首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Normal human neutrophils were stimulated with the yeast cell wall product, zymosan, and examined for two biologic responses, ingestion of particles and production of leukotriene B4 (LTB4), under conditions that were comparable and optimal for the quantitation of each response. Monolayers of adherent neutrophils ingested unopsonized zymosan particles, at particle-to-cell ratios of 12.5:1 to 125:1, in a dose- and time-related manner. At a ratio of 125:1, the percentages of neutrophils ingesting greater than or equal to 1 and greater than or equal to 3 zymosan particles reached plateau levels of 55 +/- 6 and 32 +/- 9% (mean +/- SD, n = 8), respectively, within 30 min. At this same ratio, neutrophils during gravity sedimentation with zymosan particles synthesized LTB4 in a time-dependent manner for at least 45 min. The maximum amount of immunoreactive LTB4 released into supernatants was 3.8 +/- 1.2 ng per 10(6) neutrophils (mean +/- SD, n = 5) and the corresponding total immunoreactive LTB4 was 6.2 +/- 1.9 ng per 10(6) neutrophils. Treatment of 2 x 10(7) suspended neutrophils with 250 micrograms of trypsin for 20 min before concurrent assessment of neutrophil phagocytosis and LTB4 production reduced both of these responses by about 50%. Pretreatment of neutrophils with 800 micrograms/ml of soluble yeast beta-glucan inhibited their ingestion of zymosan by 84% (mean +/- SD, n = 3), with 50% inhibition occurring with 100 micrograms/ml of soluble beta-glucan; 800 micrograms/ml of soluble yeast alpha-mannan had no inhibitory effect. Pretreatment of neutrophils with 400 micrograms/ml of soluble yeast beta-glucan inhibited neutrophil synthesis of LTB4 by 90%, with 50% occurring with 200 micrograms/ml; 400 micrograms/ml of soluble yeast alpha-mannan had no inhibitory effect. The presence of 1.25 micrograms/ml of cytochalasin B during incubation with zymosan particles reduced neutrophil phagocytosis from 65 to 6%, and neutrophil synthesis of LTB4 from total levels of 6.0 +/- 0.3 ng/10(6) cells to zero (mean +/- SD, n = 3). Pretreatment with either cytochalasin B or vinblastine did not alter neutrophil generation of LTB4 induced by calcium ionophore. Neutrophils pretreated with vinblastine, at 4 x 10(-6) to 4 x 10(-4) M, and then maintained at one-half these concentrations during incubation with unopsonized zymosan particles exhibited no diminution in particle ingestion, but were markedly reduced in zymosan-induced synthesis of LTB4.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
SC-41930 was evaluated for effects on human neutrophil chemotaxis and degranulation. At concentrations up to 100 microM, SC-41930 alone exhibited no effect on neutrophil migration, but dose-dependently inhibited neutrophil chemotaxis induced by leukotriene B4 (LTB4) in a modified Boyden chamber. Concentrations of SC-41930 from 0.3 microM to 3 microM competitively inhibited LTB4-induced chemotaxis with a pA2 value of 6.35. While inactive at 10 microM against C5a-induced chemotaxis, SC-41930 inhibited N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced chemotaxis, with 10 times less potency than against LTB4-induced chemotaxis. SC-41930 inhibited [3H]LTB4 and [3H]fMLP binding to their receptor sites on human neutrophils with KD values of 0.2 microM and 2 microM, respectively. SC-41930 also inhibited neutrophil chemotaxis induced by 20-OH LTB or 12(R)-HETE. At concentrations up to 10 microM, SC-41930 alone did not cause neutrophil degranulation, but inhibited LTB4-induced degranulation in a noncompetitive manner. SC-41930 also inhibited fMLP- or C5a-induced degranulation, but was about 8 and 10 times less effective for fMLP and C5a, respectively. The results indicate that SC-41930 is a human neutrophil LTB4 receptor antagonist with greater specificity for LTB4 than for fMLP or C5a receptors.  相似文献   

3.
We have characterized the GTPase activity of the Ni-like guanine-nucleotide-binding regulatory protein in rabbit neutrophil plasma membranes. The low Km (3.64 +/- 0.87 X 10(-7) M) GTPase copurified with the formyl peptide receptor in the plasma membrane fraction obtained by discontinuous sucrose density gradient centrifugation. The Vmax (23.9 +/- 2.91 pmol/mg/min) and Km of the unstimulated enzyme were similar to those reported for Ni in other cell types. The activity of the unstimulated enzyme was both magnesium and sodium dependent and linear over the first 4 min of the assay. The chemoattractants, formyl-methionyl-leucyl-phenylalanine (fMLP), C5a, and leukotriene B4 (LTB4) stimulated the GTPase in purified neutrophil plasma membrane preparations, whereas other secretagogues, such as A23187 and PMA, were without effect. Lineweaver-Burk analysis showed an fMLP-induced increase in Vmax (31.94 +/- 4.80 pmol/mg/min) (33.1 +/- 9.5%) but not in Km. The dose-response curve for fMLP stimulation showed an ED50 of 4.1 +/- 1.0 X 10(-8) M and an overall 22.2 +/- 3.1% maximal stimulation. C5a (30 micrograms/ml) increased the activity of the GTPase 21.3 +/- 5.7% and 10(-7) M LTB4 produced a 32.2 +/- 5.4% increase. Activated pertussis toxin treatment of neutrophil plasma membranes inhibited by 72.5 +/- 14.3% the stimulation of GTPase activity induced by fMLP; however, activated cholera toxin had no effect on the inhibition of fMLP stimulation, suggesting a direct role for an Ni-like protein in the coupling process. In contrast to the lack of inhibition of fMLP stimulation by activated cholera toxin treatment of plasma membranes, both pertussis toxin and to a lesser extent cholera toxin treatment reduced fMLP, C5a, and LTB4 stimulation of the GTPase in sonicates prepared from pretreated whole cells. Pertussis toxin inhibited fMLP stimulation of the GTPase by 75 +/- 7%, C5a stimulation was inhibited by 83 +/- 13%, and LTB4 stimulation was inhibited completely. Sonicates prepared from neutrophils treated similarly with cholera toxin showed a smaller inhibition of GTPase activity (50 +/- 4% and 14 +/- 9% for fMLP and LTB4, respectively) with the exception of C5a, where CT inhibition (81 +/- 32%) equaled pertussis toxin inhibition. Similarly, pertussis toxin completely inhibited the release of the granule enzyme N-acetyl-glucosaminidase by all three chemoattractants, whereas cholera toxin, except with C5a stimulation, had little or no effect.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
A leukotriene B4 (LTB4) analog, 20-trifluoromethyl LTB4 (20CF3-LTB4), has been synthesized and evaluated with human neutrophils for effects on chemotaxis and degranulation. 20CF3-LTB4 was equipotent to LTB4 as a chemoattractant (EC50, 3 nM), produced 50% of maximal activity of LTB4, and competed with [H] LTB4 for binding to intact human neutrophil LTB4 receptors. In contrast to chemotactic activity, 20CF3-LTB4 in nanomolar concentrations exhibited antagonist activity without agonist activity up to 10 microM on LTB4-induced degranulation. The analog had no significant effect on degranulation induced by the chemoattractant peptide, N-formyl-methionyl-leucyl-phenylalanine (fMLP). Like LTB4, 20CF3-LTB4 induced neutrophil desensitization to degranulation by LTB4. The results indicate that hydrogen atoms at C-20 of LTB4 are critical for its intrinsic chemotactic and degranulation activities. The fact that 20CF3-LTB4 is a partial agonist for chemotaxis and an antagonist for degranulation suggests that different LTB4 receptor subtypes are coupled to these neutrophil functions. Desensitization of the neutrophil degranulation response to LTB4 can result from receptor occupancy by an antagonist, and therefore, the desensitization is not specific for an agonist.  相似文献   

5.
6.
ONO-4057(5-[2-(2-Carboxyethyl)-3-[6-(4-methoxyphenyl)-5E- hexenyl]oxyphenoxy]valeric acid), an orally active leukotriene B4(LTB4) antagonist, displaced the binding of [3H] LTB4 to the LTB4 receptor in human neutrophil (Ki = 3.7 +/- 0.9 nM). ONO-4057 inhibited the LTB4-induced rise in cytosolic free calcium (the concentration causing 50% inhibition (IC50) = 0.7 +/- 0.3 microM) and inhibited human neutrophil aggregation, chemotaxis or degranulation induced by LTB4 (IC50 = 3.0 +/- 0.1, 0.9 +/- 0.1 and 1.6 +/- 0.1 microM) without showing any agonist activity at concentration up to 30 microM. ONO-4057 did not inhibit fMLP or C5a-induced neutrophil activation at concentrations up to 30 microM. In the in vivo study, ONO-4057 given orally, prevented LTB4-induced transient neutropenia or intradermal neutrophil migration in guinea pig (the dose causing 50% efficacy (ED50) = 25.6mg/kg or 5.3mg/kg). Furthermore, ONO-4057 given topically, suppressed phorbol-12-myristate-13-acetate (PMA)-induced neutrophil infiltration in guinea pig ear (the effective dose = 1 mg/ear). These results indicate that ONO-4057 is a selective and orally active LTB4 antagonist and may be a potential candidate for the treatment of various inflammatory diseases.  相似文献   

7.
Human recombinant granulocyte-macrophage CSF (GM-CSF) "primes" neutrophils for enhanced biologic responses to a number of secondary stimuli. Here, we examined the properties of neutrophil priming by GM-CSF and other growth factors such as human rTNF and granulocyte CSF. Although GM-CSF has a negligible direct effect on [3H]arachidonic acid release, it enhances or "primes" neutrophils for three- to fivefold increased release of [3H]arachidonic acid, induced by 1.0 microM A23187 and the chemotactants FMLP, platelet-activating factor, and leukotriene B4 (LTB4) (all 0.1 microM). The priming effects of GM-CSF were concentration- and time-dependent (maximum 100 pM, 1 h at 23 degrees C), and consistent with the determined dissociation constant of the human GM-CSF receptor. Indomethacin (10(-8) M), cycloheximide (100 micrograms/ml), and pertussis toxin (200 ng/ml, 2 h at 37 degrees C) had no effect on GM-CSF-, A23187, or platelet-activating factor-induced [3H]arachidonic acid release. The lipoxygenase inhibitor, nordihydroguaiaretic acid, however, totally abolished A23187-induced [3H]arachidonic acid release from both diluent- and GM-CSF-treated neutrophils. Consistent with this observation, we found that GM-CSF-pretreated neutrophils synthesize increased levels of LTB4 after stimulation with A23187 and chemotactic factors. GM-CSF enhances neutrophil arachidonic acid release and LTB4 synthesis, and thereby may amplify the inflammatory response to chemotactic factors and other physiologically relevant stimuli.  相似文献   

8.
9.
Rabbit anti-idiotypic IgG antibodies to the combining site of a mouse monoclonal IgG2b antibody to leukotriene B4 (LTB4) cross-reacted with human polymorphonuclear (PMN) leukocyte receptors for LTB4. Anti-idiotypic IgG and Fab both inhibited the binding of [3H]LTB4, but not [3H]N-formylmethionyl-leucylphenylalanine (fMLP), to PMN leukocytes with similar concentration-effect relationships, whereas neither nonimmune rabbit IgG nor Fab had any inhibitory activity. At a concentration of anti-idiotypic IgG that inhibited by 50% the binding of [3H] LTB4 to PMN leukocytes, the antibodies preferentially recognized high affinity receptors. Anti-idiotypic IgG and Fab inhibited PMN leukocyte chemotactic responses to LTB4, but not fMLP, with concentration-effect relationships resembling those characteristic of the inhibition of binding of [3H] LTB4, without altering the LTB4-induced release of beta-glucuronidase. Chemotaxis and increases in the cytoplasmic concentration of calcium equal in magnitude to those elicited by optimal concentrations of LTB4 were attained at respective concentrations of anti-idiotypic IgG equal to and 1/25 the level required for inhibition of binding of [3H]LTB4 by approximately 50%. Thus, the anti-idiotypic antibodies bound to PMN leukocyte receptors for LTB4 with a specificity, preference for high affinity sites, and capacity to alter PMN leukocyte functions that were similar to LTB4.  相似文献   

10.
H Katayama 《Prostaglandins》1987,34(6):797-804
Important roles of neutrophils as well as lymphocytes against invasive fungi has been suggested. Leukotriene B4 (LTB4) is a potent chemoattractant for neutrophils and its topical application to human skin has already been performed without serious side effects, forming intraepidermal neutrophil abscesses. Thus topical LTB4 therapy for tinea was attempted in a randomized, placebo-controlled study. LTB4 (100-900 ng depending on the area of each lesion) was applied to a whole lesion once a week until, as a rule, complete clearing was observed but maximum for 2 weeks (vesiculobullous type lesions), 5 weeks (patches with or without raised borders) or 7 weeks (macerated lesions between toes). As a result, 16 of 18 lesions treated with LTB4 were cleared either completely (13) or partially (3). In contrast, only 2 of 18 lesions treated with vehicle (50% ethanol) were cleared partially. Statistical analysis with chi 2 test revealed a significant efficacy of LTB4 over vehicle. Topical LTB4 will be used as a powerful antifungal regimen. LTB4 has not been used for infectious diseases before.  相似文献   

11.
Diets that are enriched with fish oil have been shown to alter arachidonic acid metabolism via the cyclooxygenase pathway. Recently it has been shown that one of the major component fatty acids of fish oil, eicosapentaenoate (EPA), is a substrate for the leukotriene B (LTB) pathway when added exogenously to human neutrophils in vitro. We fed a diet that contained 8-10gm/day of EPA to four human subjects for three weeks and compared the arachidonate metabolism of their neutrophils to the same functions while the subjects were on their usual diet. The fish oil-supplementation increased neutrophil EPA content from undetectable levels to 7.4 +/- 2.4% (p less than 0.01, expressed as % of total fatty acid), and decreased arachidonate from 15.4 +/- 2.3% to 12.8 +/- 2.3% (p less than 0.05). Leukotriene B5 was identified as a metabolite during the fish oil-diet by its chromatographic profile and mass spectrum. During the experimental diet LTB4, decreased from 160 +/- 37 ng/10(7) neutrophils to 120 +/- 12 (p less than 0.05), and LTB5 increased from 0 to 39 +/- 9 ng/10(7) neutrophils (p less than 0.005). The diet had no effect on neutrophil aggregation or adherence to nylon fibers.  相似文献   

12.
Interleukin-1 is a potent stimulator of arachidonic acid (AA) metabolism and this activity could be attributed to the activation of the prostaglandin-forming enzyme cyclooxygenase or of the arachidonic-releasing enzyme phospholipase A2 or both. Prostaglandin E2 (PGE2), a cyclooxygenase product, and LTB4 (5-(S),12-(R)-dihydroxy-6,14-cis-8,10-trans-eicosatetraenoic acid), a lipoxygenase product, are potent mediators of inflammation. Recently a new cytokine produced by macrophages and named interleukin-1 receptor antagonist (IL-1ra) (MW 22,000 Da) which specifically binds and blocks IL-1 receptors, has proven to be a potent inflammatory inhibitor. In our studies we found that monocyte suspensions, pretreated with hrIL-1ra at increasing concentrations (0.25-250 ng/ml) for 10 min and then treated with LPS in an overnight incubation inhibits, in a dose-dependent manner, the generation of LTB4 as measured by the highly sensitive radioimmunoassay method. In monocytes pretreated with hrIL-1ra (250 ng/ml) for 10 min and treated with arachidonic acid (10(-5)-10(-9) M) and LPS overnight, the release of LTB4 was partially inhibited when compared to hrIL-1ra-untreated cells. Moreover, hrIL-1ra (250 ng/ml) caused a partial inhibition of monocyte LTB4 production when the cells were activated with AA (10(-7) M) and then treated with IL-1 beta (5 ng/ml) overnight or 24 hr incubation. In addition, human monocytes pretreated for 10 min with increasing doses of hrIL-1ra (0.25-250 ng/ml) and then treated with hrIL-1 alpha (5 ng/ml) or beta (5 ng/ml) for 18 hr, also resulted in the inhibition of PGE2 generation as measured by RIA when compared with hrIL-1ra-untreated cells. When the cells were treated with hrIL-1ra (250 ng/ml) and activated for 18 and 48 hr with increasing doses of hrIL-1 beta a strong inhibitory effect was found on PGE2 production. HrIL-1ra used at 15 ng/ml gave a partial inhibition of LTB4 generation, after LPS (1-100 ng/ml) treatment, while NDGA totally blocked the production of LTB4. Moreover, PGE2 released by macrophages activated with LPS (100 ng/ml) or hrIL-1 beta (5 ng/ml) at 18 hr incubation time was strongly inhibited when hrIL-1ra (250 ng/ml) was used. These data suggest that the inhibition of LTB4 and PGE2 by this new macrophage-derived monokine IL-1ra occurs through the block of the IL-1 receptor, rather than phospholipase A2, and thus IL-1ra may offer a potential therapeutic approach to inflammatory states.  相似文献   

13.
Changes in cytosolic free calcium [Ca2+]i and release of beta-glucuronidase in response to leukotriene B4 (LTB4) were measured in intact neutrophils loaded with the fluorescent Ca2+ indicator, quin 2. LTB4 (10(-10) M or higher) caused a rapid rise in [Ca2+]i due to influx from the extracellular medium and release from intracellular pools as well as enzyme release. PGE2 (3 microM) did not alter [Ca2+]i whereas arachidonic acid (10 microM) raised [Ca2+]i. Pretreatment of cells with the chemotactic peptide FMLP inhibited the subsequent rise of [Ca2+]i induced by LTB4. Since chemotactic peptides activate the lipoxygenase pathway of arachidonic acid metabolism, it may be speculated that endogenous LTB4 generation is involved in neutrophil activation.  相似文献   

14.
By using human neutrophils we studied the on-off phenomenon for leukotriene B4 (LTB4) -induced functional responses compared with fMetLeuPhe (fMLP). LTB4 induced rapidly appearing and disappearing neutrophil chemiluminescent (CL), superoxide anion formation, aggregatory and membrane depolarizing responses, whereas fMLP responses were slower both in onset and termination. Increases of intracellular calcium concentrations (as reflected by quin2 and fura-2 fluorescence) were of similar magnitude for both stimuli; however, LTB4 responses were more rapidly terminated and fMLP responses were biphasic. When intracellular calcium fluxes, calmodulin or protein kinase C activities were inhibited by quin2, trifluoperazine, verapamil or 3,4,5-trimethoxybenzoic acid 8-diethylamino)octyl ester (TMB-8), profound changes were noted for chemiluminescent and aggregation kinetics induced by fMLP, whereas kinetics of LTB4 responses were less affected. When drugs were used to modulate cAMP levels, or to inhibit cyclo- and lipoxygenase metabolites of arachidonic acid, no effects on response kinetics were observed. Cytochalasin B both amplified and delayed responses although chemiluminescent responses to fMLP were amplified more than those to LTB4. Despite those effects cytochalasin B did not enhance peak fura-2 or quin2 responses to either fMLP or LTB4. Thus, LTB4 rapidly initiates functional responses in neutrophils, and stimulus-specific response patterns are already discernable during the mobilization of calcium, and can be modulated by interference with calcium-dependent reactions.  相似文献   

15.
Human neutrophils biosynthesize the chemoattractant leukotriene B4 (LTB4) and metabolize LTB4 to omega oxidative products 20-hydroxy-LTB4 (20-OH-LTB4) and 20-carboxy-LTB4 (20-COOH-LTB4). In this study, we prepared the C-1 methyl ester and N-methyl amide of LTB4 and then examined neutrophil chemotaxis and metabolism of these derivatives of LTB4. The results show that chemical modification of LTB4 at carbon atom 1 dramatically affects metabolism of the lipid molecule. The free acid form of LTB4 was taken up and metabolized by human neutrophils, while the methyl ester and N-methyl amide derivatives were poor substrates for omega oxidation. Although human neutrophils were poorly attracted to the methyl ester of LTB4, the amide derivative was a complete agonist of the neutrophil chemotactic response and displayed an ED50 for chemotaxis identical to that of LTB4. Therefore, we concluded that omega oxidation is not a requirement for the neutrophil chemotactic response induced by LTB4. These results also indicate that the N-methyl amide of LTB4 may be a useful ligand for the elucidation of molecular mechanisms operative in neutrophil chemotaxis to LTB4, since the C-1 derivative is not further metabolized. Two separate responses of human neutrophils are elicited by LTB4, resulting in both cellular activation and generation of omega oxidation products. It appears that putative receptors on the neutrophils can distinguish between LTB4 and certain derivatives that are structurally identical except for modification at the C-1 position (i.e., the methyl ester). LTB4 derivatives modified at the C-1 position do not undergo conversion to omega oxidation products by the neutrophil.  相似文献   

16.
Platelet-activating factor (PAF) is a potent lipid mediator of inflammation that can act on human neutrophils. When neutrophils are stimulated with PAF at concentrations greater than 10 nM, a double peak of intracellular calcium mobilization is observed. The second calcium peak observed in PAF-treated neutrophils has already been suggested to come from the production of endogenous leukotriene B4 (LTB4). Here we demonstrate the involvement of endogenous LTB4 production and subsequent activation of the high affinity LTB4 receptor (BLT1) in this second calcium mobilization peak observed after stimulation with PAF. We also show that the second, but not the first peak, could be desensitized by prior exposure to LTB4. Moreover, when neutrophils were pre-treated with pharmacological inhibitors of LTB4 production or with the specific BLT1 antagonist, U75302, PAF-mediated neutrophil degranulation was inhibited by more than 50%. On the other hand, pre-treating neutrophils with the PAF receptor specific antagonist (WEB2086) did not prevent any LTB4-induced degranulation. Also, when human neutrophils were pre-treated with U75302, PAF-mediated chemotaxis was reduced by more than 60%. These data indicate the involvement of BLT1 signaling in PAF-mediated neutrophil activities.  相似文献   

17.
Monosodium urate (MSU)-induced synovitis in the dog's stifle (knee joint) is similar to an acute gouty attack in man in which a loss of function of the joint correlates with massive influx of neutrophils and the release of an assortment of inflammatory mediators (e.g. histamine, bradykinin, lysosomal enzymes, complement and eicosanoids) into the synovial space. We found in the urate-induced inflammatory exudates 3 hr post MSU the following: 88 million leukocytes/ml (approximately 95% neutrophils) and eicosanoid concentrations of LTB4, LTC4, and PGE2 of less than 0.1, 1.4 and 20 ng/ml, respectively. Isotonic saline injected knee joints at 3 hr contained 5 million leukocytes/ml (approximately 95% neutrophils) and concentrations of LTB4, LTC4, and PGE2 of less than 0.1, 0.7 and 0.2 ng/ml, respectively. Intrasynovial injections of 1 microgram LTB4, 10 micrograms PGE2 or the combination of LTB4 and PGE2 produced no reduction of paw pressure for up to 3 hr. Leukocyte concentrations measured at 3 hr in joints injected with these arachidonic acids metabolites were similar to saline controls. These results question the role of LTB4 as a chemotactic and inflammatory mediator in urate-induced synovitis in the dog but confirm the importance of PGE2 and possibly LTC4 in this model.  相似文献   

18.
Mucosal mast cells (MMC) were isolated from the intestine of Nippostrongylus brasiliensis-infected rats and then activated with Ag or with anti-IgE in order to assess their metabolism of arachidonic acid to leukotriene (LT) C4, LTB4, and prostaglandin D2 (PGD2). After challenge of MMC preparations of 19 +/- 1% purity with five worm equivalents of N. brasiliensis Ag, the net formation of immunoreactive equivalents of LTC4, LTB4, and PGD2 was 58 +/- 8.3, 22 +/- 4.5, and 22 +/- 3.4 ng/10(6) mast cells, respectively (mean +/- SE, n = 7). When MMC preparations of 56 +/- 9% purity were activated by Ag, the net generation of immunoreactive equivalents of LTC4, LTB4, and PGD2/10(6) MMC was 107 +/- 15, 17 +/- 5.4, and 35 +/- 18 ng, respectively. These data indicate that the three eicosanoids originated from the MMC rather than from a contaminating cell. Analysis by reverse phase HPLC of the C-6 sulfidopeptide leukotrienes present in the supernatants of the activated MMC preparations of lower purity revealed LTC4, LTD4, and LTE4. In a higher purity MMC preparation only LTC4 was present, suggesting that other cell types in the mucosa are able to metabolize LTC4 to LTD4 and LTE4. The release of histamine and the generation of eicosanoids from intestinal MMC and from peritoneal cavity-derived connective tissue-type mast cells (CTMC) isolated from the same N. brasiliensis-infected rats were compared. When challenged with anti-IgE, these MMC released 165 +/- 41 ng of histamine/10(6) mast cells, and generated 29 +/- 3.6, 12 +/- 4.2, and 4.7 +/- 1.0 ng (mean +/- SE, n = 3) of immunoreactive equivalents of LTC4, LTB4, and PGD2/10(6) mast cells, respectively. In contrast, CTMC isolated from the same animals and activated with the same dose of anti-IgE released approximately 35 times more histamine (5700 +/- 650 ng/10(6) CTMC), generated 7.5 +/- 2.3 ng of PGD2/10(6) mast cells, and failed to release LTC4 or LTB4. These studies establish, that upon immunologic activation, rat MMC and CTMC differ in their quantitative release of histamine and in their metabolism of arachidonic acid to LTC4 and LTB4.  相似文献   

19.
15-Hydroxy-eicosatetraenoic acid (15-HETE), a product of arachidonic acid, has no proinflammatory capacity, but can inhibit the formation and the chemotactic response of neutrophils to leukotriene B4 (LTB4), a potent mediator of inflammation. The purpose of the present study was to determine whether intraarticular administration of 15-HETE in carrageenan-induced acute arthritis might decrease the levels of LTB4 in synovial fluid and modify the arthritis. A bilateral acute knee joint arthritis was established in 7 dogs by intraarticular injections of carrageenan every third day. To the right joints, 15-HETE was administered both concomitantly with the carrageenan injections and continuously via an osmotic pump. In samples of synovial fluid obtained on day 0, 3 and 10 PGE2 and LTB4 were determined using reversed phase high performance liquid chromatography combined with radioimmunoassays and neutrophil chemokinesis. In the presence of 15-HETE the clinical severity of arthritis was significantly reduced and the volume of synovial effusate was decreased on an average by 42%. Furthermore, the relative number of neutrophils in histological sections of synovial tissue was decreased by 58%. Intraarticular caragheenan injections induced LTB4 formation, and maximum levels were obtained on day 3 (279.2 +/- 148.2 pg/joint). PGE2 was also present on day 3, but maximum levels were detected on day 10 (9.5 +/- 4.8 ng/joint). In joints injected with both carragheenan and 15-HETE the levels of LTB4 on days 3 and 10 were inhibited by 90% and 83%, respectively. For PGE2 a small but insignificant decrease was found on both day 3 and on day 10. These results show that LTB4 may be an important mediator of acute arthritis induced by carragheenan in dogs, and that intraarticular administration of 15-HETE can modify this arthritis by inhibiting LTB4 formation.  相似文献   

20.
Structural requirements for chemotactic activity of leukotriene B4 (LTB4)   总被引:3,自引:0,他引:3  
LTB4 (5s, 12R dihdroxy-6, 14-CIS-8, 10-trans-eicosatetraenoic acid) formed in activated neutrophils by lipoxygenation of arachidonic acid is an extremely potent chemotaxin. We examined structural requirements for chemotactic and aggregatory activity of the ligand using synthetic LTB4 and several of its isomers. Additionally we examined the potency of two analogs, nor- and homo-LTB4. Dose response curves for neutrophil chemotaxis to these compounds were obtained using a modified Boyden chamber. The mean distance cells moved into the filter was determined after 30 minutes. Peak chemotactic activity of LTB4 was at 10(-7)M. At higher concentrations, chemotactic activity was decreased. The shape of the dose response curve was similar to that of FMLP except that maximum chemotaxis to LTB4 was consistently greater than chemotaxis to FMLP. A mixture of the two epimers at c-5 and c-12 shifted the response curve to the right but did not lower maximum activity. Increasing or decreasing the chain by one carbon between the first hydroxyl group and the carboxyl group also shifted the response curve to the right without lowering maximal activity. Changing the 6 double bond from cis to trans has a greater effect. Activity was only detectable at high concentrations and maximum activity achieved was less than 50% that of LTB4. Thus the chain length between the carboxyl and C-5 hydroxyl groups, the c-5 and c-12 absolute stereochemistry and the stereochemistry of the delta6 double bond are all important structural features for chemotactic activity with delta6 stereochemistry apparently having the greatest contribution. The relative potencies of these compounds in inducing aggregation were comparable to their chemotactic potencies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号