首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The rubA gene was insertionally inactivated in Synechococcus sp. PCC 7002, and the properties of photosystem I complexes were characterized spectroscopically. X-band EPR spectroscopy at low temperature shows that the three terminal iron-sulfur clusters, F(X), F(A), and F(B), are missing in whole cells, thylakoids, and photosystem (PS) I complexes of the rubA mutant. The flash-induced decay kinetics of both P700(+) in the visible and A(1)- in the near-UV show that charge recombination occurs between P700(+) and A(1)- in both thylakoids and PS I complexes. The spin-polarized EPR signal at room temperature from PS I complexes also indicates that forward electron transfer does not occur beyond A(1). In agreement, the spin-polarized X-band EPR spectrum of P700(+) A(1)- at low temperature shows that an electron cycle between A(1)- and P700(+) occurs in a much larger fraction of PS I complexes than in the wild-type, wherein a relatively large fraction of the electrons promoted are irreversibly transferred to [F(A)/F(B)]. The electron spin polarization pattern shows that the orientation of phylloquinone in the PS I complexes is identical to that of the wild type, and out-of-phase, spin-echo modulation spectroscopy shows the same P700(+) to A(1)- center-to-center distance in photosystem I complexes of wild type and the rubA mutant. In contrast to the loss of F(X), F(B), and F(A), the Rieske iron-sulfur protein and the non-heme iron in photosystem II are intact. It is proposed that rubredoxin is specifically required for the assembly of the F(X) iron-sulfur cluster but that F(X) is not required for the biosynthesis of trimeric P700-A(1) cores. Since the PsaC protein requires the presence of F(X) for binding, the absence of F(A) and F(B) may be an indirect result of the absence of F(X).  相似文献   

2.
The Photosystem I acceptor system of a subchloroplast particle from spinach was investigated by optical and electron spin resonance (ESR) spectroscopy following graduated inactivation of the bound iron-sulfur proteins by urea/ferricyanide solution. The chemical analysis of iron and sulfur and the ESR properties of centers A, B and X are consistent with the participation of three iron-sulfur centers in Photosystem I. A differential decrease in centers A, B and X is observed under conditions that induce S2? →S0 conversion in the bound iron-sulfur proteins. Center B is shown to be the most susceptible, while center ‘X’ is the least susceptible component to oxidative denaturation. Stepwise inactivation experiments suggest that electron transport in Photosystem I does not occur sequentially from X→B→A, since there is quantitative photoreduction of center A in the absence of center B. We propose that center A is directly reduced by X; thus, X may serve as a branch point for parallel electron flow through centers A and B.  相似文献   

3.
The photosynthetic reaction center (RC) of green sulfur bacteria contains two [4Fe-4S] clusters named F(A) and F(B), by analogy with photosystem I (PS I). PS I also contains an interpolypeptide [4Fe-4S] cluster named F(X); however, spectroscopic evidence for an analogous iron-sulfur cluster in green sulfur bacteria remains equivocal. To minimize oxidative damage to the iron-sulfur clusters, we studied the sensitivity of F(A) and F(B) to molecular oxygen in whole cells of Chlorobium vibrioforme and Chlorobium tepidum and obtained highly photoactive membranes and RCs from Cb. tepidum by adjusting isolation conditions to maximize the amplitude of the F(A)(-)/F(B)(-) electron paramagnetic resonance signal at g = 1.89 (measured at 126 mW of microwave power and 14 K) relative to the P840(+) signal at g = 2.0028 (measured at 800 microW of microwave power and 14 K). In these optimized preparations we were able to differentiate F(X)(-) from F(A)(-)/F(B)(-) by their different relaxation properties. At temperatures between 4 and 9 K, isolated membranes and RCs of Cb. tepidum show a broad peak at g = 2.12 and a prominent high-field trough at g = 1.76 (measured at 126 mW of microwave power). The complete g-tensor of F(X)(-), extracted by numerical simulation, yields principal values of 2.17, 1.92, and 1. 77 and is similar to F(X) in PS I. An important difference from PS I is that because the bound cytochrome is available as a fast electron donor in Chlorobium, it is not necessary to prereduce F(A) and F(B) to photoaccumulate F(X)(-).  相似文献   

4.
The x-ray structure analysis of photosystem I (PS I) crystals at 4-A resolution (Schubert et al., 1997, J. Mol. Biol. 272:741-769) has revealed the distances between the three iron-sulfur clusters, labeled F(X), F(1), and F(2), which function on the acceptor side of PS I. There is a general consensus concerning the assignment of the F(X) cluster, which is bound to the PsaA and PsaB polypeptides that constitute the PS I core heterodimer. However, the correspondence between the acceptors labeled F(1) and F(2) on the electron density map and the F(A) and F(B) clusters defined by electron paramagnetic resonance (EPR) spectroscopy remains controversial. Two recent studies (Diaz-Quintana et al., 1998, Biochemistry. 37:3429-3439;, Vassiliev et al., 1998, Biophys. J. 74:2029-2035) provided evidence that F(A) is the cluster proximal to F(X), and F(B) is the cluster that donates electrons to ferredoxin. In this work, we provide a kinetic argument to support this assignment by estimating the rates of electron transfer between the iron-sulfur clusters F(X), F(A), and F(B). The experimentally determined kinetics of P700(+) dark relaxation in PS I complexes (both F(A) and F(B) are present), HgCl(2)-treated PS I complexes (devoid of F(B)), and P700-F(X) cores (devoid of both F(A) and F(B)) from Synechococcus sp. PCC 6301 are compared with the expected dependencies on the rate of electron transfer, based on the x-ray distances between the cofactors. The analysis, which takes into consideration the asymmetrical position of iron-sulfur clusters F(1) and F(2) relative to F(X), supports the F(X) --> F(A) --> F(B) --> Fd sequence of electron transfer on the acceptor side of PS I. Based on this sequence of electron transfer and on the observed kinetics of P700(+) reduction and F(X)(-) oxidation, we estimate the equilibrium constant of electron transfer between F(X) and F(A) at room temperature to be approximately 47. The value of this equilibrium constant is discussed in the context of the midpoint potentials of F(X) and F(A), as determined by low-temperature EPR spectroscopy.  相似文献   

5.
Type I reaction centers (RCs) are multisubunit chlorophyll-protein complexes that function in photosynthetic organisms to convert photons to Gibbs free energy. The unique feature of Type I RCs is the presence of iron-sulfur clusters as electron transfer cofactors. Photosystem I (PS I) of oxygenic phototrophs is the best-studied Type I RC. It is comprised of an interpolypeptide [4Fe-4S] cluster, F(X), that bridges the PsaA and PsaB subunits, and two terminal [4Fe-4S] clusters, F(A) and F(B), that are bound to the PsaC subunit. In this review, we provide an update on the structure and function of the bound iron-sulfur clusters in Type I RCs. The first new development in this area is the identification of F(A) as the cluster proximal to F(X) and the resolution of the electron transfer sequence as F(X)-->F(A)-->F(B)-->soluble ferredoxin. The second new development is the determination of the three-dimensional NMR solution structure of unbound PsaC and localization of the equal- and mixed-valence pairs in F(A)(-) and F(B)(-). We provide a survey of the EPR properties and spectra of the iron-sulfur clusters in Type I RCs of cyanobacteria, green sulfur bacteria, and heliobacteria, and we summarize new information about the kinetics of back-reactions involving the iron-sulfur clusters.  相似文献   

6.
In photosystem I (PS I), phylloquinone (PhQ) acts as a low potential electron acceptor during light-induced electron transfer (ET). The origin of the very low midpoint potential of the quinone is investigated by introducing anthraquinone (AQ) into PS I in the presence and absence of the iron-sulfur clusters. Solvent extraction and reincubation is used to obtain PS I particles containing AQ and the iron-sulfur clusters, whereas incubation of the menB rubA double mutant yields PS I with AQ in the PhQ site but no iron-sulfur clusters. Transient electron paramagnetic resonance spectroscopy is used to investigate the orientation of AQ in the binding site and the ET kinetics. The low temperature spectra suggest that the orientation of AQ in all samples is the same as that of PhQ in native PS I. In PS I containing the iron sulfur clusters, (i) the rate of forward electron transfer from the AQ*- to F(X) is found to be faster than from PhQ*- to F(X), and (ii) the spin polarization patterns provide indirect evidence that the preceding ET step from A0*- to quinone is slower than in the native system. The changes in the kinetics are in accordance with the more negative reduction midpoint potential of AQ. Moreover, a comparison of the spectra in the presence and absence of the iron-sulfur clusters suggests that the midpoint potential of AQ is more negative in the presence of F(X). The electron transfer from the AQ- to F(X) is found to be thermally activated with a lower apparent activation energy than for PhQ in native PS I. The spin polarization patterns show that the triplet character in the initial state of P700)*+AQ*- increases with temperature. This behavior is rationalized in terms of a model involving a distribution of lifetimes/redox potentials for A0 and related competition between charge recombination and forward electron transfer from the radical pair P700*+A0*-.  相似文献   

7.
Photosystem I charge separation in a subchloroplast particle isolated from spinach was investigated by electron spin resonance (ESR) spectroscopy following graduated inactivation of the bound iron-sulfur centers by urea-ferricyanide treatment. Previous work demonstrated a differential decrease in iron-sulfur centers A, B and X which indicated that center X serves as a branch point for parallel electron flow through centers A and B (Golbeck, J.H. and Warden, J.T. (1982) Biochim. Biophys. Acta 681, 77-84). We now show that during inactivation the disappearance of iron-sulfur centers A, B, and X correlates with the appearance of a spin-polarized triplet ESR signal with [D] = 279 X 10(-4) cm-1 and [E] = 39 X 10(-4) cm-1. The triplet resonances titrate with a midpoint potential of +380 +/- 10 mV. Illumination of the inactivated particles results in the generation of an asymmetric ESR signal with g = 2.0031 and delta Hpp = 1.0 mT. Deconvolution of the P-700+ contribution to this composite resonance reveals the spectrum of the putative primary acceptor species A0, which is characterized by g = 2.0033 +/- 0.0004 and delta Hpp = 1.0 +/- 0.2 mT. The data presented in this report do not substantiate the participation of the electron acceptor A1 in PS I electron transport, following destruction of the iron-sulfur cluster corresponding to center X. We suggest that A1 is closely associated with center X and that this component is decoupled from the electron-transport path upon destruction of center X. The inability to photoreduce A1 in reaction centers lacking a functional center X may result from alteration of the reaction center tertiary structure by the urea-ferricyanide treatment or from displacement of A1 from its binding site.  相似文献   

8.
The 9 kDa polypeptide from spinach photosystem I (PS I) complex was isolated with iron-sulfur cluster(s) by an n-butanol extraction procedure under anaerobic conditions. The polypeptide was soluble in a saline solution and contained non-heme irons and inorganic sulfides. The absorption spectrum of this iron-sulfur protein was very similar to those of bacterial-type ferredoxins. The amino acid sequence of the polypeptide was determined by using a combination of gas-phase sequencer and conventional procedures. It was composed of 80 amino acid residues giving a molecular weight of 8,894, excluding iron and sulfur atoms. The sequence showed the typical distribution of cysteine residues found in bacterial-type ferredoxins and was highly homologous (91% homology) to that deduced from the chloroplast gene, frxA, of liverwort, Marchantia polymorpha. The 9 kDa polypeptide is considered to be the iron-sulfur protein responsible for the electron transfer reaction in PS I from center X to [2Fe-2S] ferredoxin, namely a polypeptide with center(s) A and/or B in PS I complex. It is noteworthy that the 9 kDa polypeptide was rather hydrophilic and a little basic in terms of the primary structure. A three-dimensional structure was simulated on the basis of the tertiary structure of Peptococcus aerogenes [8Fe-8S] ferredoxin, and the portions in the molecule probably involved in contacting membranes or other polypeptides were indicated. The phylogenetic implications of the structure of the present polypeptide as compared with those of several bacterial-type ferredoxins are discussed.  相似文献   

9.
The absence of the PsaC subunit in the photosystem I (PSI) complex (native PSI complex) by mutagenesis or chemical manipulation yields a PSI core (P700-F(X) core) that also lacks subunits PsaD and PsaE and the two iron-sulfur clusters F(A) and F(B), which constitute an integral part of PsaC. In this P700-F(X) core, the redox potentials (E(m)) of the two quinones A(1A/B) and the iron-sulfur cluster F(X) as well as the corresponding protonation patterns are investigated by evaluating the electrostatic energies from the solution of the linearized Poisson-Boltzmann equation. The B-side specific Asp-B558 changes its protonation state significantly upon isolating the P700-F(X) core, being mainly protonated in the native PSI complex but ionized in the P700-F(X) core. In the P700-F(X) core, E(m)(A(1A/B)) remains practically unchanged, whereas E(m)(F(X)) is upshifted by 42 mV. With these calculated E(m) values, the electron transfer rate from A(1) to F(X) in the P700-F(X) core is estimated to be slightly faster on the A(1A) side than that of the wild type, which is consistent with kinetic measurements.  相似文献   

10.
The midpoint redox potentials (E(m)) of all cofactors in photosystem I from Synechococcus elongatus as well as of the iron-sulfur (Fe(4)S(4)) clusters in two soluble ferredoxins from Azotobacter vinelandii and Clostridium acidiurici were calculated within the framework of a semi-continuum dielectric approach. The widely used treatment of proteins as uniform media with single dielectric permittivity is oversimplified, particularly, because permanent charges are considered both as a source for intraprotein electric field and as a part of dielectric polarizability. Our approach overcomes this inconsistency by using two dielectric constants: optical epsilon(o)=2.5 for permanent charges pre-existing in crystal structure, and static epsilon(s) for newly formed charges. We also take into account a substantial dielectric heterogeneity of photosystem I revealed by photoelectric measurements and a liquid junction potential correction for E(m) values of relevant redox cofactors measured in aprotic solvents. We show that calculations based on a single permittivity have the discrepancy with experimental data larger than 0.7 V, whereas E(m) values calculated within our approach fall in the range of experimental estimates. The electrostatic analysis combined with quantum chemistry calculations shows that (i) the energy decrease upon chlorophyll dimerization is essential for the downhill mode of primary charge separation between the special pair P(700) and the primary acceptor A(0); (ii) the primary donor is apparently P(700) but not a pair of accessory chlorophylls; (iii) the electron transfer from the A branch quinone Q(A) to the iron-sulfur cluster F(X) is most probably downhill, whereas that from the B branch quinone Q(B) to F(X) is essentially downhill.  相似文献   

11.
Miyamoto R  Iwaki M  Mino H  Harada J  Itoh S  Oh-Oka H 《Biochemistry》2006,45(20):6306-6316
Electron transfer in the membranes and the type I reaction center (RC) core protein complex isolated from Heliobacterium modesticaldum was studied by optical and ESR spectroscopy. The RC is a homodimer of PshA proteins. In the isolated membranes, illumination at 14 K led to accumulation of a stable ESR signal of the reduced iron-sulfur center F(B)(-) in the presence of dithiothreitol, and an additional 20 min illumination at 230 K induced the spin-interacting F(A)(-)/F(B)(-) signal at 14 K. During illumination at 5 K in the presence of dithionite, we detected a new transient signal with the following values: g(z)= 2.040, g(y)= 1.911, and g(x)= 1.896. The signal decayed rapidly with a 10 ms time constant after the flash excitation at 5 K and was attributed to the F(X)(-)-type center, although the signal shape was more symmetrical than that of F(X)(-) in photosystem I. In the purified RC core protein, laser excitation induced the absorption change of a special pair, P800. The flash-induced P800(+) signal recovered with a fast 2-5 ms time constant below 150 K, suggesting charge recombination with F(X)(-). Partial destruction of the RC core protein complex by a brief exposure to air increased the level of the P800(+)A(0)(-) state that gave a lifetime (t(1/2)) of 100 ns at 77 K. The reactions of F(X) and quinone were discussed on the basis of the three-dimensional structural model of RC that predicts the conserved F(X)-binding site and the quinone-binding site, which is more hydrophilic than that in the photosystem I RC.  相似文献   

12.
Subunit stoichiometry of the chloroplast photosystem I complex   总被引:2,自引:0,他引:2  
A native photosystem I (PS I) complex and a PS I core complex depleted of antenna subunits has been isolated from the uniformly 14C-labeled aquatic higher plant, Lemna. These complexes have been analyzed for their subunit stoichiometry by quantitative sodium dodecyl sulfate-polyacrylamide gel electrophoresis methods. The results for both preparations indicate that one copy of each high molecular mass subunit is present per PS I complex and that a single copy of most low molecular mass subunits is also present. These results suggest that iron-sulfur center X, an early PS I electron acceptor proposed to bind to the high molecular mass subunits, contains a single [4Fe-4S] cluster which is bound to a dimeric structure of high molecular mass subunits, each providing 2 cysteine residues to coordinate this cluster.  相似文献   

13.
The orientation of membrane-bound radicals in spinach chloroplasts is examined by electron paramagnetic resonance (EPR) spectroscopy of chloroplasts oriented by magnetic fields. Several of the membrane-bound radicals which possess g-tensor anisotropy display EPR signals with a marked dependence on the orientation of the membranes relative to the applied EPR field. The fraction of oxidized and reduced plastocyanin, P-700, iron-sulfur proteins A and B, and the X center, an early acceptor of Photosystem I, can be controlled by the light intensity during steady-state illumination and can be trapped by cooling. The X center can be photoreduced and trapped in the absence of strong reductants and high pH, conditions previously found necessary for its detection. These results confirm its role as an early electron acceptor in P-700 photo-oxidation. X is oriented with its smallest principal g-tensor axis (gx) predominantly parallel to the normal to the thylakoid membrane, the same orientation as was found for an early electron acceptor based on time-resolved electron spin polarization studies. We propose that the X center is the first example of a high potential iron-sulfur protein which functions in electron transfer in its 'superreduced' state. We present evidence which suggests that iron-sulfur proteins A and B are 4Fe-4S clusters in an 8Fe-8S protein. Center B is oriented with gy predominantly normal to the membrane plane. The spectra of center A and plastocyanin do not show significant changes with sample orientation. In the case of plastocyanin, this may indicate a lack of molecular orientation. The absence of an orientation effect for reduced center A is reconcilable with a 4Fe-4S geometry, provided that the electron obtained upon reduction can be shared between any pair of Fe atoms in the center. Orientation of the 'Rieske' iron-sulfur protein is also observed. It has axial symmetry with g parallel close to the plane of the membrane. A model is proposed for the organization of these proteins in the thylakoid membrane. A new EPR signal was observed in oriented chloroplasts. This broad unresolved resonance displays a g value of 3.2 when the membrane normal is parallel to the field. It shifts to g = 1.9 when the membrane normal is perpendicular to the field. The signal is sensitive to illumination and to washing of the thylakoid membranes of broken chloroplasts. We suggest that there is a relation between this signal and the water-oxidizing enzyme system.  相似文献   

14.
The biosynthesis of iron-sulfur clusters is a highly regulated process involving several proteins. Among them, so-called scaffold proteins play pivotal roles in both the assembly and delivery of iron-sulfur clusters. Here, we report the identification of two chloroplast-localized NifU-like proteins, AtCnfU-V and AtCnfU-IVb, from Arabidopsis (Arabidopsis thaliana) with high sequence similarity to a cyanobacterial NifU-like protein that was proposed to serve as a molecular scaffold. AtCnfU-V is constitutively expressed in several tissues of Arabidopsis, whereas the expression of AtCnfU-IVb is prominent in the aerial parts. Mutant Arabidopsis lacking AtCnfU-V exhibited a dwarf phenotype with faint pale-green leaves and had drastically impaired photosystem I accumulation. Chloroplasts in the mutants also showed a decrease in both the amount of ferredoxin, a major electron carrier of the stroma that contains a [2Fe-2S] cluster, and in the in vitro activity of iron-sulfur cluster insertion into apo-ferredoxin. When expressed in Escherichia coli cells, AtCnfU-V formed a homodimer carrying a [2Fe-2S]-like cluster, and this cluster could be transferred to apo-ferredoxin in vitro to form holo-ferredoxin. We propose that AtCnfU has an important function as a molecular scaffold for iron-sulfur cluster biosynthesis in chloroplasts and thereby is required for biogenesis of ferredoxin and photosystem I.  相似文献   

15.
The NfuA protein has been postulated to act as a scaffolding protein in the biogenesis of photosystem (PS) I and other iron-sulfur (Fe/S) proteins in cyanobacteria and chloroplasts. To determine the properties of NfuA, recombinant NfuA from Synechococcus sp. PCC 7002 was overproduced and purified. In vitro reconstituted NfuA contained oxygen- and EDTA-labile Fe/S cluster(s), which had EPR properties consistent with [4Fe-4S] clusters. After reconstitution with 57Fe2+, M?ssbauer studies of NfuA showed a broad quadrupole doublet that confirmed the presence of [4Fe-4S]2+ clusters. Native gel electrophoresis under anoxic conditions and chemical cross-linking showed that holo-NfuA forms dimers and tetramers harboring Fe/S cluster(s). Combined with iron and sulfide analyses, the results indicated that one [4Fe-4S] cluster was bound per NfuA dimer. Fe/S cluster transfer from holo-NfuA to apo-PsaC of PS I was studied by reconstitution of PS I complexes using P700-F(X) core complexes, PsaD, apo-PsaC, and holo-NfuA. Electron transfer measurements by time-resolved optical spectroscopy showed that holo-NfuA rapidly and efficiently transferred [4Fe-4S] clusters to PsaC in a reaction that required contact between the two proteins. The NfuA-reconstituted PS I complexes had typical charge recombination kinetics from [F(A)/F(B)](-) to P700+ and light-induced low-temperature EPR spectra. These results establish that cyanobacterial NfuA can act as a scaffolding protein for the insertion of [4Fe-4S] clusters into PsaC of PS I in vitro.  相似文献   

16.
The two [4Fe-4S] clusters F(A) and F(B) are the terminal electron acceptors of photosystem I (PSI) that are bound by the stromal subunit PsaC. Soluble ferredoxin (Fd) binds to PSI via electrostatic interactions and is reduced by the outermost iron-sulfur cluster of PsaC. We have generated six site-directed mutants of the green alga Chlamydomonas reinhardtii in which residues located close to the iron-sulfur clusters of PsaC are changed. The acidic residues Asp(9) and Glu(46), which are located one residue upstream of the first cysteine liganding cluster F(B) and F(A), respectively, were changed to a neutral or a basic amino acid. Although Fd reduction is not affected by the E46Q and E46K mutations, a slight increase of Fd affinity (from 1.3- to 2-fold) was observed by flash absorption spectroscopy for the D9N and D9K mutant PSI complexes. In the FA(2) triple mutant (V49I/K52T/R53Q), modification of residues located next to the F(A) cluster leads to partial destabilization of the PSI complex. The electron paramagnetic resonance properties of cluster F(A) are affected, and a 3-fold decrease of Fd affinity is observed. The introduction of positively charged residues close to the F(B) cluster in the FB(1) triple mutant (I12V/T15K/Q16R) results in a 60-fold increase of Fd affinity as measured by flash absorption spectroscopy and a larger amount of PsaC-Fd cross-linking product. The first-order kinetics are similar to wild type kinetics (two phases with t((1)/(2)) of <1 and approximately 4.5 microseconds) for all mutants except FB(1), where Fd reduction is almost monophasic with t((1)/(2)) < 1 microseconds. These data indicate that F(B) is the cluster interacting with Fd and therefore the outermost iron-sulfur cluster of PSI.  相似文献   

17.
18.
We present iron extended X-ray absorption fine structure (EXAFS) spectra of a photosystem I core preparation containing FX, the very low potential iron-sulfur cluster in photosystem I. The preparation lacks FA and FB. The amplitude of Fe-Fe backscattering in the EXAFS spectrum indicates that FX may be a [4Fe-4S] cluster and is not a [2Fe-2S] cluster or clusters.  相似文献   

19.
Photosystem I (PS I) mediates electron-transfer from plastocyanin to ferredoxin via a photochemically active chlorophyll dimer (P700), a monomeric chlorophyll electron acceptor (A0), a phylloquinone (A1), and three [4Fe-4S] clusters (FX/A/B). The sequence of electron-transfer events between the iron-sulfur cluster, FX, and ferredoxin is presently unclear. Owing to the presence of a 2-fold symmetry in the PsaC protein to which the iron-sulfur clusters F(A) and F(B) are bound, the spatial arrangement of these cofactors with respect to the C2-axis of symmetry in PS I is uncertain as well. An unequivocal determination of the spatial arrangement of the iron-sulfur clusters FA and FB within the protein is necessary to unravel the complete electron-transport chain in PS I. In the present study, we generate EPR signals from charge-separated spin pairs (P700+-FredX/A/B) in PS I and characterize them by progressive microwave power saturation measurements to determine the arrangement of the iron-sulfur clusters FX/A/B relative to P700. The microwave power at half saturation (P1/2) of P700+ is greater when both FA and FB are reduced in untreated PS I than when only FA is reduced in mercury-treated PS I. The experimental P1/2 values are compared to values calculated by using P700-FA/B crystallographic distances and assuming that either FA or FB is closer to P700+. On the basis of this comparison of experimental and theoretical values of spin relaxation enhancement effects on P700+ in P700+ [4Fe-4S]- charge-separated pairs, we find that iron-sulfur cluster FA is in closer proximity to P700 than the FB cluster.  相似文献   

20.
The orientation of membrane-bound radicals in spinach chloroplasts is examined by electron paramagnetic resonance (EPR) spectroscopy of chloroplasts oriented by magnetic fields. Several of the membrane-bound radicals which possess g-tensor anisotropy display EPR signals with a marked dependence on the orientation of the membranes relative to the applied EPR field. The fraction of oxidized and reduced plastocyanin, P-700, iron-sulfur proteins A and B, and the X center, an early acceptor of Photosystem I, can be controlled by the light intensity during steady-state illumination and can be trapped by cooling. The X center can be photoreduced and trapped in the absence of strong reductants and high pH, conditions previously found necessary for its detection. These results confirm its role as an early electron acceptor in P-700 photo-oxidation. X is oriented with its smallest principal g-tensor axis (gx) predominantly parallel to the normal to the thylakoid membrane, the same orientation as was found for an early electron acceptor based on time-resolved electron spin polarization studies. We propose that the X center is the first example of a high potential iron-sulfur protein which functions in electron transfer in its ‘;superreduced’; state. We present evidence which suggests that iron-sulfur proteins A and B are 4Fe-4S clusters in an 8Fe-8S protein. Center B is oriented with gy predominantly normal to the membrane plane. The spectra of center A and plastocyanin do not show significant changes with sample orientation. In the case of plastocyanin, this may indicate a lack of molecular orientation. The absence of an orientation effect for reduced center A is reconcilable with a 4Fe-4S geometry, provided that the electron obtained upon reduction can be shared between any pair of Fe atoms in the center. Orientation of the ‘;Rieske’; iron-sulfur protein is also observed. It has axial symmetry with g close to the plane of the membrane. A model is proposed for the organization of these proteins in the thylakoid membrane.

A new EPR signal was observed in oriented chloroplasts. This broad unresolved resonance displays a g value of 3.2 when the membrane normal is parallel to the field. It shifts to g = 1.9 when the membrane normal is perpendicular to the field. The signal is sensitive to illumination and to washing of the thylakoid membranes of broken chloroplasts. We suggest that there is a relation between this signal and the water-oxidizing enzyme system.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号