首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Non-histone chromosomal protein high mobility group 1 (HMG-1) rapidly migrates into the nucleus when injected into the cytoplasm of bovine fibroblasts and HeLa cells by red cell-mediated microinjection (Rechsteiner, M., and Kuehl, L. (1979) Cell 16, 901-908). We isolated hybridomas secreting monoclonal antibodies against HMG-1. One of these monoclonal antibodies, FR-1, inhibited in vitro binding of 125I-HMG-1 to chromatin isolated from FL cells. When 125I-HMG-1 was co-introduced with antibody FR-1 by red cell-mediated microinjection, antibody FR-1 did not prevent the accumulation of 125I-HMG-1 in the nucleus. When 125I-antibody FR-1 or fluorescein isothiocyanate antibody FR-1 was introduced into the cytoplasm of FL cells, most of the antibody did not accumulate in the nucleus. But when 125I- or fluorescein isothiocyanate antibody FR-1 was co-introduced with HMG-1 into the cytoplasm of FL cells, it did migrate into the nucleus.  相似文献   

6.
7.

Introduction

High mobility group box 1 protein (HMGB1) is a nuclear DNA binding protein acting as a pro-inflammatory mediator following extracellular release. HMGB1 has been increasingly recognized as a pathogenic mediator in several inflammatory diseases. Elevated serum levels of HMGB1 have been detected in autoimmune diseases including Systemic lupus erythematosus (SLE). However, the local expression of HMGB1 in active lupus nephritis (LN) is not known. Here we aimed to study both tissue expression and serum levels of HMGB1 in LN patients with active disease and after induction therapy.

Methods

Thirty-five patients with active LN were included. Renal biopsies were performed at baseline and after standard induction therapy; corticosteroids combined with immunosuppressive drugs. The biopsies were evaluated according to the World Health Organization (WHO) classification and renal disease activity was estimated using the British Isles lupus assessment group (BILAG) index. Serum levels of HMGB1 were analysed by western blot. HMGB1 expression in renal tissue was assessed by immunohistochemistry at baseline and follow-up biopsies in 25 patients.

Results

Baseline biopsies showed WHO class III, IV or V and all patients had high renal disease activity (BILAG A/B). Follow-up biopsies showed WHO I to II (n = 14), III (n = 6), IV (n = 3) or V (n = 12), and 15/35 patients were regarded as renal responders (BILAG C/D). At baseline HMGB1 was significantly elevated in serum compared to healthy controls (P < 0.0001). In all patients, serum levels decreased only slightly; however, in patients with baseline WHO class IV a significant decrease was observed (P = 0.03). Immunostaining revealed a pronounced extranuclear HMGB1 expression predominantly outlining the glomerular endothelium and in the mesangium. There was no clear difference in HMGB1 expression comparing baseline and follow-up biopsies or any apparent association to histopathological classification or clinical outcome.

Conclusions

Renal tissue expression and serum levels of HMGB1 were increased in LN. The lack of decrease of HMGB1 in serum and tissue after immunosuppressive therapy in the current study may reflect persistent inflammatory activity. This study clearly indicates a role for HMGB1 in LN.  相似文献   

8.
The mammalian non-histone "high mobility group" A (HMGA) proteins are the primary nuclear proteins that bind to the minor groove of AT-rich DNA. They may, therefore, influence the formation and/or repair of DNA lesions that occur in AT-rich DNA, such as cyclobutane pyrimidine dimers (CPDs) induced by UV radiation. Employing both stably transfected lines of human MCF7 cells containing tetracycline-regulated HMGA1 transgenes and primary Hs578T tumor cells, which naturally overexpress HMGA1 proteins, we have shown that cells overexpressing HMGA1a protein exhibit increased UV sensitivity. Moreover, we demonstrated that knockdown of intracellular HMGA1 concentrations via two independent methods abrogated this sensitivity. Most significantly, we observed that HMGA1a overexpression inhibited global genomic nucleotide excision repair of UV-induced CPD lesions in MCF-7 cells. Consistent with these findings in intact cells, DNA repair experiments employing Xenopus oocyte nuclear extracts and lesion-containing DNA substrates demonstrated that binding of HMGA1a markedly inhibits removal of CPDs in vitro. Furthermore, UV "photo-foot-printing" demonstrated that CPD formation within a long run of Ts (T(18)-tract) in a DNA substrate changes significantly when HMGA1 is bound prior to UV irradiation. Together, these results suggest that HMGA1 directly influences both the formation and repair of UV-induced DNA lesions in intact cells. These findings have important implications for the role that HMGA protein overexpression might play in the accumulation of mutations and genomic instabilities associated with many types of human cancers.  相似文献   

9.
High mobility group (HMG) N1 protein, formerly known as HMG 14, is a member of the chromosomal HMG protein family. Protein kinase CK2 was previously reported to be able to phosphorylate bovine HMGN1 in vitro; Ser89 and Ser99, corresponding to Ser88 and Ser98 in human HMGN1, were shown to be major and minor recognition sites, respectively. In this report, we employed mass spectrometry and examined both the extent and the sites of phosphorylation in HMGN1 protein catalyzed by recombinant human protein kinase CK2. We found that five serine residues, i.e., Ser6, Ser7, Ser85, Ser88, and Ser98, in HMGN1 can be phosphorylated by the kinase in vitro. All five sites were previously shown to be phosphorylated in MCF-7 human breast cancer cells in vivo. Among these five sites, Ser6, Ser7, and Ser85 were new sites of phosphorylation induced by protein kinase CK2 in vitro.  相似文献   

10.
11.
12.
Tang LM  Lu ZQ  Yao YM 《生理科学进展》2011,42(3):188-194
高迁移率族蛋白B1(HMGB1)是一种高度保守的核蛋白,具有调控DNA稳定、复制、转录及翻译等功能.近年来的研究表明,它通过主动或被动的方式被释放至细胞外,并作为一种晚期炎症介质,参与脓毒症等炎症性疾病的发病过程,同时也可作为一种免疫"预警信号"调控机体免疫反应.本文综述了HMGB1的结构、分泌机制、受体信号通路及其对细胞免疫的调控作用.  相似文献   

13.

Introduction

TNFα and high mobility group box chromosomal protein 1 (HMGB1) are two potent proinflammatory cytokines implicated as important mediators of arthritis. Increased levels of these cytokines are found in the joints of rheumatoid arthritis patients, and the cytokines trigger arthritis when applied into the joints of naïve mice. HMGB1 is actively released from immune cells in response to TNFα; once released, HMGB1 in turn induces production of several proinflammatory cytokines – including IL-6 and TNFα – by macrophages. Whether HMGB1-induced arthritis is mediated via the TNFα pathway, however, is unknown. The purpose of the present study was to investigate whether the arthritis-inducing effect of HMGB1 is dependent on TNFα expression in vivo and to assess whether TNFα deficiency affects a proinflammatory cytokine response to HMGB1 in vitro.

Methods

TNFα knockout mice and backcrossed control animals on a C57Bl6 background were injected intraarticularly with 5 μg HMGB1. Joints were dissected 3 days after intraarticular injection and were evaluated histologically by scoring the frequency and severity of arthritis. For in vitro studies, mouse spleen cultures from TNFα knockout mice and from control mice were incubated with different doses of HMGB1, and cell culture supernatants were collected at different time points for analysis of IL-6.

Results

Intraarticular injection of HMGB1 into healthy mouse joints resulted in an overall frequency of 32% to 39% arthritic animals. No significant differences were found with respect to the severity and incidence of synovitis between mice deficient for TNFα (seven out of 18 mice with arthritis) in comparison with control TNFα+/+ animals (six out of 19). No significant differences were detected between spleen cells from TNFα+/+ mice versus TNFα-/- mice regarding IL-6 production upon stimulation with highly purified HMGB1 after 24 hours and 48 hours. Upon stimulation with a suboptimal dose of recombinant HMGB1, however, the splenocytes from TNFα+/+ animals released significantly more IL-6 than cells from the knockout mice (602 ± 112 pg/ml and 304 ± 50 pg/ml, respectively; P < 0.05).

Conclusion

Our data show that HMGB1-triggered joint inflammation is not mediated via the TNF pathway. Combined with our previous study, we suggest that HMGB1-triggered arthritis is probably mediated through IL-1 activation.  相似文献   

14.
15.
S Dalton  R Treisman 《Cell》1992,68(3):597-612
We used a yeast genetic screen to isolate cDNAs that encode a protein, SRF accessory protein-1 (SAP-1), that is recruited to the c-fos serum response element (SRE) as part of a ternary complex that includes serum response factor (SRF). SAP-1 requires DNA-bound SRF for ternary complex formation and makes extensive DNA contacts to the 5' side of SRF, but does not bind DNA autonomously. Ternary complex formation by SAP-1 requires only the DNA-binding domain of SRF, which can be replaced by that of the related yeast protein MCM1. We isolated cDNAs encoding two forms of SAP-1 protein, SAP-1a and SAP-1b, which differ at their C termini. Both SAP-1 proteins contain three regions of striking homology with the elk-1 protein, including an N-terminal ets domain. Ternary complex formation by SAP-1 requires both the ets domain and a second conserved region 50 amino acids to its C-terminal side. SAP-1 has similar DNA binding properties to the previously characterized HeLa cell protein p62/TCF.  相似文献   

16.
High mobility group box-1 protein (HMGB1) had been proved to induce maturation and activation of dendritic cell (DC), however, the endogenous changes and mechanisms underlying are unknown. Since endoplasmic reticulum stress (ERS) activates an adaptive unfolded protein response (UPR) that facilitates cellular survival and repair, we hypothesized that HMGB1 may regulate the function of DC by modulating ERS. In our study, HMGB1 stimulation induced significant ERS responses in DCs in a time- and dose-dependent manner, demonstrated by the up-regulation of a number of ERS markers. Gene silence of XBP-1 in splenic DCs decreased the levels of CD80, CD86 as well as major histocompatibility complex (MHC)-II expression and cytokine secretion after HMGB1 treatment, when compared with untransfected or nontargeting-transfected DCs (all P<0.05). Moreover, XBP-1 silenced DCs after treatment with HMGB1 failed to stimulate notable proliferation and differentiation of T cells, unlike normal DCs or nontargeting-transfected DCs (all P<0.05). Gene silence of XBP-1 resulted in down-regulation of the receptor for advanced glycation end products (RAGE) expression on the surface of splenic DCs induced by HMGB1 stimulation (P<0.05). These findings demonstrate an important role for ERS and its regulator XBP-1 in HMGB1-induced maturation and activation of DCs.  相似文献   

17.
The high mobility group protein HMG1 is a conserved chromosomal protein with two homologous DNA-binding domains, A and B, and an acidic carboxy-terminal tail, C. The structure of isolated domains A and B has been previously determined by NMR, but the interactions of the different domains within the complete protein were unknown. By means of differential scanning calorimetry and circular dichroism we have investigated the thermal stability of HMG1, of the truncated protein A-B (HMG1 without the acidic tail C) and of the isolated domains A and B. In 3 mm sodium acetate buffer, pH 5, the thermal melting of domains A and B are identical (transition temperature tm = 43 degrees C and 41 degrees C, denaturation enthalpies DeltaH = 46 kcal.mol-1). The thermal melting of protein A-B presents two nearly identical transitions (tm = 40 degrees C and 41 degrees C, DeltaH = 44 kcal.mol-1 and 46 kcal.mol-1, respectively). We conclude that the two domains A and B within protein A-B behave as independent domains. The thermal melting of HMG1 is biphasic. The two transitions have a different value of tm (38 degrees C and 55 degrees C) and corresponding values of DeltaH around 40 kcal.mol-1. We conclude that within HMG1, the acidic tail C is interacting with one of the two domains A and B, however, the two domains A and B do not interact with each other. At 37 degrees C, one of the two domains A and B, within HMG1, is partly unfolded, whereas the other which interacts with the acidic tail C, is fully native. The interaction free energy of the acidic tail C is estimated to be in the range of 2.5 kcal.mol-1 based on simulations of the thermograms of HMG1 as a function of the interaction free energy.  相似文献   

18.
19.
Two chromosomal high mobility group (HMG) proteins from larvae of Chironomus thummi (Diptera) and from an epithelial cell line of Chironomus tentans were purified to homogeneity and chemically characterized. cDNA clones encoding these proteins were isolated from an expression library using an immunoscreening approach and were sequenced. The deduced amino acid sequences revealed their homology to HMG protein 1 of vertebrates. These insect proteins have therefore been designated cHMG1a and cHMG1b. They have a molecular mass of 12,915 and 12,019 kDa, respectively, and preferentially bind to AT-rich DNA. Indirect immunofluorescence microscopy with a polyclonal antibody showed the presence of cHMG1a and cHMG1b in condensed chromomeres but not in puffs, nucleoli, and cytoplasm. The cHMG1a and cHMG1b genes were both localized to a single band in region 14 of chromosome 1 of C. tentans and appear to be single copy genes. An immunologically related protein was purified from Drosophila melanogaster Kc cells. Its size and amino acid composition indicate that it is an HMG1 of D. melanogaster. On the other hand, our antibody did not recognize calf HMG1. The identification and characterization of HMG1 proteins in insects with polytene chromosomes opens new possibilities for studying function(s) of this group of chromosomal proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号