首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural organization of integral and associated components of the ciliary zonule is still not fully understood. The present study is to localize and characterize the proteoglycans associated with the ciliary zonule of the rat eye by Cuprolinic blue (CB) staining and immunocytochemistry. After CB staining, the proteoglycans appeared as electron dense elongated rodlets and were localized with the zonular fibers. They were seen lying on the periphery of the zonular fibers or along the length of the individual fibrils. Most of the CB rodlets had a size of 60–170 nm long (average 130 nm) and 25 nm wide. Smaller CB rodlets measuring 25–60 nm long (average 45 nm) and 12 nm wide were sometimes found associated with the individual zonular fibrils. The CB rodlets were removed after chondroitinase ABC or chondroitinase AC treatment, but were resistant to heparitinase, nitrous acid, keratanase orStreptomyces hyaluronidase digestions. The ciliary zonule was also immunostained with three monoclonal antibodies: 2-B-6 specific for chondroitin 4-sulfate, 3-B-3 for chondroitin 6-sulfate and 1-B-5 for unsulfated chondroitin, using indirect immunoperoxidase or immuno-colloidal gold methods. The zonular fibers were immunoperoxidase stained and immunogold labeled by 2-B-6, but were not reactive to 3-B-3 and 1-B-5. The results demonstrate that chondroitin sulfate proteoglycan is associated with the ciliary zonule of the rat eye.  相似文献   

2.
Immunohistochemical methods were used for the detection of the amyloid P component in the microfibrils of two regions: the zonule of the eye and the connective tissue of the foot pad in 20- to 50-gm mice. Following fixation by immersion in 4% formaldehyde, the eyes and foot pads were embedded in paraffin, and sections were immunostained for light microscopy by using antiamyloid P component antiserum followed by peroxidase-antiperoxidase procedure. For electron microscopy, formaldehyde-fixed tissues were immunostained for the amyloid P component with protein A-gold by using either thin Lowicryl sections or frozen sections which were then embedded in Epon for thin sectioning. In the zonule of the eye, the light microscope showed that zonular fibers were strongly immunostained for the amyloid P component; there was also weak staining of the nonpigmented ciliary epithelium at the distal end of the fibers and of the zonular lamella at their proximal end. The electron microscope revealed clear-cut immunolabeling of the microfibrils making up zonular fibers as well as of individual microfibrils. In the foot pad, the light microscope detected a weak diffuse staining of connective tissue, whereas the electron microscope showed immunolabeling restricted to microfibrils. It was concluded that the amyloid P component was present in, or associated with, microfibrils. Purified amyloid P component was prepared and examined in the electron microscope after either negative staining or routine processing. After negative staining, it appeared as flat pentagonal units, frequently associated into columns. After routine processing, the units looked like cross sections of microfibrillar tubules. The dimensions of the units matched those of the hypothetical segments of the tubules. It was concluded that this tubule consisted of a column of amyloid P units. The cohesion of the units within the column was likely to be reinforced by the bands present at the surface of microfibrils.  相似文献   

3.
We localized heparan sulfate proteoglycan (HSPG) in the basement membranes of ciliary epithelium and plantar epidermis, using Cuprolinic blue to stain its side chains and an immunogold procedure to detect its core protein. In accord with most of the literature, staining with Cuprolinic blue in glutaraldehyde fixative yielded three to five times as many reaction products along the two surfaces than along the center of the lamina densa, whereas immunogold labeling for the core protein after formaldehyde fixation yielded about twice as many gold particles over the center than along the surfaces of the lamina densa. It therefore appeared that HSPG side chains predominated outside, and the core protein within, the lamina densa. To find out whether the discrepancy was true or was an artifact caused by differences in processing, we attempted to combine the two approaches on the same material. This was found possible when Cuprolinic blue was used in formaldehyde fixative, embedding was in LR White, and immunogold labeling was performed on thin sections as usual. Under these conditions, both Cuprolinic blue reaction products and immunogold particles predominated over the lamina densa in the two basement membranes under study. Moreover, evidence was present that reaction products and immunogold particles either overlapped each other or were closely associated. The lens capsule (a thick basement membrane) also showed their co-localization. The discrepancy initially observed between side chains and core protein location was attributed to differences in processing, since Cuprolinic blue staining had been carried out in the course of glutaraldehyde fixation whereas immunogold labeling was done after formaldehyde fixation. The results lead to two conclusions. First, processing differences may alter the localization of HSPG and possibly other proteoglycans. Second, both HSPG side chains and core protein are localized in the same sites within basement membrane.  相似文献   

4.
In this study, we describe the distribution of various classes of proteoglycans and their potential matrix ligand, hyaluronan, during neural crest development in the trunk region of the chicken embryo. Different types of chondroitin and keratan sulfate proteoglycans were recognized using a panel of monoclonal antibodies produced against specific epitopes on their glycosaminoglycan chains. A heparan sulfate proteoglycan was identified by an antibody against its core protein. The distribution of hyaluronan was mapped using a biotinylated fragment that corresponds to the hyaluronan-binding region of cartilage proteoglycans. Four major patterns of proteoglycan immunoreactivity were observed. (1) Chondroitin-6-sulfate-rich proteoglycans and certain keratin sulfate proteoglycans were absent from regions containing migrating neural crest cells, but were present in interstitial matrices and basement membranes along prospective migratory pathways such as the ventral portion of the sclerotome. Although initially distributed uniformly along the rostrocaudal extent of the sclerotome, these proteoglycans became rearranged to the caudal portion of the sclerotome with progressive migration of neural crest cells through the rostral sclerotome and their aggregation into peripheral ganglia. (2) A subset of chondroitin/keratan sulfate proteoglycans bearing primarily unsulfated chondroitin chains was observed exclusively in regions where neural crest cells were absent or delayed from entering, such as the perinotochordal and subepidermal spaces. (3) A subset of chondroitin/keratan sulfate proteoglycans was restricted to the perinotochordal region and, following gangliogenesis, was arranged in a metameric pattern corresponding to the sites where presumptive vertebral arches form. (4) Certain keratan sulfate proteoglycans and a heparan sulfate proteoglycan were observed in basement membranes and in an interstitial matrix uniformly distributed along the rostrocaudal extent of the sclerotome. After gangliogenesis, the neural crest-derived dorsal root and sympathetic ganglia contained both these proteoglycan types, but were essentially free of other chondroitin/keratan-proteoglycan subsets. Hyaluronan generally colocalized with the first set of proteoglycans, but also was concentrated around migrating neural crest cells and was reduced in neural crest-derived ganglia. These observations demonstrate that proteoglycans have diverse and dynamic distributions during times of neural crest development and chondrogenesis of the presumptive vertebrae. In general, chondroitin/keratan sulfate proteoglycans are abundant in regions where neural crest cells are absent, and their segmental distribution inversely correlates with that of neural crest-derived ganglia.  相似文献   

5.
Summary Immuno-gold labeling at the electron-microscopy level was used to investigate the distribution of tropoelastin in the chick eye. Intense staining was found in the amorphous part of mature elastic fibers in different regions of the organ. In elaunin fibers, both the amorphous core and the surrounding microfibrils were clearly labeled. In addition, reactive sites were detected in the oxitalan fibers of the stroma of the cornea and in Descemet's membrane, which showed a gradient of reactive sites increasing from the center toward the periphery. Oxitalan fibers of the stroma often fused with Descemet's membrane; the pattern of immunological staining suggested a continuity between the two structures. In the ciliary zonule, labeling for tropoelastin was observed in discrete areas on the bundles of microfibrils. The results show a complex structural organization of elastic tissue; this may be important in endowing the various parts of the eye with different mechanical properties.  相似文献   

6.
《Journal of molecular biology》2018,430(21):4142-4155
Fibrillin microfibrils are evolutionarily ancient, structurally complex extracellular polymers found in mammalian elastic tissues where they endow elastic properties, sequester growth factors and mediate cell signalling; thus, knowledge of their structure and organization is essential for a more complete understanding of cell function and tissue morphogenesis. By combining multiple imaging techniques, we visualize three levels of hierarchical organization of fibrillin structure ranging from micro-scale fiber bundles in the ciliary zonule to nano-scale individual microfibrils. Serial block-face scanning electron microscopy imaging suggests that bundles of zonule fibers are bound together by circumferential wrapping fibers, which is mirrored on a shorter-length scale where individual zonule fibers are interwoven by smaller fibers. Electron tomography shows that microfibril directionality varies from highly aligned and parallel, connecting to the basement membrane, to a meshwork at the zonule fiber periphery, and microfibrils within the zonule are connected by short cross-bridges, potentially formed by fibrillin-binding proteins. Three-dimensional reconstructions of negative-stain electron microscopy images of purified microfibrils confirm that fibrillin microfibrils have hollow tubular structures with defined bead and interbead regions, similar to tissue microfibrils imaged in our tomograms. These microfibrils are highly symmetrical, with an outer ring and interwoven core in the bead and four linear prongs, each accommodating a fibrillin dimer, in the interbead region. Together these data show how a single molecular building block is organized into different levels of hierarchy from microfibrils to tissue structures spanning nano- to macro-length scales. Furthermore, the application of these combined imaging approaches has wide applicability to other tissue systems.  相似文献   

7.
Summary The mechanisms of synthesis and intracellular routing of the various cartilage matrix macromolecules are still unclear. We have studied this problem in cultured chondroblasts at the ultrastructural level using (i) monospecific antibodies against the core protein of the keratan sulfate/chondroitin sulfate-rich cartilage proteoglycan (KS:CS-PG) or Type II procollagen, and (ii) cuprolinic blue, a cationic dye that binds to the glycosaminoglycan chains of proteoglycans. Intracellularly, the proteoglycan antibodies localized KS:CS-PG and its precursors primarily in the Golgi complex and secretory vesicles. In contrast, the bulk of Type II procollagen was found within the rough endoplasmic reticulum (ER). While devoid of collagen, the extracellular matrix was rich in KS:CS-PG molecules some of which studded the chondroblast plasmalemma. Cuprolinic blue staining indicated that the proteoglycans present in the Golgi complex fell into a predominant class of large proteoglycans, probably representing KS:CS-PG, and a minor class of smaller proteoglycans. Groups of these divergent proteoglycans often occupied distinct Golgi subcompartments; moreover, single large proteoglycans appeared to align along the luminal surface of Golgi cisternae and secretory vesicles. These results suggest that in cultured chondroblasts KS:CS-PG and Type II procollagen are differentially distributed both in organelles and in the extracellular matrix, and that different proteoglycan types may occupy distinct subcompartments in trans Golgi.  相似文献   

8.
The major families of proteoglycans in human arterial tissue have been localized and characterized by electron microscopy. After staining with the polycationic dye cuprolinic blue in the presence of a critical electrolyte concentration, three differently sized populations of proteoglycan-cuprolinic blue precipitates are found. The precipitates are distinguished of the basis of their morphology, topographical distribution and susceptibility to specific glycosaminoglycan-degrading enzymes. Each type of proteoglycan is preferentially associated with one connective tissue component: (a) a dermatan sulfate proteoglycan interacts with collagenous fibers, (b) a heparan sulfate proteoglycan is associated with elastic fibers and with the exterior surface of the basement membrane-like layer surrounding smooth muscle cells, and (c) a chondroitin sulfate proteoglycan forms aggregates with hyaluronate in the soluble matrix. Information about the pattern of proteoglycans in normal human arterial tissue should constitute a useful basis for evaluating perturbations in proteoglycan distribution in arteriosclerotic plaques.  相似文献   

9.
Zonular fibers are a specific form of extracellular matrix composed mainly of fibrillins. The purpose of this study was to determine which cells secrete fibrillin-1 during development and aging. A specific guinea pig fibrillin-1 mRNA probe was designed and cloned in order to identify fibrillin-secreting cells in guinea pig eye, using in situ hybridization. Immunofluorescence, with a specific guinea pig monoclonal antibody, was used to compare protein levels at different stages from birth to 35 months of age. Electron microscopy and immunolabeling were used to investigate the organization of zonular microfibril bundles. We identified the cells of non-pigmented epithelium of the ciliary body as the main source of fibrillin secreted into the zonule. Moreover, while mRNA expression decreased during aging, there was no decrease in fibrillin immunoreactivity, as previously described in human aorta. These data indicate a very slow turnover of the zonular microfibrils which can be correlated with the appearance during aging of a new periodic fibrillar structure. This new structure may reflect an increased cross-linking in the long-lived zonular microfibrillar bundles.  相似文献   

10.
The basic concept, that specialized extracellular matrices rich in hyaluronan, chondroitin sulfate proteoglycans (aggrecan, versican, neurocan, brevican, phosphacan), link proteins and tenascins (Tn-R, Tn-C) can regulate cellular migration and axonal growth and thus, actively participate in the development and maturation of the nervous system, has in recent years gained rapidly expanding experimental support. The swift assembly and remodeling of these matrices have been associated with axonal guidance functions in the periphery and with the structural stabilization of myelinated fiber tracts and synaptic contacts in the maturating central nervous system. Particular interest has been focused on the putative role of chondroitin sulfate proteoglycans in suppressing central nervous system regeneration after lesions. The axon growth inhibitory properties of several of these chondroitin sulfate proteoglycans in vitro, and the partial recovery of structural plasticity in lesioned animals treated with chondroitin sulfate degrading enzymes in vivo have significantly contributed to the increased awareness of this long time neglected structure.  相似文献   

11.
The 1C6 monoclonal antibody to the hyaluronic acid-binding region weakly stained a 65-kD component in immunoblots of the chondroitin sulfate proteoglycans of brain, and the 8A4 monoclonal antibody, which recognizes two epitopes in the polypeptide portion of link protein, produced strong staining of a 45-kD component present in the brain proteoglycans. These antibodies were utilized to examine the localization of hyaluronic acid-binding region and link protein epitopes in rat cerebellum. Like the chondroitin sulfate proteoglycans themselves and hyaluronic acid, hyaluronic acid-binding region and link protein immunoreactivity changed from a predominantly extracellular to an intracellular (cytoplasmic and intra-axonal) location during the first postnatal month of brain development. The cell types which showed staining of hyaluronic acid-binding region and link protein, such as granule cells and their axons (the parallel fibers), astrocytes, and certain myelinated fibers, were generally the same as those previously found to contain chondroitin sulfate proteoglycans and hyaluronic acid. Prominent staining of some cell nuclei was also observed. In agreement with earlier conclusions concerning the localization of hyaluronic acid and chondroitin sulfate proteoglycans, there was no intracellular staining of Purkinje cells or nerve endings or staining of certain other structures, such as oligodendroglia and synaptic vesicles. The similar localizations and coordinate developmental changes of chondroitin sulfate proteoglycans, hyaluronic acid, hyaluronic acid-binding region, and link protein add further support to previous evidence for the unusual cytoplasmic localization of these proteoglycans in mature brain. Our results also suggest that much of the chondroitin sulfate proteoglycan of brain may exist in the form of aggregates with hyaluronic acid.  相似文献   

12.
The mechanisms of synthesis and intracellular routing of the various cartilage matrix macromolecules are still unclear. We have studied this problem in cultured chondroblasts at the ultrastructural level using monospecific antibodies against the core protein of the keratan sulfate/chondroitin sulfate-rich cartilage proteoglycan (KS:CS-PG) or Type II procollagen, and cuprolinic blue, a cationic dye that binds to the glycosaminoglycan chains of proteoglycans. Intracellularly, the proteoglycan antibodies localized KS:CS-PG and its precursors primarily in the Golgi complex and secretory vesicles. In contrast, the bulk of Type II procollagen was found within the rough endoplasmic reticulum (ER). While devoid of collagen, the extracellular matrix was rich in KS:CS-PG molecules some of which studded the chondroblast plasmalemma. Cuprolinic blue staining indicated that the proteoglycans present in the Golgi complex fell into a predominant class of large proteoglycans, probably representing KS:CS-PG, and a minor class of smaller proteoglycans. Groups of these divergent proteoglycans often occupied distinct Golgi subcompartments; moreover, single large proteoglycans appeared to align along the luminal surface of Golgi cisternae and secretory vesicles. These results suggest that in cultured chondroblasts KS:CS-PG and Type II procollagen are differentially distributed both in organelles and in the extracellular matrix, and that different proteoglycan types may occupy distinct subcompartments in trans Golgi.  相似文献   

13.
The fine distribution of the extracellular matrix glycoprotein emilin (previously known as glycoprotein gp115) (Bressan, G. M., I. Castellani, A. Colombatti, and D. Volpin. 1983. J. Biol. Chem. 258: 13262-13267) has been studied at the ultrastructural level with specific antibodies. In newborn chick aorta the protein was exclusively found within elastic fibers. In both post- and pre-embedding immunolabeling emilin was mainly associated with regions where elastin and microfibrils are in close contact, such as the periphery of the fibers. This localization of emilin in aorta has been confirmed by quantitative evaluation of the distribution of gold particles within elastic fibers. In other tissues, besides being associated with typical elastic fibers, staining for emilin was found in structures lacking amorphous elastin, but where the presence of tropoelastin has been demonstrated by immunoelectron microscopy. This was particularly evident in the oxitalan fibers of the corneal stroma, in the Descemet's membrane, and in the ciliary zonule. Analysis of embryonic aorta revealed the presence of emilin at early stages of elastogenesis, before the appearance of amorphous elastin. Immunofluorescence studies have shown that emilin produced by chick embryo aorta cells in culture is strictly associated with elastin and that the process of elastin deposition is severely altered by the presence of antiemilin antibodies in the culture medium. The name of the protein was derived from its localization at sites where elastin and microfibrils are in proximity (emilin, elastin microfibril interface located protein).  相似文献   

14.
Microfibrils are striated tubules that play a role in the formation of elastin fibers by providing a scaffold upon which newly synthesized elastin is deposited. Ultrastructural and staining studies also demonstrate microfibrils that terminate where elastin is sparse or absent in basal laminae, plasma membranes, and the collagenous matrix. The most striking accumulation of microfibrils is found in the zonule of Zinn, the transparent and elastic suspensory ligament of the lens, which contains no elastin. Application of immunocytochemical staining with a peroxidase-antiperoxidase (PAP) procedure demonstrates that fibronectin is associated with the microfibrils of the zonule and aorta. Aggregates of microfibrils are identical to oxytalan ('acid enduring') fibers that have been described in peridontal membranes and other sites subject to mechanical stress and they can be found in sites as disparate as the rabbit zonule, rat hepatic stroma and human cardiac papillary muscle, indicating that microfibrils are a widely distributed connective tissue element with a function that extends beyond elastogenesis; their association with fibronectin and localization suggests that they serve as an elastic anchoring component of the extracellular matrix.  相似文献   

15.
Hyaluronan is a free glycosaminoglycan which is abundant in the extracellular matrix of the developing brain. Although not covalently linked to any protein it can act as a backbone molecule forming aggregates with chondroitin sulfate proteoglycans of the lectican family and link proteins. Using neurocan-GFP as a direct histochemical probe we analyzed the distribution and organization of hyaluronan in the developing mouse cerebellum, and related its fine structure to cell types of specified developmental stages. We observed a high affinity of this probe to fiber-like structures in the prospective white matter which are preferentially oriented parallel to the cerebellar cortex during postnatal development suggesting a specially organized form of hyaluronan. In other layers of the cerebellar cortex, the hyaluronan organization seemed to be more diffuse. During the second postnatal week, the overall staining intensity of hyaluronan in the white matter declined but fiber-like structures were still present at the adult stage. This type of hyaluronan organization is different from perineuronal nets e.g. found in deep cerebellar nuclei. Double staining experiments with cell type specific markers indicated that these fiber-like structures are predominantly situated in regions where motile cells such as Pax2-positive inhibitory interneuron precursors and MBP-positive oligodendroglial cells are located. In contrast, more stationary cells such as mature granule cells and Purkinje cells are associated with lower levels of hyaluronan in their environment. Thus, hyaluronan-rich fibers are concentrated at sites where specific neural precursor cell types migrate, and the anisotropic orientation of these fibers suggests that they may support guided neural migration during brain development.  相似文献   

16.
The hyaluronic acid-binding region was prepared by trypsin digestion of chondroitin sulfate proteoglycan aggregate from the Swarm rat chondrosarcoma, and biotinylated in the presence of hyaluronic acid and link protein. After isolation by gel filtration and HPLC in 4 M guanidine HCl, the biotinylated hyaluronic acid-binding region was used, in conjunction with avidin-peroxidase, as a specific probe for the light and electron microscopic localization of hyaluronic acid in developing and mature rat cerebellum. At 1 w postnatal, there is strong staining of extracellular hyaluronic acid in the presumptive white matter, in the internal granule cell layer, and as a dense band at the base of the molecular layer, surrounding the parallel fibers. This staining moves progressively towards the pial surface during the second postnatal week, and extracellular staining remains predominant through postnatal week three. In adult brain, there is no significant extracellular staining of hyaluronic acid, which is most apparent in the granule cell cytoplasm, and intra-axonally in parallel fibers and some myelinated axons. The white matter is also unstained in adult brain, and no staining was seen in Purkinje cell bodies or dendrites at any age. The localization of hyaluronic acid and its developmental changes are very similar to that previously found in immunocytochemical studies of the chondroitin sulfate proteoglycan in nervous tissue (Aquino, D. A., R. U. Margolis, and R. K. Margolis. 1984. J. Cell Biol. 99:1117-1129; Aquino, D. A., R. U. Margolis, and R. K. Margolis. J. Cell Biol. 99:1130-1139), and to recent results from studies using monoclonal antibodies to the hyaluronic acid-binding region and link protein. The presence of brain hyaluronic acid in the form of aggregates with chondroitin sulfate proteoglycans would be consistent with their similar localizations and coordinate developmental changes.  相似文献   

17.
Proteoglycans, located in the interphotoreceptor matrix (IPM) of vertebrate retinas, mediate interactions between the photoreceptors and retinal pigment epithelium. Molluscan retinas also have an IPM located between apposing rhabdomeres. Like the cone matrix sheath of the vertebrate IPM, the octopus IPM is labeled by peanut agglutinin (PNA) and contains retinoid-binding-like proteins. In this study we demonstrate further similarities of the vertebrate/invertebrate IPM and identify specific molecular components in this extracellular compartment of the octopus retina. For light microscopy, paraffin-embedded sections of octopus retinas were stained with dyes specific for acid mucopolysacharides including Alcian blue and colloidal iron. In addition, sections were digested with enzymes specific for hyaluronan, chondroitin sulfate, and sialoglycoconjugates. Digestion of sections with these enzymes and subsequent staining with Alcian blue or colloidal iron demonstrated the presence of chondroitin sulfate and sialoglycoconjugates in the octopus IPM as well as other retinal layers and cells. At the electron-microscope level we treated retinal tissue with Cuprolinic Blue and observed the distribution of sulfated glycosaminoglycans along the rhabdomere edges facing the IPM and in a more central area of the IPM where microvillous processes of supportive cells are located. The octopus IPM may have importance in retinal structure and may be a scaffolding on which molecular components of the IPM are located.  相似文献   

18.
Association of fibronectin with the microfibrils of connective tissue   总被引:2,自引:0,他引:2  
The association of fibronectin with the microfibrils of connective tissue was examined in the zonular fibers of the mouse eye by immunohistochemical methods at the light and electron microscopic level. Mouse eyes fixed in formaldehyde were embedded either in paraffin for immunostaining by the peroxidase-antiperoxidase (PAP) method or in Lowicryl for immunolabeling by antirabbit globulin antibodies bound to 5 or 15 nm gold particles. Ultrastructural studies were also carried out after glutaraldehyde perfusion. Both the PAP and immunogold procedures demonstrated the association of fibronectin with microfibrils. After immunolabeling with 5 nm gold particles, examination at high magnification localized fibronectin to fine filaments that appeared to be attached to the surface of microfibrils. The filaments extended outward singly or formed loose aggregates. Their diameter ranged from 1.2 to 3 nm, with a mean of 1.5 nm. Because of their similarity to the fibronectin molecules previously described after rotary shadowing, the filaments were likely to be fibronectin molecules themselves. Since fibronectin is known to have high affinity for the amyloid P component, a model is presented in which fibronectin filaments are bound to the amyloid P component making up the tubular core of microfibrils in mice. Evidence is presented that fibronectin filaments may link microfibrils to one another and thus insure the continuity and strength of zonular fibers. More generally, it is likely that connective-tissue microfibrils, whether or not inserted into elastic fibers, are bonded through fibronectin to surrounding cells, collagen fibrils, or proteoglycans, and thus insure cohesion among connective tissue elements.  相似文献   

19.
Heparan sulfate proteoglycans are hypothesized to contribute to the filtration barrier in kidney glomeruli and the glycocalyx of endothelial cells. To investigate potential changes in proteoglycans in diabetic kidney, we isolated glycosaminoglycans from kidney cortex from healthy db/+ and diabetic db/db mice. Disaccharide analysis of chondroitin sulfate revealed a significant decrease in the 4-O-sulfated disaccharides (D0a4) from 65% to 40%, whereas 6-O-sulfated disaccharides (D0a6) were reduced from 11% to 6%, with a corresponding increase in unsulfated disaccharides. In contrast, no structural differences were observed in heparan sulfate. Furthermore, no difference was found in the molar amount of glycosaminoglycans, or in the ratio of hyaluronan/heparan sulfate/chondroitin sulfate. Immunohistochemical staining for the heparan sulfate proteoglycan perlecan was similar in both types of material but reduced staining of 4-O-sulfated chondroitin and dermatan was observed in kidney sections from diabetic mice. In support of this, using qRT-PCR, a 53.5% decrease in the expression level of Chst-11 (chondroitin 4-O sulfotransferase) was demonstrated in diabetic kidney. These results suggest that changes in the sulfation of chondroitin need to be addressed in future studies on proteoglycans and kidney function in diabetes.  相似文献   

20.
The proportion of total tissue hyaluronan involved in interactions with aggrecan and link protein was estimated from extracts of canine knee articular cartilages using a biotinylated hyaluronan binding region-link protein complex (bHABC) of proteoglycan aggregate as a probe in an ELISA-like assay. Microscopic sections were stained with bHABC to reveal free hyaluronan in various sites and zones of the cartilages. Articular cartilage, cut into 20 m-thick sections, was extracted with 4 M guanidinium chloride (GuCl). Aliquots of the extract (after removing GuCl) were assayed for hyaluronan, before and after papain digestion. The GuCl extraction residues were analyzed after solubilization by papain. It was found that 47–51% of total hyaluronan remained in the GuCl extraction residue, in contrast to the 8–15% of total proteoglycans. Analysis of the extract revealed that 24–50% of its hyaluronan was directly detecable with the probe, while 50–76% became available only after protease digestion. The extracellular matrix in cartilage sections was stained with the bHABC probe only in the superficial zone and the periphery of the articular surfaces, both sites known to have a relatively low proteoglycan concentration. Trypsin pretreatment of the sections enhanced the staining of the intermediate and deep zones, presumably by removing the steric obstruction caused by the chondroitin sulfate binding region of aggrecans. Enhanced matrix staining in these zones was also obtained by a limited digestion with chondroitinase ABC. The results indicate that a part of cartilage hyaluronan is free from endogenous binding proteins, such as aggrecan and link protein, but that the chondroitin sulfate-rich region of aggrecan inhibits its probing in intact tissue sections. Therefore, hyaluronan staining was more intense in cartilage areas with lower aggrecan content. A large proportion of hyaluronan resists GuCl extraction, even from 20-m-thick tissue sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号