首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Smirnova  G. V.  Zakirova  O. N.  Oktyabr'skii  O. N. 《Microbiology》2001,70(5):512-518
Shifting the temperature from 30 to 45°C in an aerobic Escherichia coliculture inhibited the expression of the antioxidant genes katG, katE, sodA, and gor.The expression was evaluated by measuring -galactosidase activity in E. colistrains that contained fusions of the antioxidant gene promoters with the lacZoperon. Heat shock inhibited catalase and glutathione reductase, lowered the intracellular level of glutathione, and increased its extracellular level. It also suppressed the growth of mutants deficient in the katG-encoded catalase HPI, whereas the sensitivity of the wild-type andsodA sodBmutant cells to heat shock was almost the same. In the E. coliculture adapted to growth at 42°C, the content of both intracellular and extracellular glutathione was two times higher than in the culture grown at 30°C. The temperature-adapted cells grown aerobically at 42°C showed an increased ability to express the fused katG–lacZgenes.  相似文献   

2.
3.
Summary A mutant of Escherichia coli K-12 was isolated as conditionally deficient in the expression of two exported proteins simultaneously (i.e. two acid phosphatases) The mutant was found to be thermosensitive on minimal medium at 37°C and above, but grew normally on rich media at these temperatures. The mutation, named expA and located at 22 min on the recalibrated linkage map, depressed the levels of six periplasmic enzymatic activities in bacteria grown at 37°C. At least ten proteins were greatly reduced in the periplasm under these conditions. The mutation also affected some outer membrane proteins, among which were the ompF protein and a protein which may be protein III, but had little effect on cytoplasmic membrane proteins. The gel patterns of the soluble cytoplasmic proteins were not modified except for one major protein of MW 47,000. The activities of -galactosidase and of aspartate transcarbamylase were unmodified. After growth at 30°C no difference was observed between expA and expA + isogenic strains. The results are discussed with respect to the mechanism of protein export.Enzymes E.C. 3.1.3.2 Acid phosphatase (optimum pH 2.5) - E.C. 3.1.3.2 Acid phosphatase (optimum pH 4.5) - E.C. 3.1.3.1 Alkaline phosphatase - E.C. 3.4.11 Aminopeptidase-N - E.C. 2.1.3.2 Aspartate transcarbamylase - E.C. 3.2.1.23 -galactosidase - E.C. 3.1.27.1 RNase I Abbreviations PNP-OH Para-nitro-phenol - PNA Para-nitro-anilide - PNP-P Para-nitro-phenyl-phosphate - Bis-PNP-P Bis-para-nitro-phenyl-phosphate - IPTG Isopropyl--thiogalactopyranoside, Nitrosoguanidine N-methyl, N'-nitro, N, Nitrosoguanidine, Tris Tris (hydromethyl) aminomethane  相似文献   

4.
The bacterial strain Flavobacterium sp. 4214 isolated from Greenland was found to express β-galactosidase (EC 3.2.1.23) at temperatures below 25°C. A chromosomal library of Flavobacterium sp. 4214 was constructed in Escherichia coli, and the gene gal4214-1 encoding a β-galactosidase of 1,046 amino acids (114.3 kDa) belonging to glycosyl hydrolase family 2 was isolated. This was the only gene encoding β-galactosidase activity that was identified in the chromosomal library. Expression levels in both Flavobacterium sp. 4214 and in initial recombinant E. coli strains were insufficient for biochemical characterization. However, a combination of T7 promoter expression and introduction of an E. coli host that complemented rare transfer RNA genes yielded 15 mg of β-galactosidase per liter of culture. Gal4214-1-His protein was found to be active in monomeric conformation. The protein was secreted from the cytoplasm, probably through an N-terminal signaling sequence. The Gal4214-1-His protein was found to have optimum activity at a temperature of 42°C, but with short-term stability at temperatures above 25°C.  相似文献   

5.
Overexpression of genes from thermophiles in Escherichia coli is an attractive approach towards the large-scale production of thermostable biocatalysts. However, various factors can challenge efficient heterologous protein expression – one example is the formation of stable 5′ mRNA secondary structures that can impede an efficient translation initiation.In this work, we describe the expression optimization of purine nucleoside phosphorylase from the thermophilic microbe Deinococcus geothermalis in E. coli. Poor expression levels caused by stable secondary 5′ mRNA structure formation were addressed by two different approaches: (i) increasing the cultivation temperature above the range used typically for recombinant protein expression and (ii) optimizing the 5′ mRNA sequence for reduced secondary structures in the translation initiation region.The increase of the cultivation temperature from 30 °C to 42 °C allowed a more than 10-fold increase of activity per cell and optimizing the 5′ mRNA gene sequence further increased the activity per cell 1.7-fold at 42 °C. Thus, the combination of high-temperature cultivation and 5′ sequence optimization is described as an effective approach to overcome poor expression levels resulting from stable secondary 5′ mRNA structure formation. We suggest that this method is especially suitable for improving the expression of proteins derived from thermophiles in E. coli.  相似文献   

6.
Shewanella sp. Ac10 is a psychrotrophic bacterium isolated from the Antarctica that actively grows at such low temperatures as 0°C. Immunoblot analyses showed that a heat-shock protein DnaK is inducibly formed by the bacterium at 24°C, which is much lower than the temperatures causing heat shock in mesophiles such as Escherichia coli. We found that the Shewanella DnaK (SheDnaK) shows much higher ATPase activity at low temperatures than the DnaK of E. coli (EcoDnaK): a characteristic of a cold-active enzyme. The recombinant SheDnaK gene supported neither the growth of a dnaK-null mutant of E. coli at 43°C nor phage propagation at an even lower temperature, 30°C. However, the recombinant SheDnaK gene enabled the E. coli mutant to grow at 15°C. This is the first report of a DnaK supporting the growth of a dnaK-null mutant at low temperatures.  相似文献   

7.
8.
The α-galactosidase gene of Streptomyces coelicolor A3(2) was cloned, expressed in Escherichia coli and characterized. It consisted of 1497 nucleotides encoding a protein of 499 amino acids with a predicted molecular weight of 57,385. The observed homology between the deduced amino acid sequences of the enzyme and α-galactosidase from Thermus thermophilus was over 40%. The α-galactosidase gene was assigned to family 36 of the glycosyl hydrolases. The enzyme purified from recombinant E. coli showed optimal activity at 40 °C and pH 7. The enzyme hydrolyzed p-nitrophenyl-α-D-galactopyroside, raffinose, stachyose but not melibiose and galactomanno-oligosaccharides, indicating that this enzyme recognizes not only the galactose moiety but also other substrates.  相似文献   

9.
The effect of temperature and O2 saturation on the production of recombinant proteins -galactosidase and human glucocerebrosidase by Spodoptera frugiperda cells (Sf9) infected with recombinant Autographa californica nuclear polyhedrosis virus was investigated. The rates of cell growth, glucose consumption, O2 consumption and product expression were measured at temperatures between 22° C and 35° C. The results indicated that possible O2 limitation may be alleviated without compromising the maximum cell yield by lowering the incubation temperature from 27° C to 25° C. The expression level of the recombinant proteins at 27° C was similar to that obtained at 22° C and 25° C; lower protein yields were obtained at 30° C. An increase in temperature from 22° C to 27° C led to earlier production of the proteins and to an increase in the proportion of the product released outside the cells. Correspondence to: J. Shiloach  相似文献   

10.
In the psychrophilic bacterium Vibrio sp. strain ANT-300, the rate of protein degradation in vivo, measured at fixed temperatures, increased with elevation of the growth temperature. A shift in growth temperature induced a marked increase in this rate. Dialysed cell-free extracts hydrolysed exogenous insulin, globin and casein (in decreasing order of activity) but did not hydrolyse exogenous cytochrome c. Cells contained at least seven protease separated by DEAE-Sephacel chromatography, one of which was an ATP-dependent serine protease. The ATP-dependent proteolytic activity in extracts of cells incubated for 3 h at 16 degrees C after a shift-up from 0 degrees C increased to a level 36% and 17% higher than that of cells grown at 0 degrees C and 13 degrees C, respectively. A shift-down to 0 degrees C from 13 degrees C induced only a slight increase in the proteolytic activity. Extracts of all cells, whether exposed to temperature shifts or not, showed the same temperature dependence with respect to both ATP-dependent and ATP-independent protease activity. In all the extracts these proteases also exhibited the same heat lability. The ATP-dependent protease was inactivated by incubation at temperatures above 25 degrees C. There was an increase in ATP-independent protease activity during incubation at temperatures between 25 and 30 degrees C, but a decrease at 35 degrees C and higher. These results suggest that the marked increases in proteolysis in vivo, caused by a shift in temperature, may result not only from increases in levels of ATP-dependent serine protease(s) but also from increases in the susceptibility of proteins to degradation.  相似文献   

11.
12.
The proper folding of aggregation-prone recombinant proteins inEscherichia colican be facilitated by co-overexpressing specific molecular chaperones or by culturing the cells in the presence of ethanol or other agents that upregulate the synthesis of all heat-shock proteins (hsps). We have investigated the effect of combining direct chaperone overproduction with ethanol supplementation on the cytoplasmic folding of two aggregation-prone model proteins, preS2-S′-β-galactosidase and human SPARC. In 25-ml shake flask cultures grown at 30°C, addition of 3% (v/v) ethanol to the growth medium prior to inoculation improved the chaperone-mediated increase in the yields of active preS2-S′-β-galactosidase 1.5- to 2-fold. When cultures overexpressing thednaKJoperon were grown in the presence of ethanol, the levels of enzymatic activity were 5-fold higher relative to control cells and preS2-S′-β-galactosidase aggregation was almost entirely abolished. Combining DnaK–DnaJ overexpression and growth of the cells at temperatures lower than 30°C did not result in a comparable increase in activity. Although the individual effects of ethanol supplementation anddnaKJoverproduction were more limited when the culture volume was raised, a synergistic improvement in preS2-S′-β-galactosidase activity was observed when the two approaches were used in concert. In contrast, ethanol supplementation promoted the aggregation of human SPARC, a protein exhibiting a chaperone dependency similar to that of preS2-S′-β-galactosidase. Our results show that ethanol can exert complex and divergent effects on inclusion body formation and that the beneficial effect of the solvent on recombinant protein folding cannot simply be explained by an increase in the intracellular concentration of molecular chaperones.  相似文献   

13.
The expression of a methanol-soluble, heat-stable enterotoxin (STA) fused to the B subunit of the heat-labile enterotoxin (LTB) at 35°C or higher temperatures caused strains ofEscherichia coli deficient in lactose permease to behave on indicator media as Lac+; however, at 33°C or lower temperatures the original Lac phenotype of the host strains was maintained. The apparent phenotypic suppression oflacY was shown to be due to lysis of a fraction of the bacteria and the consequent release of active-galactosidase to the culture supernatant. After incubation at 37°C for 1 h, the cultures were committed to lyse. Plasmid and chromosomal mutants that do not show this phenotype were isolated by selecting Lac colonies at the unpermissive temperature. The mutations on the plasmids were localized in both the heat-stable and the heat-labile enterotoxin genes. Chromosomal mutants that show normal levels of-galactosidase and fused toxins have also been isolated.  相似文献   

14.
Commercially obtained E. coli ß-galactosidase was stored at 25 °C in buffer containing 1 mM MgCl2 and in buffer containing no added MgCl2. Samples were removed at set times and the activity of individual enzyme molecules assayed. When stored in the presence of 1 mM magnesium, the number of active molecules did not change over a 2.5-h period. When stored in the absence of added MgCl2, over half the enzyme molecules became inactive within the first hour. However, those molecules which retained activity remained active for the duration of the experiment. This indicates that there may exist two populations of E. coli ß-galactosidase, one which requires storage in the presence of the higher concentration of Mg2+ in order to remain active. There was no observed correlation between this requirement for magnesium and reaction rate. Additionally, the presence of the 1 mM MgCl2 was found to decrease the average activity of the ß-galactosidase molecules under the conditions employed.  相似文献   

15.

Background  

The green fluorescent protein has revolutionized many areas of cell biology and biotechnology since it is widely used in determining gene expression and for localization of protein expression. Expression of recombinant GFP in E. coli K12 host from pBAD24M-GFP construct upon arabinose induction was significantly lower than that seen in E. coli B cells with higher expression at 30°C as compared to 37°C in E. coli K12 hosts. Since OmpT levels are higher at 37°C than at 30°C, it prompted us to modify the OmpT proteolytic sites of GFP and examine such an effect on GFP expression and fluorescence. Upon modification of one of the two putative OmpT cleavage sites of GFP, we observed several folds enhanced fluorescence of GFP as compared to unmodified GFPuv (Wild Type-WT). The western blot studies of the WT and the SDM II GFP mutant using anti-GFP antibody showed prominent degradation of GFP with negligible degradation in case of SDM II GFP mutant while no such degradation of GFP was seen for both the clones when expressed in BL21 cells. The SDM II GFP mutant also showed enhanced GFP fluorescence in other E. coli K12 OmpT hosts like E. coli JM109 and LE 392 in comparison to WT GFPuv. Inclusion of an OmpT inhibitor, like zinc with WT GFP lysate expressed from an E. coli K12 host was found to reduce degradation of GFP fluorescence by two fold.  相似文献   

16.
Chloroplasts contain a proteolytic system whose activity is ATP-dependent. The presence of genes encoding homologues of the ATP-dependent E. coli CIpA/P protease on the plastome and nuclear genome suggests that a similar protease is located in chloroplasts. Antibodies raised against a recombinant chloroplast-encoded proteolytic ClpP subunit detect this polypeptide in chloroplasts prepared from barley leaves or the eukaryotic algae Chlamydomonas reinhardtii and Euglena gracilis. Co-immunoprecipitation experiments using the anti-ClpP antibody and an antibody against the nuclear encoded regulatory CIpC component (a ClpA homologue) provide direct evidence for the existence of a CIpC/P complex in the chloroplast stroma. These results suggest that at least a part of the ATP-dependent proteolytic reactions in the chloroplast is catalyzed by an enzyme complex similar to the E. coli CIpA/P protease.  相似文献   

17.
A chromosomal DNA fragment of 7.8 kb from Lactobacillus coryniformis CECT 5711 was cloned in Escherichia coli K-12 and was found to express a functional β-galactosidase. Nucleotide sequence analysis showed that this fragment contained two partially overlapping genes, the lacL (1,881 bp) and the lacM (960 bp), that encode the subunits of a heterodimeric β-galactosidase, with estimated molecular masses of 72,129 and 35,233 Da, respectively. Other three incomplete open reading frames showing homology to another β-galactosidase, an α-galactosidase, and a galactokinase, respectively, were also found. The L. coryniformis β-galactosidase was overproduced in E. coli by using an isopropyl-β-d-thiogalactopyranoside (IPTG) expression system. Two new proteins with an estimated M r s of approximately 72,000 and 35,000 appeared upon induction with IPTG, and extracts of the recombinant E. coli strain showed β-galactosidase activity.  相似文献   

18.
A mutant, tfpA1, resistant to the calmodulin inhibitor trifluoroperazine (TFP) at 30°C, was isolated in Escherichia coli. The mutant showed a reduced growth rate at 30°C and was temperature sensitive (ts) at 42°C for growth, forming short filaments. The mutation was mapped to the 24 min region of the chromosome and the gene was cloned by complementation of the is defect. Subsequent subcloning, complementation analysis, marker rescue mapping and sequencing, identified tfpA as fabD, encoding the 35 kDa, malonyl-coenzyme A transacylase (MCT) enzyme, required for the initial step in the elongation cycle for fatty acid biosynthesis. Resistance to TFP may result from altered permeability of the cell envelope, although the mutant remained sensitive to other calmodulin inhibitors and to other antibacterial agents. Alternatively, resistance may be more indirect, resulting from alterations in intracellular Ca++ levels which affect the activity of the TFP target in some way.  相似文献   

19.
In the genome of a thermophilic bacterium, Thermus thermophilus HB27, three genes, TTC0418, TTC0746 and TTC1975, were annotated as ATP-dependent protease La (Lon). Sequence comparisons indicated that TTC0418 and TTC0746 showed significant similarities to bacterial LonA-type proteases, such as Escherichia coli Lon protease, especially in regions corresponding to domains for ATP-binding and hydrolysis, and for proteolysis, but TTC1975 exhibited a similarity only at the C-terminal proteolytic domain. The enzymatic analyses, using purified recombinant proteins produced by E. coli, revealed that TTC0418 and TTC0746 exhibited peptidase and protease activities against two synthetic peptides and casein, respectively, in an ATP-dependent manner, and at the same time, both the enzymes had significant ATPase activities in the presence of substrates. On the other hand, TTC1975 possessed a protease activity against casein, but addition of ATP did not enhance this activity. Moreover, a T. thermophilus mutant deficient in both TTC0418 and TTC0746 showed a similar growth characteristic to an E. coli lon mutant, i.e., a growth defect lag after a nutritional downshift. These results indicate that TTC0418 and TTC0746 are actually members of bacterial LonA-type proteases with different substrate specificities, whereas TTC1975 should not be classified as a Lon protease. Finally, the effects of mutations deficient in these proteases were assessed on production of several heterologous gene products from Pyrococcus horikoshii and Geobacillus stearothermophilus. It was shown that TTC0746 mutation was more effective in improving production than the other two mutations, especially for production of P. horikoshii α-mannosidase and G. stearothermophilus α-amylase, indicating that the TTC0746 mutant of T. thermophilus HB27 may be useful for production of heterologous proteins from thermophiles and hyperthermophiles.  相似文献   

20.
Summary A mutant strain of Eschrichia coli that is temperature-sensitive for growth stopped protein biosynthesis at 43° C after a brief lag (Fig. 1). Cell-free extracts from the strain showed no specific defect in aminoacyl-tRNA synthetases, binding initiator tRNA to ribosomes (Table 1), protein chain elongation (Tables 2, 5) or protein chain termination (Tables 3, 4) at high temperature.The partially purified enzyme peptidyl-tRNA hydrolase, however, was temperature-sensitive (Table 6); the mutant hydrolase was inactivated rapidly at 43° C (Table 7). Mixing experiments ruled out the presence, in the mutant enzyme preparation, of an inhibitor and also demonstrated, on the mutant enzyme, a protective effect by wild type enzyme that was not shown by general coli proteins (Tables 8, 9).Interrupted mating allowed the temperature-sensitive growth phenotype to be mapped near to and before trp (Figs. 4, 5). Co-transsduction, mediated by bacteriophage P1, with trp + (frequency 7.5%) located the marker at 24 min on the coli map. All transductants for temperature-sensitive growth also had temperature-sensitive peptidyl-tRNA hydrolase activity in crude sonicates (Table 10). We provisionally conclude that the temperature-sensitive protein synthesis and growth are caused by a single genetic change in the structural gene (pth) for peptidyl-tRNA hydrolase.After shift to 43° C the polysomes of the mutant cells broke down into 70S particles (Figs. 2, 3). A defect in protein biosynthesis thus appeared to be located after termination and before reformation of new polysomes.The metabolic role of peptidyl-tRNA hydrolase is discussed in the light of these experiments.Journal paper No. J-7465 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa, project no. 1747.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号