首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Glucose functions in plants both as a metabolic resource as well as a hormone that regulates expression of many genes. Arabidopsis hexokinase1 (HXK1) is the best understood plant glucose sensor/transducer, yet we are only now appreciating the cellular complexity of its signaling functions. We have recently shown that one of the earliest detectable responses to plant glucose treatments are extensive alterations of cellular F-actin. Interestingly, AtHXK1 is predominantly located on mitochondria, yet also can interact with actin. A normal functioning actin cytoskeleton is required for HXK1 to act as an effector in glucose signaling assays. We have suggested that HXK1 might alter F-actin dynamics and thereby influence the formation and/or stabilization of cytoskeleton-bound polysomes. In this Addendum, we have extended our initial observations on the subcellular targeting of HXK1 and its interaction with F-actin. We then further consider the cellular context in which HXK1 might regulate gene expression.Key words: Arabidopsis, F-actin, glucose signaling, hexokinase, hTalin, mitochondria, polysomes, protoplasts, transient expression assay, fluorescence microscopy  相似文献   

2.
3.
We characterized the function of the rice cytosolic hexokinase Os HXK7(Oryza sativa Hexokinase7),which is highly upregulated when seeds germinate under O_2-deficient conditions. According to transient expression assays that used the promoter:luciferase fusion construct,Os HXK7 enhanced the glucose(Glc)-dependent repression of a rice a-amylase gene(RAmy3D) in the mesophyll protoplasts of maize,but its catalytically inactive mutant alleles did not. Consistently,the expression of Os HXK7,but not its catalytically inactive alleles,complemented the Arabidopsis glucose insensitive2-1(gin2-1) mutant,thereby resulting in the wild type characteristics of Glc-dependent repression,seedling development,and plant growth. Interestingly,Os HXK7-mediated Glc-dependent repression was abolished in the O_2-deficient mesophyll protoplasts of maize. This result provides compelling evidence that Os HXK7 functions in sugar signaling via a glycolysis-dependent manner under normal conditions,but its signaling role is suppressed when O_2 is deficient. The germination of two null Os HXK7 mutants,oshxk7-1 and oshxk7-2,was affected by O_2 deficiency,but overexpression enhanced germination in rice. This result suggests the distinct role that OsH XK7 plays in sugar metabolism and efficient germination by enforcing glycolysis-mediated fermentation in O_2-deficient rice.  相似文献   

4.
5.
Previous studies have revealed a central role of Arabidopsis thaliana hexokinases (AtHXK1 and AtHXK2) in the glucose repression of photosynthetic genes and early seedling development. However, it remains unclear whether HXK can modulate the expression of diverse sugar-regulated genes. On the basis of the results of analyses of gene expression in HXK transgenic plants, we suggest that three distinct glucose signal transduction pathways exist in plants. The first is an AtHXK1-dependent pathway in which gene expression is correlated with the AtHXK1-mediated signaling function. The second is a glycolysis-dependent pathway that is influenced by the catalytic activity of both AtHXK1 and the heterologous yeast Hxk2. The last is an AtHXK1-independent pathway in which gene expression is independent of AtHXK1. Further investigation of HXK transgenic Arabidopsis discloses a role of HXK in glucose-dependent growth and senescence. In the absence of exogenous glucose, plant growth is limited to the seedling stage with restricted true leaf development even after a 3-week culture on MS medium. In the presence of glucose, however, over-expressing Arabidopsis or yeast HXK in plants results in the repression of growth and true leaf development, and early senescence, while under-expressing AtHXK1 delays the senescence process. These studies reveal multiple glucose signal transduction pathways that control diverse genes and processes that are intimately linked to developmental stages and environmental conditions.  相似文献   

6.
7.
8.
Hexokinase as a sugar sensor in higher plants.   总被引:17,自引:0,他引:17       下载免费PDF全文
J C Jang  P Len  L Zhou    J Sheen 《The Plant cell》1997,9(1):5-19
The mechanisms by which higher plants recognize and respond to sugars are largely unknown. Here, we present evidence that the first enzyme in the hexose assimilation pathway, hexokinase (HXK), acts as a sensor for plant sugar responses. Transgenic Arabidopsis plants expressing antisense hexokinase (AtHXK) genes are sugar hyposensitive, whereas plants overexpressing AtHXK are sugar hypersensitive. The transgenic plants exhibited a wide spectrum of altered sugar responses in seedling development and in gene activation and repression. Furthermore, overexpressing the yeast sugar sensor YHXK2 caused a dominant negative effect by elevating HXK catalytic activity but reducing sugar sensitivity in transgenic plants. The result suggests that HXK is a dual-function enzyme with a distinct regulatory function not interchangeable between plants and yeast.  相似文献   

9.
10.
Low concentrations of the glucose (Glc) analog mannose (Man) inhibit germination of Arabidopsis seeds. Man is phosphorylated by hexokinase (HXK), but the absence of germination was not due to ATP or phosphate depletion. The addition of metabolizable sugars reversed the Man-mediated inhibition of germination. Carbohydrate-mediated regulation of gene expression involving a HXK-mediated pathway is known to be activated by Glc, Man, and other monosaccharides. Therefore, we investigated whether Man blocks germination through this system. By testing other Glc analogs, we found that 2-deoxyglucose, which, like Man, is phosphorylated by HXK, also blocked germination; no inhibition was observed with 6-deoxyglucose or 3-O-methylglucose, which are not substrates for HXK. Since these latter two sugars are taken up at a rate similar to that of Man, uptake is unlikely to be involved in the inhibition of germination. Furthermore, we show that mannoheptulose, a specific HXK inhibitor, restores germination of seeds grown in the presence of Man. We conclude that HXK is involved in the Man-mediated repression of germination of Arabidopsis seeds, possibly via energy depletion.  相似文献   

11.
12.
Low concentrations of the glucose (Glc) analog mannose (Man) inhibit germination of Arabidopsis seeds. Man is phosphorylated by hexokinase (HXK), but the absence of germination was not due to ATP or phosphate depletion. The addition of metabolizable sugars reversed the Man-mediated inhibition of germination. Carbohydrate-mediated regulation of gene expression involving a HXK-mediated pathway is known to be activated by Glc, Man, and other monosaccharides. Therefore, we investigated whether Man blocks germination through this system. By testing other Glc analogs, we found that 2-deoxyglucose, which, like Man, is phosphorylated by HXK, also blocked germination; no inhibition was observed with 6-deoxyglucose or 3-O-methylglucose, which are not substrates for HXK. Since these latter two sugars are taken up at a rate similar to that of Man, uptake is unlikely to be involved in the inhibition of germination. Furthermore, we show that mannoheptulose, a specific HXK inhibitor, restores germination of seeds grown in the presence of Man. We conclude that HXK is involved in the Man-mediated repression of germination of Arabidopsis seeds, possibly via energy depletion.  相似文献   

13.
The visualization of green fluorescent protein (GFP) fusions with microtubule or actin filament (F-actin) binding proteins has provided new insights into the function of the cytoskeleton during plant development. For studies on actin, GFP fusions to talin have been the most generally used reporters. Although GFP-Talin has allowed in vivo F-actin imaging in a variety of plant cells, its utility in monitoring F-actin in stably transformed plants is limited particularly in developing roots where interesting actin dependent cell processes are occurring. In this study, we created a variety of GFP fusions to Arabidopsis Fimbrin 1 (AtFim1) to explore their utility for in vivo F-actin imaging in root cells and to better understand the actin binding properties of AtFim1 in living plant cells. Translational fusions of GFP to full-length AtFim1 or to some truncated variants of AtFim1 showed filamentous labeling in transient expression assays. One truncated fimbrin-GFP fusion was capable of labeling distinct filaments in stably transformed Arabidopsis roots. The filaments decorated by this construct were highly dynamic in growing root hairs and elongating root cells and were sensitive to actin disrupting drugs. Therefore, the fimbrin-GFP reporters we describe in this study provide additional tools for studying the actin cytoskeleton during root cell development. Moreover, the localization of AtFim1-GFP offers insights into the regulation of actin organization in developing roots by this class of actin cross-linking proteins.  相似文献   

14.
Hexokinase, a hexose-phosphorylating enzyme, has emerged as a central enzyme in sugar-sensing processes. A few HXK isozymes have been identified in various plant species. These isozymes have been classified into two major groups; plastidic (type A) isozymes located in the plastid stroma and those containing a membrane anchor domain (type B) located mainly adjacent to the mitochondria, but also found in the nucleus. Of all the hexokinases that have been characterized to date, the only exception to this rule is a spinach type B HXK (SoHXK1) that, by means of subcellular fractionation, has been localized to the outer membrane of plastids. However, SoHXK1 has a membrane anchor domain that is almost identical to that of the other type B HXKs. To determine the localization of SoHXK1 enzyme by other means, we expressed SoHXK1::GFP fusion protein in tobacco and Arabidopsis protoplasts and compared its localization with that of the Arabidopsis AtHXK1::GFP fusion protein that shares a similar N-terminal membrane anchor domain. SoHXK1::GFP is localized adjacent to the mitochondria, similar to AtHXK1::GFP and all other previously examined type B HXKs. Proteomic analysis had previously identified AtHXK1 on the outside of the mitochondrial membrane. We, therefore, suggest that SoHXK1 enzyme is located adjacent to the mitochondria like the other type B HXKs that share the same N-terminal membrane anchor domain.  相似文献   

15.
16.
Hypoxically induced tolerance to anoxia in roots of tomato (Solanum lycopersicum) was previously shown to depend on sucrose and the induction of sucrose synthase. In contrast to maize, root hexokinase (HXK) activities did not increase during hypoxia and glucose was unable to sustain glycolytic flux under anoxia. In this paper, we asked whether hypoxic metabolism in roots would be altered in transgenic tomato plants overexpressing either a plant (Arabidopsis) or a yeast (Saccharomyces cerevisiae) HXK and whether such modifications could be related to improved energy metabolism and consequently root tolerance under anoxia. Tomato plants grown hydroponically with shoots always maintained in air were submitted to a 7 d hypoxic treatment applied by stopping air bubbling. A combination of techniques including (1)H-nuclear magnetic resonance spectroscopy, RT-PCR and enzyme analyses was used to obtain a broad picture of hypoxic root metabolism. In normoxic conditions, HXK overexpression resulted in higher ADP and AMP levels only in roots of AtHXK1 transgenic plants. During hypoxic treatment, oxygen levels in the hydroponic tank decreased rapidly to 5 kPa within the first 2 d and then remained at 5 kPa throughout the 7 d experiment. Oxygen levels were similar at 5 and 20 cm below the water surface. A decline of the adenylate energy status was observed after 2 d of hypoxic treatment, with a further decrease by 7 d in roots of non-transgenic (WT) and ScHXK2, but not in AtHXK1 transgenic plants. Sucrose synthase activity increased to comparably higher levels at 7 d of hypoxic treatment in WT and ScHXK2 compared with AtHXK1 roots. Differences between WT and the transgenic plants are discussed with respect to the metabolic response to low (hypoxia) but not zero (anoxia) oxygen.  相似文献   

17.
In plants, sugars are the main respiratory substrates and important signaling molecules in the regulation of carbon metabolism. Sugar signaling studies suggested that sugar sensing involves several key components, among them hexokinase (HXK). Although the sensing mechanism of HXK is unknown, several experiments support the hypothesis that hexose phosphorylation is a determining factor. Glucose (Glc) analogs transported into cells but not phosphorylated are frequently used to test this hypothesis, among them 3-O-methyl-Glc (3-OMG). The aim of the present work was to investigate the effects and fate of 3-OMG in heterotrophic plant cells. Measurements of respiration rates, protein and metabolite contents, and protease activities and amounts showed that 3-OMG is not a respiratory substrate and does not contribute to biosynthesis. Proteolysis and lipolysis are induced in 3-OMG-fed maize (Zea mays L. cv DEA) roots in the same way as in sugar-starved organs. However, contrary to the generally accepted idea, phosphorous and carbon nuclear magnetic resonance experiments and enzymatic assays prove that 3-OMG is phosphorylated to 3-OMG-6-phosphate, which accumulates in the cells. Insofar as plant HXK is involved in sugar sensing, these findings are discussed on the basis of the kinetic properties because the catalytic efficiency of HXK isolated from maize root tips is five orders of magnitude lower for 3-OMG than for Glc and Man.  相似文献   

18.
Glucosamine (GlcN) is a naturally occurring amino-sugar that is synthesized by amidation of fructose-6-phosphate. Although a number of reports have examined the biological effects of GlcN on insulin resistance in mammalian systems, little is known about its effects on plant growth. In this study, we have shown that exogenous GlcN inhibits hypocotyl elongation in Arabidopsis, whereas glucose and its analogs alleviate this inhibitory effect. The hexokinase (HXK)-specific inhibitor mannoheptulose also restored hypocotyl elongation. The gin2-1 mutants with an alteration in AtHXK1 exhibited higher tolerance to GlcN. We also found that GlcN induces a significant increase in the production of reactive oxygen species (ROS). In addition, the GlcN-mediated inhibition of hypocotyl elongation was relieved by reducing agents such as ascorbic acid and glutathione. GlcN treatment resulted in significant induction of expression of GST1, GST2 and GST6, which are marker genes for ROS production. The gin2 mutation also represses the ROS production and the GST2 induction by GlcN treatment. Taken together, these results provide evidence that GlcN induces HXK-mediated induction of oxidative stress, leading to growth repression in Arabidopsis thaliana.  相似文献   

19.
20.
Tip growth in neuronal cells, plant cells, and fungal hyphae is known to require tip-localized Rho GTPase, calcium, and filamentous actin (F-actin), but how they interact with each other is unclear. The pollen tube is an exciting model to study spatiotemporal regulation of tip growth and F-actin dynamics. An Arabidopsis thaliana Rho family GTPase, ROP1, controls pollen tube growth by regulating apical F-actin dynamics. This paper shows that ROP1 activates two counteracting pathways involving the direct targets of tip-localized ROP1: RIC3 and RIC4. RIC4 promotes F-actin assembly, whereas RIC3 activates Ca(2+) signaling that leads to F-actin disassembly. Overproduction or depletion of either RIC4 or RIC3 causes tip growth defects that are rescued by overproduction or depletion of RIC3 or RIC4, respectively. Thus, ROP1 controls actin dynamics and tip growth through a check and balance between the two pathways. The dual and antagonistic roles of this GTPase may provide a unifying mechanism by which Rho modulates various processes dependent on actin dynamics in eukaryotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号