首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 257 毫秒
1.
Human plasma HDLs are classified on the basis of apolipoprotein composition into those that contain apolipoprotein A-I (apoA-I) without apoA-II [(A-I)HDL] and those containing apoA-I and apoA-II [(A-I/A-II)HDL]. ApoA-I enters the plasma as a component of discoidal particles, which are remodeled into spherical (A-I)HDL by LCAT. ApoA-II is secreted into the plasma either in the lipid-free form or as a component of discoidal high density lipoproteins containing apoA-II without apoA-I [(A-II)HDL]. As discoidal (A-II)HDL are poor substrates for LCAT, they are not converted into spherical (A-II)HDL. This study investigates the fate of apoA-II when it enters the plasma. Lipid-free apoA-II and apoA-II-containing discoidal reconstituted HDL [(A-II)rHDL] were injected intravenously into New Zealand White rabbits, a species that is deficient in apoA-II. In both cases, the apoA-II was rapidly and quantitatively incorporated into spherical (A-I)HDL to form spherical (A-I/A-II)HDL. These particles were comparable in size and composition to the (A-I/A-II)HDL in human plasma. Injection of lipid-free apoA-II and discoidal (A-II)rHDL was also accompanied by triglyceride enrichment of the endogenous (A-I)HDL and VLDL as well as the newly formed (A-I/A-II)HDL. We conclude that, irrespective of the form in which apoA-II enters the plasma, it is rapidly incorporated into spherical HDLs that also contain apoA-I to form (A-I/A-II)HDL.  相似文献   

2.
Incubation of rabbit plasma in vitro with hepatic lipase resulted in the hydrolysis of triacylglycerol in high-density lipoproteins (HDL) and a reduction in HDL particle size. These changes were accompanied by a decrease in the concentration of apolipoprotein A-I (apo A-I) in the HDL. The loss of apo A-I was demonstrated independently by ultracentrifugation, size exclusion chromatography and gradient gel-immunoblot analysis. It was unrelated to hydrolysis of HDL phospholipids but did correlate with the reduction in HDL particle size. These studies suggest that the concentration of apo A-I in HDL may be influenced by factors which regulate the metabolism of HDL core lipid constituents.  相似文献   

3.
4.
Phospholipid transfer protein (PLTP) transfers phospholipids between HDL and other lipoproteins in plasma. It also remodels spherical, apolipoprotein A-I (apoA-I)-containing HDL into large and small particles in a process involving the dissociation of lipid-free/lipid-poor apoA-I. ApoE is another apolipoprotein that is mostly associated with large, spherical HDL that do not contain apoA-I. Three isoforms of apoE have been identified in human plasma: apoE2, apoE3, and apoE4. This study investigates the remodeling of spherical apoE-containing HDL by PLTP and the ability of PLTP to transfer phospholipids between apoE-containing HDL and phospholipid vesicles. Spherical reconstituted high density lipoproteins (rHDL) containing apoA-I [(A-I)rHDL], apoE2 [(E2)rHDL], apoE3 [(E3)rHDL], or apoE4 [(E4)rHDL] as the sole apolipoprotein were prepared by incubating discoidal rHDL with low density lipoproteins and lecithin:cholesterol acyltransferase. PLTP remodeled the spherical, apoE-containing rHDL into large and small particles without the dissociation of apoE. The PLTP-mediated remodeling of apoE-containing rHDL was more extensive than that of (A-I)rHDL. PLTP transferred phospholipids from small unilamellar vesicles to apoE-containing rHDL in an isoform-dependent manner, but at a rate slower than that for spherical (A-I)rHDL. It is concluded that apoE enhances the capacity of PLTP to remodel HDL but reduces the ability of HDL to participate in PLTP-mediated phospholipid transfers.  相似文献   

5.
Apolipoprotein A-I (apoA-I) is the major protein component of high density lipoproteins (HDL) and a critical element of cholesterol metabolism. To better elucidate the role of the apoA-I structure-function in cholesterol metabolism, the conformation of the apoA-I N terminus (residues 6-98) on nascent HDL was examined by electron paramagnetic resonance (EPR) spectroscopic analysis. A series of 93 apoA-I variants bearing single nitroxide spin label at positions 6-98 was reconstituted onto 9.6-nm HDL particles (rHDL). These particles were subjected to EPR spectral analysis, measuring regional flexibility and side chain solvent accessibility. Secondary structure was elucidated from side-chain mobility and molecular accessibility, wherein two major α-helical domains were localized to residues 6-34 and 50-98. We identified an unstructured segment (residues 35-39) and a β-strand (residues 40-49) between the two helices. Residues 14, 19, 34, 37, 41, and 58 were examined by EPR on 7.8, 8.4, and 9.6 nm rHDL to assess the effect of particle size on the N-terminal structure. Residues 14, 19, and 58 showed no significant rHDL size-dependent spectral or accessibility differences, whereas residues 34, 37, and 41 displayed moderate spectral changes along with substantial rHDL size-dependent differences in molecular accessibility. We have elucidated the secondary structure of the N-terminal domain of apoA-I on 9.6 nm rHDL (residues 6-98) and identified residues in this region that are affected by particle size. We conclude that the inter-helical segment (residues 35-49) plays a role in the adaptation of apoA-I to the particle size of HDL.  相似文献   

6.
The complete amino acid sequence of apolipoprotein A-I (apo-A-I) from canine serum high density lipoproteins (HLD) has been determined by automated Edman degradation of the intact protein and proteolytic fragments derived therefrom. The major strategy involved analysis of overlapping sets of peptides generated by cleavage at lysyl residues with Myxobacter protease and by tryptic hydrolysis at arginines in the citraconylated protein derivative. Canine apo-A-I has 232 residues in its single polypeptide chain and its covalent structure is highly homologous to one of the two reported sequences for human apo-A-I. As in the case for the human apoprotein, predictive analysis of the canine apo-A-I sequence suggests that it comprises a series of amphiphilic alpha helices punctuated by a periodic array of prolyl residues. Human HDL contains a second major protein component, apolipoprotein A-II (apo-A-II) that is lacking in HDL from dog serum. The absence of apo-A-II in canine HDL raised the possibility that the apo-A-I from this source might contain within its primary structure sequences related to apo-A-II and thus perform the dual function of both proteins in one. Our analysis proves that canine apo-A-I has all of the structural features of human apo-A-I and that it is not an A-I: A-II hybrid molecule.  相似文献   

7.
8.
It is well accepted that HDL has the ability to reduce risks for several chronic diseases. To gain insights into the functional properties of HDL, it is critical to understand the HDL structure in detail. To understand interactions between the two major apolipoproteins (apos), apoA-I and apoA-II in HDL, we generated highly defined benchmark discoidal HDL particles. These particles were reconstituted using a physiologically relevant phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) incorporating two molecules of apoA-I and one homodimer of apoA-II per particle. We utilized two independent mass spectrometry techniques to study these particles. The techniques are both sensitive to protein conformation and interactions and are namely: 1) hydrogen deuterium exchange combined with mass spectrometry and 2) partial acetylation of lysine residues combined with MS. Comparison of mixed particles with apoA-I only particles of similar diameter revealed that the changes in apoA-I conformation in the presence of apoA-II are confined to apoA-I helices 3-4 and 7-9. We discuss these findings with respect to the relative reactivity of these two particle types toward a major plasma enzyme, lecithin:cholesterol acyltransferase responsible for the HDL maturation process.  相似文献   

9.
The expression and immunoreactivity of apolipoprotein (apo) A-I epitopes in high density lipoproteins (HDL) and serum has been investigated using two series of monoclonal antibodies (Mabs) which have been described elsewhere. Series 1 Mabs, identified as 3D4, 6B8, and 5G6, were obtained by immunization and screening with apoA-I, and series 2 Mabs, identified as 2F1, 4H1, 3G10, 4F7, and 5F6, were obtained by immunization and screening with HDL. These Mabs were characterized with respect to their binding to HDL particles in solution. In series 2 Mabs, 2F1, 3G10, and 4F7, which react with apoA-I CNBr-fragments 1 and 2, could precipitate 100% of 125I-labeled HDL, while 4H1 and 5F6, which react with CNBr fragments 1 and 3, precipitated 90 and 60% of 125I-labeled HDL, respectively. Therefore, three distinct epitopes mapped to CNBr fragments 1 and 2 have been identified which are expressed on all HDL particles, indicating that several antigenic do mains exist on apoA-I which have the same conformation on all apoA-I-containing lipoproteins. The Mabs reacting at these sites have significantly higher affinity constants for 125I-labeled HDL than those that failed to precipitate 100% of HDL. This suggests that the high affinity Mabs react with apoA-I epitopes that are both expressed on all lipoproteins and located in thermo-dynamically stable regions of the molecules. All Mabs from series 1 precipitated 35% or less of 125I-labeled HDL prepared from freshly collected serum, but the proportion of HDL particles expressing the epitopes for these Mabs doubled or more upon serum storage at 4 degrees C. The time course of the alteration of apoA-I antigen in vitro was measured in three normolipemic donors. Upon storage of serum at 4 degrees C, the immunoreactivity of series 2 Mabs (4H1, 3G10) remained unchanged. However, the immunoreactivity of series 1 Mab 3D4 increased linearly at 38%/day for 4 weeks and by 12 weeks had plateaued at about 280-fold compared to day 1. The immunoreactivity of other series 1 Mabs also increased significantly with time in vitro. This process was partially inhibited in the presence of EDTA and by addition of antioxidants, however, the exact molecular nature of this in vitro alteration of apoA-I antigen was not identified.  相似文献   

10.
11.
Hormone-sensitive lipase in homogenates of adipose tissue occurs as a large, lipid-rich complex including several acylhydrolase activities that emerge quantitatively in the void volume on gel filtration chromatography (2% agarose). Incubation with intact human plasma high density lipoprotein or with lipid-free apolipoprotein A-I, however, disrupted the lipid-rich complex almost completely and most of the enzyme activity eluted from a 2% agarose column at about Ve = 2.3 x Vo. This use of the detergent-like properties of apolipoprotein A-I may be of value for dissociation of other lipid-associated or membrane-bound enzymes.  相似文献   

12.
Protein and protein-lipid interactions, with and within specific areas in the cell membrane, are critical in order to modulate the cell signaling events required to maintain cell functions and viability. Biological bilayers are complex, dynamic platforms, and thus in vivo observations usually need to be preceded by studies on model systems that simplify and discriminate the different factors involved in lipid-protein interactions. Fluorescence microscopy studies using giant unilamellar vesicles (GUVs) as membrane model systems provide a unique methodology to quantify protein binding, interaction, and lipid solubilization in artificial bilayers. The large size of lipid domains obtainable on GUVs, together with fluorescence microscopy techniques, provides the possibility to localize and quantify molecular interactions. Fluorescence Correlation Spectroscopy (FCS) can be performed using the GUV model to extract information on mobility and concentration. Two-photon Laurdan Generalized Polarization (GP) reports on local changes in membrane water content (related to membrane fluidity) due to protein binding or lipid removal from a given lipid domain. In this review, we summarize the experimental microscopy methods used to study the interaction of human apolipoprotein A-I (apoA-I) in lipid-free and lipid-bound conformations with bilayers and natural membranes. Results described here help us to understand cholesterol homeostasis and offer a methodological design suited to different biological systems.  相似文献   

13.
Discoidal forms of high density lipoproteins (HDL) are critical intermediates between lipid-poor apolipoprotein A-I (apo A-I), the major protein constituent of HDL, and the mature spherical forms that comprise the bulk of circulating particles. Thus, many studies have focused on understanding apoA-I structure in discs reconstituted in vitro. Recent theoretical and experimental work supports a "belt" model for apoA-I in which repeating amphipathic helical domains run parallel to the plane of the lipid disc. However, disc-associated apoA-I can adopt several tertiary arrangements that are consistent with a belt orientation. To distinguish among these, we cross-linked near-neighbor Lys groups in homogeneous 96 A discs containing exactly two molecules of apoA-I. After delipidation and tryptic digestion, mass spectrometry was used to identify 9 intermolecular and 11 intramolecular cross-links. The cross-linking pattern strongly suggests a "double-belt" molecular arrangement for apoA-I in which two apoA-I molecules wrap around the lipid bilayer disc forming two stacked rings in an antiparallel orientation with helix 5 of each apoA-I in juxtaposition (LL5/5 orientation). The data also suggests the presence of an additional double-belt orientation with a shifted helical registry (LL5/2 orientation). Furthermore, a 78 A particle with two molecules of apoA-I fit a similar double-belt motif with evidence for conformational changes in the N-terminus and the region near helix 5. A comparison of this work to a previous study is suggestive that a third molecule of apoA-I can form a hairpin in larger particles containing three molecules of apoA-I.  相似文献   

14.
We have demonstrated that low and high density lipoproteins from monkey plasma are capable of accepting and accumulating monoacylglycerol that is formed by the action of lipoprotein lipase on monkey lymph very low density lipoproteins. Furthermore, the monoacylglycerol that accumulates in both low and high density lipoproteins is not susceptible to further hydrolysis by lipoprotein lipase but is readily degraded by the monoacylglycerol acyltransferase of monkey liver plasma membranes. These observations suggest a new mechanism for monoacylglycerol transfer from triacylglycerol rich lipoproteins to other lipoproteins. In addition, the finding that monoacylglycerol bound to low and high density lipoprotein is degraded by the liver enzyme but not lipoprotein lipase lends support to the hypothesis that there are distinct and consecutive extrahepatic and hepatic stages in the metabolism of triacylglycerol in plasma lipoproteins.  相似文献   

15.
The lecithin:cholesterol acyltransferase (LCAT)-induced transformation of two discrete species of model complexes that differ in number of apolipoprotein A-I (apoA-I) molecules per particle was investigated. One complex species (designated 3A-I(UC)-complexes) contained 3 apoA-I per particle, was discoidal (13.5 X 4.4 nm), and had a molar composition of 22:78:1 (unesterified cholesterol (UC):egg yolk phosphatidylcholine (egg yolk PC):apoA-I). The other complex species (designated 2A-I(UC)complexes) containing 2 apoA-I per particle was also discoidal (8.4 X 4.1 nm) and had a molar composition of 6:40:1. Transformation of 3A-I(UC)complexes by partially purified LCAT yielded a product (24 hr, 37 degrees C) with a cholesteryl ester (CE) core, 3 apoA-I, and a mean diameter of 9.2 nm. The 2A-I(UC)complexes were only partially transformed to a core-containing product (24 hr, 37 degrees C) which also had 3 apoA-I; this product, however, was smaller (diameter of 8.5 nm) than the product from 3A-I(UC)complexes. Transformation of 3A-I(UC)complexes appeared to result from build-up of core CE directly within the precursor complex. Transformation of 2A-I(UC)complexes, however, followed a stepwise pathway to the product with 3 apoA-I, apparently involving fusion of transforming precursors and release of one apoA-I from the fusion product. In the presence of low density lipoprotein (LDL), used as a source of additional cholesterol, conversion of 2A-I(UC)complexes to the product with 3 apoA-I was more extensive. The transformation product of 3A-I(UC)complexes in the presence of LDL also had 3 apoA-I but was considerably smaller in size (8.6 vs. 9.2 nm, diameter) and had a twofold lower molar content of PC compared with the product formed without LDL. LDL appeared to act both as a donor of UC and an acceptor of PC. Transformation products with 3 apoA-I obtained under the various experimental conditions in the present studies appear to be constrained in core CE content (between 13 to 22 CE per apoA-I; range of 9 CE molecules) but relatively flexible in content of surface PC molecules they can accommodate (between 24 to 49 PC per apoA-I; range of 25 PC molecules). The properties of the core-containing products with 3 apoA-I compare closely with those of the major subpopulation of human plasma HDL in the size range of 8.2-8.8 nm that contains the molecular weight equivalent of 3 apoA-I molecules.  相似文献   

16.
We assessed the ability of endothelial lipase (EL) to hydrolyze the sn-1 and sn-2 fatty acids (FAs) from HDL phosphatidylcholine. For this purpose, reconstituted discoidal HDLs (rHDLs) that contained free cholesterol, apolipoprotein A-I, and either 1-palmitoyl-2-oleoylphosphatidylcholine, 1-palmitoyl-2-linoleoylphosphatidylcholine, or 1-palmitoyl-2-arachidonylphosphatidylcholine were incubated with EL- and control (LacZ)-conditioned media. Gas chromatography analysis of the reaction mixtures revealed that both the sn-1 (16:0) and sn-2 (18:1, 18:2, and 20:4) FAs were liberated by EL. The higher rate of sn-1 FA cleavage compared with sn-2 FA release generated corresponding sn-2 acyl lyso-species as determined by MS analysis. EL failed to release sn-2 FA from rHDLs containing 1-O-1'-hexadecenyl-2-arachidonoylphosphatidylcholine, whose sn-1 position contained a nonhydrolyzable alkyl ether linkage. The lack of phospholipase A(2) activity of EL and its ability to liberate [(14)C]FA from [(14)C]lysophosphatidylcholine (lyso-PC) led us to conclude that EL-mediated deacylation of phosphatidylcholine (PC) is initiated at the sn-1 position, followed by the release of the remaining FA from the lyso-PC intermediate. Thin-layer chromatography analysis of cellular lipids obtained from EL-overexpressing cells revealed a pronounced accumulation of [(14)C]phospholipid and [(14)C]triglyceride upon incubation with 1-palmitoyl-2-[1-(14)C]linoleoyl-PC-labeled HDL(3), indicating the ability of EL to supply cells with unsaturated FAs.  相似文献   

17.
We have utilized the human hepatocellular carcinoma cell line, Hep G2, to study the effects of low density lipoproteins (LDL), high density lipoproteins (HDL), and free cholesterol on apolipoprotein (apo) A-I mRNA levels. Incubation of the Hep G2 cells with LDL and free cholesterol led to a significant increase in the cellular content of cholesterol without any effect on the yield of total RNA or in the cellular protein content. Our studies established that incubation with LDL or free cholesterol increased the relative levels of apoA-I mRNA in the Hep G2 cells. In contrast with cholesterol loading, HDL had the effect of lowering the levels of apoA-I mRNA. These results indicate the LDL and HDL pathways as well as intracellular cholesterol may be important in apoA-I gene expression and regulation.  相似文献   

18.
Dissociation of apolipoprotein A-I from pig and steer high density lipoproteins (HDL) deficient in apoA-II was determined by exposing native HDL fractions to 6 M guanidine hydrochloride (Gdn-HCl) at 37 degrees C for periods from 5 min to 18 h. Bovine high density lipoprotein (HDL-B) was isolated at d 1.063--1.100 g/ml while porcine high density lipoprotein (HDL-P) was isolated at d 1.125--1.21 g/ml. Incubation for 5 min with Gdn-HCl resulted in a 45 and 3% loss of apo-A-I from HDL-P and HDL-B, respectively. Exposure to the denaturant for 3 h resulted in a 75% loss of apoA-I from HDL-P and a 30% loss from HDL-B. Analytic ultracentrifugation, patterns paralleled the degree of apoA-I dissociation from each HDL species. The initial flotation peak for HDL-P shifted from F degrees 1.20 2.68 to F degrees 1.20 10.75 after 3 h exposure while HDL-B showed only a small shift from F degrees 1.20 8.30 to F degrees 1.20 8.96 after 3 h exposure. HDL-P particle diameter increased 25% after 5 min of Gdn-HCl treatment and large, flattened structures predominated after 3 h. There was no changes in the size of HDL-B after 5 min exposure and only 16% increase in particle diameter after 3 h. The difference in behavior of HDL-B and HDL-P to Gdn-HCl exposure is discussed in terms of differences in apolipoprotein A-I amino acid composition, interaction of apolipoprotein A-I with phospholipids and the possible involvement of the cholesteryl ester core.  相似文献   

19.
To understand the structure of apolipoprotein A-I, we have used an immunochemical approach and identified specific regions of apoA-I that may be exposed on the apoprotein as it exists on high density lipoprotein (HDL). Twelve mouse monoclonal antibodies specific for human apoA-I were generated from six fusions. Thirteen synthetic peptides of between 5 and 16 amino acid residues in length, which span the amino-terminal two-thirds of apoA-I, were tested for their ability to react with each of the 12 antibodies. In a competitive solid-phase radioimmunoassay, a synthetic peptide, which represented residues 1-15 of mature apoA-I, inhibited the binding of antibody AI-16 to immobilized HDL. Similarly, a synthetic peptide, which represented residues 90-105 of apoA-I, inhibited the binding of antibody AI-18 to immobilized HDL. Using systematic changes in the size and sequence of the oligopeptides, the limits and essential amino acid residues of these epitopes were defined. Comparisons of the slopes of the competition curves obtained with immunoreactive peptides, isolated apoA-I, and HDL verified that these two regions of apoA-I are exposed on the surface of apoA-I as it exists on native HDL.  相似文献   

20.
For a better definition of the role of human serum apolipoprotein A-I (apo A-I) in high density lipoprotein structure, a systematic investigation was carried out on factors influencing the in vitro association of this apoprotein with lipids obtained from the parent high density lipoprotein (HDL); these lipids include phospholipids, free cholesterol, cholesteryl esters, and triglycerides. Following equilibration, mixtures of apo A-I and lipids in varying stoichiometric amounts were fractionated by sequential flotation, CsCl density gradient ultracentrifugation, or gel-permeation chromatography, and the isolated complexes were characterized by physicochemical means. As defined by operational criteria (flotation at density 1,063 to 1.21 g/ml), only two types of HDL complexes were reassembled; one, reconstituted HDLS, small with a radius of 31 A, and the other, reconstituted HDLL, large with a radius of 39 A. The two types incorporated all of the lipid constituents of native HDL and contained 2 and 3 mol of apo A-I, respectively. A maximal yield of reconstituted HDL (R-HDL) was observed at an initial protein concentration of 0.1 muM, where apo A-I is predominantly monomeric. At increasing protein concentrations, the amount of apo A-I recovered in R-HDL was found to be proportional to the initial concentration of monomer and dimer in solution. The composition and yield of the complexes were independent of ionic strength and pH within the ranges studied. Both simple incubation and cosonication of apo A-I with HDL phospholipids produced complexes of identical composition, although the yeild of complexes was higher with co-sonication. When the comparison of the same methods was extended to mixtures of apo A-I and whole HDL lipids, the results confirmed previous observations that co-sonication is essential for the incorporation of the neutral lipid into the R-HDL complexes. The results indicate that (a) in vitro complexation of apo A-I with lipids is under kinetic control; (b) apo A-I can generate a lipid-protein complex with properties similar to those of the parent lipoprotein; (c) the process requires well defined experimental conditions and, most importantly, the presence in solution of monomers and dimers of apo A-I; (d) the number of apo A-I molecules incorporated into R-HDL determines the size and structure of the reassembled particle. All of these observations strongly support the essential role of apo A-I in the structure of human HDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号