inertness of CbondH and CbondC bonds. It has been taken for granted that the metabolism of these compounds obligatorily depends on molecular oxygen. Oxygen is required first to introduce hydroxyl groups into the substrate and then to cleave the aromatic ring. However, newly discovered bacterial enzymes and reactions involved in oxidation of aromatic and hydrocarbon compounds to CO(2) in the complete absence of molecular oxygen have been discovered. Of special interest are two reactions: the reduction of the aromatic ring of benzoyl-coenzyme A and the addition of fumarate to hydrocarbons. These reactions transform aromatic rings and hydrocarbons into products that can be oxidized via more conventional beta-oxidation pathways.  相似文献   

3.
TOL plasmid pWW0 specifies enzymes for the oxidative catabolism of toluene and xylenes. The upper pathway converts the aromatic hydrocarbons to aromatic carboxylic acids via corresponding alcohols and aldehydes and involves three enzymes: xylene oxygenase, benzyl alcohol dehydrogenase, and benzaldehyde dehydrogenase. The synthesis of these enzymes is positively regulated by the product of xylR. Determination of upper pathway enzyme levels in bacteria carrying Tn5 insertion mutant derivatives of plasmid pWW0-161 has shown that the genes for upper pathway enzymes are organized in an operon with the following order: promoter-xylC (benzaldehyde dehydrogenase gene[s])-xylA (xylene oxygenase gene[s])-xylB (benzyl alcohol dehydrogenase gene). Subcloning of the upper pathway genes in a lambda pL promoter-containing vector and analysis of their expression in Escherichia coli K-12 confirmed this order. Two distinct enzymes were found to attack benzyl alcohol, namely, xylene oxygenase and benzyl alcohol dehydrogenase; and their catalytic activities were additive in the conversion of benzyl alcohol to benzaldehyde. The fact that benzyl alcohol is both a product and a substrate of xylene oxygenase indicates that this enzyme has a relaxed substrate specificity.  相似文献   

4.
Liver post-mitochondrial supernatants derived from 10 individuals were used as the source of metabolic activation for carcinogens in the Ames quantitative mutagenicity test using Salmonella typhimurium TA 100. The liver samples were obtained from brain-dead donors and autopsy cases. The ability of human enzymes to activate aromatic amines ranged from the undetectable to highly active for 2-acetylaminofluorene. None of the samples exhibited any ability to activate benzidine. A generally low activity was observed in the capability of human enzymes to activate the polynuclear aromatic hydrocarbons, 3-methylcholanthrene and benzo(a)pyrene. Most samples were positive for activating 4-nitrobiphenyl. However, the highest mutagenic activity in the presence of human enzymes was consistently observed for aflatoxin B1 and sterigmatocystin. These results indicated that (a) human enzyme systems, like rodent systems, are more effective in inducing mutagenic activity from mycotoxins than aromatic amines and polynuclear aromatic hydrocarbons, and (b) samples derived from different individuals exhibited considerable variation in the ability to activate carcinogens belonging to a same class of compound.  相似文献   

5.
A biosensor for detecting the toxicity of polycylic aromatic hydrocarbons (PAHs) contaminated soil has been successfully constructed using an immobilized recombinant bioluminescent bacterium, GC2 (lac::luxCDABE), which constitutively produces bioluminescence. The biosurfactant, rhamnolipids, was used to extract a model PAH, phenanthrene, and was found to enhance the bioavailability of phenanthrene via an increase in its rate of mass transfer from sorbed soil to the aqueous phase. The monitoring of phenanthrene toxicity was achieved through the measurement of the decrease in bioluminescence when a sample extracted with the biosurfactant was injected into the minibioreactor. The concentrations of phenanthrene in the aqueous phase were found to correlate well with the corresponding toxicity data obtained by using this toxicity biosensor. In addition, it was also found that the addition of glass beads to the agar media enhanced the stability of the immobilized cells. This biosensor system using a biosurfactant may be applied as an in-situ biosensor to detect the toxicity of hydrophobic contaminants in soils and for performance evaluation of PAH degradation in soils.  相似文献   

6.
The aim of this study was to assess the acute toxicity of polycyclic aromatic hydrocarbons using lux-marked bacterial biosensors. Standard solutions of phenanthrene, pyrene and benzo[a]pyrene were produced using 50 mM hydroxpropyl-β-cyclodextrin solution which contained each respective polycyclic aromatic hydrocarbon at 6.25 times the aqueous solubility limit of the compound. The polycyclic aromatic hydrocarbon solutions were incubated with each of the biosensors for 280 min and the bioluminescence monitored every 20 min. Over the incubation time period, there was no significant decrease in bioluminescence in any of the biosensors tested with the exception of Rhizobium leguminosarum biovar trifolii TA1 luxAB. In this series of incubations, there was a dramatic increase in bioluminescence in the presence of phenanthrene (2.5 times) and benzo[a]pyrene (3 times) above that of the background control (biosensor without polycyclic aromatic hydrocarbon) after 20 min. Over the next 3 h, bioluminescence decreased to that of the control. An ATP assay was carried out on the biosensors to assess if uncoupling of the oxidative phosphorylation mechanisms in the respiratory chain of the cells had occurred. However, it was found that the polycyclic aromatic hydrocarbons had no effect on the organisms indicating that there was no uncoupling. Additionally, mineralisation studies using 14C-labelled polycyclic aromatic hydrocarbons showed that the biosensors could not mineralise the compounds. This study has shown that the three polycyclic aromatic hydrocarbons tested are not acutely toxic to the prokaryotic biosensors tested, although acute toxicity has been shown in other bioassays. These results question the rationale for using prokaryote biosensors to assess the toxicity of hydrophobic chemicals, such as polycyclic aromatic hydrocarbons.  相似文献   

7.
PAHs降解基因及降解酶研究进展   总被引:1,自引:0,他引:1  
由于环境中的多环芳烃(PAHs)具有高遗传毒性和"三致"性(致癌、致畸和致突变),其生物降解基因和降解功能酶研究备受关注.多环芳烃双加氧酶是近年来研究较多的多环芳烃降解的关键酶系之一,主要由细菌产生,可通过氧化反应使多环芳烃开环生成小分子的中间产物并最终氧化成CO2和水.目前,有关这类酶的理化性质、结构特点、功能等的研究相继开展,本文对PAHs降解基因、降解酶的研究现状与发展趋势进行综述.  相似文献   

8.
Activation reactions involve modification of recalcitrant substrates to forms that are more readily degradable. These reactions require specialized enzymes and cosubstrates, including molecular oxygen and reduced electron carriers. In these reactions, microorganisms invest electrons and cannot capture energy or carbon for synthesis. The subsequent degradation of the intermediates formed in activation reactions releases electrons, energy, and carbon that the organisms use for growth. The overall yield is reduced due to the required activation investments. A mathematical method to predict cell yields of oxygenase activation reactions is developed using electron and energy balances. Predicted yields are compared with experimental yields for methane, organic chelating agents, and aromatic hydrocarbons.  相似文献   

9.
Summary A new type of oxygenases was isolated from plant and animal sources which oxidized pyrrole and indole derivatives. They had a broad substrate specificity and were called pyrrolooxygenases. Three different enzymes within the group were identified; skatole pyrrolooxygenase, tryptophan pyrrolooxygenase and porphobilinogen oxygenase. The first two oxidized the pyrrole ring of the various indole derivatives affording substituted o-formanidophenacyl derivatives as the main oxidation products. Tryptophan pyrrolooxygenase also oxidized the tryptophanyl residues of peptides and enzymes. When those residues were essential for the activity of the tryptophan containing enzymes, then inactive enzymes were obtained.Porphobilinogen oxygenase oxidized porphobilinogen and related alkylpyrrole compounds affording 3-pyrrolin-2-one derivatives. The pyrrolooxygenases acted as mixed-function oxidases, since they required the presence of oxygen and of a reducing agent. The substrate, the oxygen and the reductant were consumed in equimolar amounts. The best artificial reducing agent was sodium dithionite. Illuminated active chloroplasts were the natural reducing agent of the plant enzymes and NADPH was the reducing agent of the animal enzymes. Pyrrolooxygenases were located in the chloroplasts of green leaves and in the microsomes in the case of the mammalian enzymes. The activity of the enzymes in the crude extracts was usually low, due to the presence in the same of a protein inhibitor. When the inhibitor was separated by protein fractionation methods, full enzymatic activity was recovered. Destruction of the inhibitor by aging or by temperature had the same effect. The very low oxygenase activity present in the microsomal rat liver preparations could be strongly enhanced by previous administration to the rats of phenobarbital or steroids. This induction of the oxygenase activity was coincident with a drop in the amount of inhibitor present in the extracts.The properties and metabolic role of the pyrrolooxygenases are discussed.  相似文献   

10.
Sphingomonas yanoikuyae B1 possesses several different multicomponent oxygenases involved in metabolizing aromatic compounds. Six different pairs of genes encoding large and small subunits of oxygenase iron-sulfur protein components have previously been identified in a gene cluster involved in the degradation of both monocyclic and polycyclic aromatic hydrocarbons. Insertional inactivation of one of the oxygenase large subunit genes, bphA1c, results in a mutant strain unable to grow on naphthalene, phenanthrene, or salicylate. The knockout mutant accumulates salicylate from naphthalene and 1-hydroxy-2-naphthoic acid from phenanthrene indicating the loss of salicylate oxygenase activity. Complementation experiments verify that the salicylate oxygenase in S. yanoikuyae B1 is a three-component enzyme consisting of an oxygenase encoded by bphA2cA1c, a ferredoxin encoded by the adjacent bphA3, and a ferredoxin reductase encoded by bphA4 located over 25kb away. Expression of bphA3-bphA2c-bphA1c genes in Escherichia coli demonstrated the ability of salicylate oxygenase to convert salicylate to catechol and 3-, 4-, and 5-methylsalicylate to methylcatechols.  相似文献   

11.
Results of the research performed at the Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, on designing immunobiosensors for detection of toxic compounds and microbial cells enzyme-based biosensors for detection of hydrocarbons and alcohols, and microbial biosensors for aromatic compounds, surfactants, and biological oxygen consumption are briefed. Parameters of the mediator electrodes involving microbial cells and data on the properties of microbial biofuel cells--devices based on biosensor principle and representing alternative sources of electric energy--are given.  相似文献   

12.
Twelve of the fifteen potential P450 enzymes from the bacterium Novosphingobium aromaticivorans, which is known to degrade a wide range of aromatic hydrocarbons, have been produced via heterologous expression in Escherichia coli. The enzymes were tested for their ability to bind a range of substrates including polyaromatic hydrocarbons. While two of the enzymes were found to bind aromatic compounds (CYP108D1 and CYP203A2), the others show binding with a variety of compounds including linear alkanes (CYP153C1) and mono- and sesqui-terpenoid compounds (CYP101B1, CYP101C1, CYP101D1, CYP101D2, CYP111A1, and CYP219A1). A 2Fe-2S ferredoxin (Arx-A), which is associated with CYP101D2, was also produced. The activity of five of the P450 enzymes (CYP101B1, CYP101C1, CYP101D1, CYP101D2, and CYP111A2) was reconstituted with Arx-A and putidaredoxin reductase (of the P450cam system from Pseudomonas putida) in a Class I type electron transfer system. Preliminary characterisation of the majority of the substrate oxidation products is reported.  相似文献   

13.
Results of the research performed at the Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, on designing immunobiosensors for detection of toxic compounds and microbial cells, enzyme-based biosensors for detection of hydrocarbons and alcohols, and microbial biosensors for aromatic compounds, surfactants, and biological oxygen consumption are reviewed. Parameters of the mediator electrodes involving microbial cells and data on the properties of microbial biofuel cells—devices based on the biosensor principle and representing alternative sources of electric energy—are presented.  相似文献   

14.
Our review of the metabolic pathways of pyridines and aza-arenes showed that biodegradation of heterocyclic aromatic compounds occurs under both aerobic and anaerobic conditions. Depending upon the environmental conditions, different types of bacteria, fungi, and enzymes are involved in the degradation process of these compounds. Our review indicated that different organisms are using different pathways to biotransform a substrate. Our review also showed that the transformation rate of the pyridine derivatives is dependent on the substituents. For example, pyridine carboxylic acids have the highest transformation rate followed by mono-hydroxypyridines, methylpyridines, aminopyridines, and halogenated pyridines. Through the isolation of metabolites, it was possible to demonstrate the mineralization pathway of various heterocyclic aromatic compounds. By using 14C-labeled substrates, it was possible to show that ring fission of a specific heterocyclic compound occurs at a specific position of the ring. Furthermore, many researchers have been able to isolate and characterize the microorganisms or even the enzymes involved in the transformation of these compounds or their derivatives. In studies involving 18O labeling as well as the use of cofactors and coenzymes, it was possible to prove that specific enzymes (e.g., mono- or dioxygenases) are involved in a particular degradation step. By using H2 18O, it could be shown that in certain transformation reactions, the oxygen was derived from water and that therefore these reactions might also occur under anaerobic conditions.  相似文献   

15.
White-rot fungi are a group of microorganisms capable of degrading xenobiotic compounds, such as polycyclic aromatic hydrocarbons or synthetic dyes, by means of the action of extracellular oxidative enzymes secreted during secondary metabolism. In this study, the transformation of three anti-inflammatory drugs: diclofenac, ibuprofen and naproxen were carried out by pellets of Phanerochaete chrysosporium in fed-batch bioreactors operating under continuous air supply or periodic pulsation of oxygen. The performance of the fungal reactors was steady over a 30-day treatment and the effect of oxygen pulses on the pellet morphology was evidenced. Complete elimination of diclofenac was achieved in the aerated and the oxygenated reactors, even with a fast oxidation rate in the presence of oxygen (77% after 2 h), reaching a total removal after 23 h. In the case of ibuprofen, this compound was completely oxidized under air and oxygen supply. Finally, naproxen was oxidized in the range of 77 up to 99% under both aeration conditions. These findings demonstrate that the oxidative capability of this microorganism for the anti-inflammatory drugs is not restricted to an oxygen environment, as generally accepted, since the fungal reactor was able to remove these compounds under aerated and oxygenated conditions. This result is very interesting in terms of developing viable reactors for the oxidation of target compounds as the cost of aeration can be significantly reduced.  相似文献   

16.
The in vitro toxicity of multiple hydrophobic compounds was the focus of this study. A mitochondrial respiratory assay, sensitive to perturbations caused by hydrophobic chemicals, was utilized to measure the effects of individual aromatic hydrocarbon pollutants and their mixtures on mitochondrial respiratory function. Benzene, naphthalene, acenaphthene, and 1-chloronaphthalene, common industrial solvents shown to interact additively in vivo, were evaluated using this in vitro assay system. Mitochondrial respiration was inhibited 50% (EC50) by 525 ppm (6.7 mM) benzene, 15 ppm (117 μM) naphthalene, 3.9 ppm (25.5 μM) acenaphthene, or 3.8 ppm (23.4 μM) 1-chloronaphthalene. NADH:O2 oxidoreductase (NADH → O2), NADH: ubiquinone oxidoreductase, and ubiquinol:O2 oxidoreductase activities were inhibited by all four compounds, whereas succinate:O2 oxidoreductase, cytochrome c oxidase, and duroquinol: O2 oxidoreductase activities were not inhibited. Inhibition of mitochondrial respiration occurred at the level of ubiquinone (coenzyme Q10) for all four aromatic hydrocarbons. The ultraviolet absorbance spectrum of isolated Q10 was also altered by naphthalene, acenaphthene, or 1-chloronaphthalene, suggesting a specific interaction between that component of the respiratory chain and these aromatic hydrocarbons. Inhibition by a mixture of 2, 3, or 4 of the compounds tested was additive, reflecting a summation effect of each compound present in the mixture. This additive nature is consistent with previously reported effects of these compounds in vivo and with compounds having similar modes of action. The similar mode of action in vitro is a specific interaction with coenzyme Q10, not a generalized membrane perturbation as speculated to occur in vivo, and is the likely mechanism for the observed additive toxicity.  相似文献   

17.
Sphingobium yanoikuyae B1 utilizes both polycyclic aromatic hydrocarbons (biphenyl, naphthalene, and phenanthrene) and monocyclic aromatic hydrocarbons (toluene, m- and p-xylene) as its sole source of carbon and energy for growth. The majority of the genes for these intertwined monocyclic and polycyclic aromatic pathways are grouped together on a 39 kb fragment of chromosomal DNA. However, this gene cluster is missing several genes encoding essential enzymatic steps in the aromatic degradation pathway, most notably the genes encoding the oxygenase component of the initial polycyclic aromatic hydrocarbon (PAH) dioxygenase. Transposon mutagenesis of strain B1 yielded a mutant blocked in the initial oxidation of PAHs. The transposon insertion point was sequenced and a partial gene sequence encoding an oxygenase component of a putative PAH dioxygenase identified. A cosmid clone from a genomic library of S. yanoikuyae B1 was identified which contains the complete putative PAH oxygenase gene sequence. Separate clones expressing the genes encoding the electron transport components (ferredoxin and reductase) and the PAH dioxygenase were constructed. Incubation of cells expressing the dioxygenase enzyme system with biphenyl or naphthalene resulted in production of the corresponding cis-dihydrodiol confirming PAH dioxygenase activity. This demonstrates that a single multicomponent dioxygenase enzyme is involved in the initial oxidation of both biphenyl and naphthalene in S. yanoikuyae B1.  相似文献   

18.
Rhodococcus sp. strain B4, isolated from a soil sample contaminated with polycyclic aromatic hydrocarbons, grows with naphthalene as the sole source of carbon and energy. Salicylate and gentisate were identified as intermediates in the catabolism of naphthalene. In contrast to the well-studied catabolic pathway encoded by the NAH7 plasmid of Pseudomonas putida, salicylate does not induce the genes of the naphthalene-degradative pathway in Rhodococcus sp. strain B4. The key enzymes of naphthalene degradation in Rhodococcus sp. strain B4 have unusual cofactor requirements. The 1,2-dihydroxynaphthalene oxygenase activity depends on NADH and the salicylate 5-hydroxylase requires NADPH, ATP, and coenzyme A.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号