首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hemoglobin E (HbE; beta26Glu --> Lys) is the most common variant of the beta-globin gene in Southeast Asia; it has been suggested that it confers resistance against Plasmodium falciparum malaria. In this study 306 adult patients with P. falciparum malaria (198 mild and 108 cerebral malaria patients) living in northwest Thailand were investigated to examine whether the HbE variant is associated with protection from cerebral malaria. Our results revealed that the sample allele frequency of HbE was not significantly different between mild (7.3%) and cerebral malaria (7.4%) patients. Thus, the HbA/HbE polymorphism would not be a major genetic factor influencing the onset of cerebral malaria in Thailand.  相似文献   

2.
Effectiveness of marker-assisted selection (MAS) and quantitative trait locus (QTL) mapping using population-wide linkage disequilibrium (LD) between markers and QTLs depends on the extent of LD and how it declines with distance between markers and QTLs in a population. Marker-QTL LD can be predicted from LD between markers. Our previous work evaluated LD measures between multi-allelic markers as predictors of usable LD of multi-allelic markers with QTLs. Since single nucleotide polymorphisms (SNPs) are the current marker of choice for high-density genotyping and LD-mapping of QTLs, the objective of this study was to use LD between multi-allelic markers to predict LD among biallelic SNPs or between SNPs and QTLs. Observable LD between multi-allelic markers was evaluated using nine measures. These included two pooled and standardized measures of LD between pairs of alleles at two markers based on Lewontin's LD measure, two pooled measures of squared correlations between alleles, one standardized measure using Hardy-Weinberg heterozygosities, and four measures based on the chi-square statistic for testing for association between alleles at two loci. The standardized chi-square measure that best predicted usable LD between multi-allelic markers and QTLs, based on our previous work, overestimated usable SNP-SNP or SNP-QTL LD. Instead, three other measures were found to be good predictors of usable SNP-SNP or SNP-QTL LD when LD is generated by drift. Therefore, the LD measure between multi-allelic markers that is best for predicting usable LD in a population depends on the type of markers (i.e. multi-allelic or biallelic) that will eventually be used for QTL mapping or MAS.  相似文献   

3.
Plasmodium vivax Duffy binding protein II (DBPII) plays an important role in reticulocyte invasion and is a potential vaccine candidate against vivax malaria. However, polymorphisms in DBPII are a challenge for the successful design of a broadly protective vaccine. In this study, the genetic diversity of DBPII among Thai isolates was analyzed from Plasmodium vivax-infected blood samples and polymorphism characters were defined with the MEGA4 program. Sequence analysis identified 12 variant residues that are common among Thai DBPII haplotypes with variant residues L333F, L424I, W437R and I503K having the highest frequency. Variant residue D384K occurs in combination with either E385K or K386N/Q. Additionally, variant residue L424I occurs in conjunction with W437R in most Thai DBPII alleles and these variants frequently occur in combination with the I503K variant. The polymorphic patterns of Thai isolates were defined into 9 haplotypes (Thai DBL-1, -2, -3, etc.…). Thai DBL-2, -5, -6 haplotypes are the most common DBPII variants in Thai residents. To study the association of these Thai DBPII polymorphisms with antigenic character, the functional inhibition of anti-DBPII monoclonal antibodies against a panel of Thai DBL variants was characterized by an in vitro erythrocyte binding inhibition assay. The functional inhibition of anti-DBPII monoclonal antibodies 3C9, 2D10 and 2C6 against Thai variants was significantly different, suggesting that polymorphisms of Thai DBPII variants alter the antigenic character of the target epitopes. In contrast, anti-DBPII monoclonal antibody 2H2 inhibited all Thai DBPII variants equally well. Our results suggest that the immune efficacy of a DBPII vaccine will depend on the specificity of the anti-DBPII antibodies induced and that it is preferable to optimize responses to conserved epitopes for broadly neutralizing protection against P. vivax.  相似文献   

4.
Understanding the influences of population structure, selection, and recombination on polymorphism and linkage disequilibrium (LD) is integral to mapping genes contributing to drug resistance or virulence in Plasmodium falciparum. The parasite's short generation time, coupled with a high cross-over rate, can cause rapid LD break-down. However, observations of low genetic variation have led to suggestions of effective clonality: selfing, population admixture, and selection may preserve LD in populations. Indeed, extensive LD surrounding drug-resistant genes has been observed, indicating that recombination and selection play important roles in shaping recent parasite genome evolution. These studies, however, provide only limited information about haplotype variation at local scales. Here we describe the first (to our knowledge) chromosome-wide SNP haplotype and population recombination maps for a global collection of malaria parasites, including the 3D7 isolate, whose genome has been sequenced previously. The parasites are clustered according to continental origin, but alternative groupings were obtained using SNPs at 37 putative transporter genes that are potentially under selection. Geographic isolation and highly variable multiple infection rates are the major factors affecting haplotype structure. Variation in effective recombination rates is high, both among populations and along the chromosome, with recombination hotspots conserved among populations at chromosome ends. This study supports the feasibility of genome-wide association studies in some parasite populations.  相似文献   

5.
Understanding the influences of population structure, selection, and recombination on polymorphism and linkage disequilibrium (LD) is integral to mapping genes contributing to drug resistance or virulence in Plasmodium falciparum. The parasite's short generation time, coupled with a high cross-over rate, can cause rapid LD break-down. However, observations of low genetic variation have led to suggestions of effective clonality: selfing, population admixture, and selection may preserve LD in populations. Indeed, extensive LD surrounding drug-resistant genes has been observed, indicating that recombination and selection play important roles in shaping recent parasite genome evolution. These studies, however, provide only limited information about haplotype variation at local scales. Here we describe the first (to our knowledge) chromosome-wide SNP haplotype and population recombination maps for a global collection of malaria parasites, including the 3D7 isolate, whose genome has been sequenced previously. The parasites are clustered according to continental origin, but alternative groupings were obtained using SNPs at 37 putative transporter genes that are potentially under selection. Geographic isolation and highly variable multiple infection rates are the major factors affecting haplotype structure. Variation in effective recombination rates is high, both among populations and along the chromosome, with recombination hotspots conserved among populations at chromosome ends. This study supports the feasibility of genome-wide association studies in some parasite populations.  相似文献   

6.
The extent and pattern of linkage disequilibrium (LD) between closely spaced markers contain information about population history, including past population size and selection history. Selection signatures can be identified by comparing the LD surrounding a putative selected allele at a locus to the putative non-selected allele. In livestock populations, locations of selection signatures identified in this way should be correlated with QTL affecting production traits, as the populations have been under strong artificial selection for these traits. We used a dense SNP map of bovine chromosome 6 to characterize the pattern of LD on this chromosome in Norwegian Red cattle, a breed which has been strongly selected for milk production. The pattern of LD was generally consistent with strong selection in regions containing QTL affecting milk production traits, including a strong selection signature in a region containing a mutation known to affect milk production. The results demonstrate that in livestock populations, the origin of selection signatures will often be QTL for livestock production traits, and illustrate the value of selection signatures in uncovering new mutations with potential effects on quantitative traits.  相似文献   

7.
Hemoglobin E (HbE) is one of the most common hemoglobin variants caused by a mutation in the β-globin gene, and found at high frequencies in various Southeast Asian groups. We surveyed HbE prevalence among 8 ethnic groups residing in 5 villages selected for their high period malaria endemicity, and 5 for low endemicity in northern Thailand, in order to uncover factors which may affect genetic persistence of HbE in these groups. We found the overall HbE prevalence 6.7%, with differing frequencies from 0% in the Pwo Karen, the Lawa, and the Skaw Karen to 24% in the Mon. All HbE genes were heterozygous (AE). Differences in HbE prevalence among the studied ethnic groups indirectly documents that ancestries and evolutionary forces, such as drift and admixture, are the important factors in the persistence of HbE distribution in northern Thailand. Furthermore, the presence of HbE in groups of northern Thailand had no effect on the in vitro infectivity and proliferation of Plasmodium falciparum, nor the production of hemozoin, a heme crystal produced by malaria parasites, when compared to normal red-blood-cell controls. Our data may contribute to a better understanding on the persistence of HbE among ethnic groups and its association with malaria.  相似文献   

8.
GABRA2 and GABRG1, which encode the alpha-2 and gamma-1 subunits, respectively, of the GABA(A) receptor, are located in a cluster on chromosome 4p. The GABRA2 locus has been found to be associated with alcohol dependence in several studies, but no functional variant that can account for this association has been identified. To understand the reported associations, we sought to understand the linkage disequilibrium (LD) patterns and haplotype structures of these genes. With close intergenic distance, approximately 90 kb, it was anticipated that some markers might show intergenic LD. Variation in 13-SNP haplotype block structure was observed in five different populations: European American, African American, Chinese (Han and Thai), Thai, and Hmong. In the Hmong, a 280-kb region of considerably higher LD spans the intergenic region, whereas in other populations, there were two or more LD blocks that cross this region. These findings may aid in understanding the genetic association of this locus with alcohol dependence in several populations.  相似文献   

9.
Balancing selection (BLS) is the evolutionary force that maintains high levels of genetic variability in many important genes. To further our understanding of its evolutionary significance, we analyze models with BLS acting on a biallelic locus: an equilibrium model with long-term BLS, a model with long-term BLS and recent changes in population size, and a model of recent BLS. Using phase-type theory, a mathematical tool for analyzing continuous time Markov chains with an absorbing state, we examine how BLS affects polymorphism patterns in linked neutral regions, as summarized by nucleotide diversity, the expected number of segregating sites, the site frequency spectrum, and the level of linkage disequilibrium (LD). Long-term BLS affects polymorphism patterns in a relatively small genomic neighborhood, and such selection targets are easier to detect when the equilibrium frequencies of the selected variants are close to 50%, or when there has been a population size reduction. For a new mutation subject to BLS, its initial increase in frequency in the population causes linked neutral regions to have reduced diversity, an excess of both high and low frequency derived variants, and elevated LD with the selected locus. These patterns are similar to those produced by selective sweeps, but the effects of recent BLS are weaker. Nonetheless, compared to selective sweeps, nonequilibrium polymorphism and LD patterns persist for a much longer period under recent BLS, which may increase the chance of detecting such selection targets. An R package for analyzing these models, among others (e.g., isolation with migration), is available.  相似文献   

10.
Effectiveness of marker-assisted selection (MAS) and quantitative trait loci (QTL) mapping using population-wide linkage disequilibrium (LD) between markers and QTL depends on the extent of LD and how it declines with distance in a population. Because marker-QTL LD cannot be observed directly, the objective of this study was to evaluate alternative measures of observable LD between multi-allelic markers as predictors of usable LD of multi-allelic markers with presumed biallelic QTL. Observable LD between marker pairs was evaluated using eight existing measures and one new measure. These consisted of two pooled and standardized measures of LD between pairs of alleles at two markers based on Lewontin's LD measure, two pooled measures of squared correlations between alleles, one standardized measure using Hardy-Weinberg heterozygosities, and four measures based on the chi-square statistic for testing for association between alleles at two loci. In simulated populations with a range of LD generated by drift and a range of marker polymorphism, marker-marker LD measured by a standardized chi-square statistic (denoted chi(2')) was found to be the best predictor of useable marker-QTL LD for a group of multi-allelic markers. Estimates of the level and decline of marker-marker LD with distance obtained from chi(2') were linearly and highly correlated with usable LD of those markers with QTL across population structures and marker polymorphism. Corresponding relationships were poorer for the other marker-marker LD measures. Therefore, when LD is generated by drift, chi(2') is recommended to quantify the amount and extent of usable LD in a population for QTL mapping and MAS based on multi-allelic markers.  相似文献   

11.
12.
Amplification of DNA via polymerase chain reaction directly from a small amount of a buffy coat fraction was used to study the molecular basis of HbE-beta-thalassemia in the northeastern Thai population. Eight different mutations including the new one causing a beta o-thalassemia phenotype were detected. This novel mutation is an amber mutation at codon 26, which occurs at the same position as that of HbE; the most common hemoglobin variant in Southeast Asian countries. A pitfall in detection of the HbE mutation by restriction enzyme analysis was pointed out and differential diagnosis of the HbE mutation and the novel one by using allele specific oligonucleotide probes were described. Analysis of polymorphic restriction sites in the beta-globin gene cluster containing the beta E gene revealed two previously undescribed haplotypes in the Southeast Asian populations, which provide evidence for the multiple origins of beta E gene in Southeast Asian populations.  相似文献   

13.
The design and feasibility of whole-genome-association studies are critically dependent on the extent of linkage disequilibrium (LD) between markers. Although there has been extensive theoretical discussion of this, few empirical data exist. The authors have determined the extent of LD among 38 biallelic markers with minor allele frequencies >.1, since these are most comparable to the common disease-susceptibility polymorphisms that association studies aim to detect. The markers come from three chromosomal regions-1,335 kb on chromosome 13q12-13, 380 kb on chromosome 19q13.2, and 120 kb on chromosome 22q13.3-which have been extensively mapped. These markers were examined in approximately 1,600 individuals from four populations, all of European origin but with different demographic histories; Afrikaners, Ashkenazim, Finns, and East Anglian British. There are few differences, either in allele frequencies or in LD, among the populations studied. A similar inverse relationship was found between LD and distance in each genomic region and in each population. Mean D' is.68 for marker pairs <5 kb apart and is.24 for pairs separated by 10-20 kb, and the level of LD is not different from that seen in unlinked marker pairs separated by >500 kb. However, only 50% of marker pairs at distances <5 kb display sufficient LD (delta>.3) to be useful in association studies. Results of the present study, if representative of the whole genome, suggest that a whole-genome scan searching for common disease-susceptibility alleles would require markers spaced < or = 5 kb apart.  相似文献   

14.
Genetic association studies offer an opportunity to find genetic variants underlying complex human diseases. The success of this approach depends on the linkage disequilibrium (LD) between markers and the disease variant(s) in a local region of the genome. Because, in the region with a disease mutation, the LD pattern among markers may differ between cases and controls, in some scenarios, it is useful to compare a measure of this LD, to map disease mutations. For example, using the composite correlation to characterize the LD among markers, Zaykin et al. recently suggested an "LD contrast" test and showed that it has high power under certain haplotype-driven disease models. Furthermore, it is likely that individual variants observed at different positions in a gene act jointly with each other to influence the phenotype, and the LD contrast test is also a useful method to detect such joint action. However, the LD among markers introduced by mutations and their joint action is usually confounded by background LD, which is measured at the population level, especially in a local region with disease mutations. Because the measures of LD that are usually used, such as the composite correlation, represent both effects, they may not be optimal for the purpose of detecting association when high background LD exists. Here, we describe a test that improves the LD contrast test by taking into account the background LD. Because the proposed test is developed in a regression framework, it is very flexible and can be extended to continuous traits and to incorporate covariates. Our simulation results demonstrate the validity and substantially higher power of the proposed method over current methods. Finally, we illustrate our new method by applying it to real data from the International Collaborative Study on Hypertension in Blacks.  相似文献   

15.
Recent twin studies of clinical malaria and immune responses to malaria antigens have underscored the importance of both major histocompatability complex (MHC) and non-MHC genes in determining variable susceptibility and immune responsiveness. By using a combination of whole genome genetic linkage studies of families and candidate genes analysis, non-MHC genes are being mapped and identified. Human leucocyte antigen (HLA) genotype was found to affect susceptibility to severe malaria in a large study of West African children. T lymphocytes that may mediate such resistance have been identified and their target antigens and epitopes characterized. Some of these epitopes show substantial polymorphism, which appears to result from immune selection pressure. Natural variant epitopes have been found to escape T-cell recognition in cytolytic and other T-cell assays. More recently a novel immune escape mechanism has been described in viral infections, altered peptide ligand antagonism, whereby variants of a T-cell epitope can downregulate or ablate a T cell response to the index peptide. The likely implications of such immune escape mechanisms for the population structure of malaria parasites, for HLA associations with malaria infection and disease, and for the design of new malaria vaccines, are discussed. The evolutionary consequences of such molecular interactions can be assessed by using mathematical models that capture the dynamic of variable host and parasite molecules. Combined genetic, immunological and mathematical analysis of host and parasite variants in natural populations can identify some mechanisms driving host-parasite coevolution.  相似文献   

16.
The relationship between linkage disequilibrium (LD) and recombination fraction can be used to infer the pattern of genetic variation and evolutionary process in humans and other systems. We described a computational framework to construct a linkage–LD map from commonly used biallelic, single-nucleotide polymorphism (SNP) markers for outcrossing plants by which the decline of LD is visualized with genetic distance. The framework was derived from an open-pollinated (OP) design composed of plants randomly sampled from a natural population and seeds from each sampled plant, enabling simultaneous estimation of the LD in the natural population and recombination fraction due to allelic co-segregation during meiosis. We modified the framework to infer evolutionary pasts of natural populations using those marker types that are segregating in a dominant manner, given their role in creating and maintaining population genetic diversity. A sophisticated two-level EM algorithm was implemented to estimate and retrieve the missing information of segregation characterized by dominant-segregating markers such as single methylation polymorphisms. The model was applied to study the relationship between linkage and LD for a non-model outcrossing species, a gymnosperm species, Torreya grandis, naturally distributed in mountains of the southeastern China. The linkage–LD map constructed from various types of molecular markers opens a powerful gateway for studying the history of plant evolution.  相似文献   

17.
Many genomic methodologies rely on the presence and extent of linkage disequilibrium (LD) between markers and genetic variants underlying traits of interest, but the extent of LD in the horse has yet to be comprehensively characterized. In this study, we evaluate the extent and decay of LD in a sample of 817 Thoroughbreds. Horses were genotyped for over 50,000 single nucleotide polymorphism (SNP) markers across the genome, with 34,848 autosomal SNPs used in the final analysis. Linkage disequilibrium, as measured by the squared correlation coefficient (r(2)), was found to be relatively high between closely linked markers (>0.6 at 5 kb) and to extend over long distances, with average r(2) maintained above non-syntenic levels for single nucleotide polymorphisms (SNPs) up to 20 Mb apart. Using formulae which relate expected LD to effective population size (N(e)), and assuming a constant actual population size, N(e) was estimated to be 100 in our population. Values of historical N(e), calculated assuming linear population growth, suggested a decrease in N(e) since the distant past, reaching a minimum twenty generations ago, followed by a subsequent increase until the present time. The qualitative trends observed in N(e) can be rationalized by current knowledge of the history of the Thoroughbred breed, and inbreeding statistics obtained from published pedigree analyses are in agreement with observed values of N(e). Given the high LD observed and the small estimated N(e), genomic methodologies such as genomic selection could feasibly be applied to this population using the existing SNP marker set.  相似文献   

18.
Genome scans have made it possible to find outlier markers thought to have been influenced by divergent selection in almost any wild population. However, the lack of genomic information in nonmodel species often makes it difficult to associate these markers with certain genes or chromosome regions. Furthermore, the extent of linkage disequilibrium (LD) in the genome will determine the density of markers required to identify the genes under selection. In this study, we investigated a chromosome region in the willow warbler Phylloscopus trochilus surrounding a single marker previously identified in a genome scan. We first located the marker in the assembled genome of another species, the zebra finch Taeniopygia guttata, and amplified surrounding sequences in Fennoscandian willow warblers. Within an investigated chromosome region of 7.3 Mb as mapped to the zebra finch genome, we observed elevated genetic differentiation between a southern and a northern population across a 2.5-Mb interval comprising numerous coding genes. Within the southern and northern populations, higher values of LD were mostly found between SNPs within the same locus, but extended across distantly situated loci when the analyses were restricted to sampling sites showing intermediate allele frequencies of southern and northern alleles. Our study shows that cross-species genome information is a useful resource to obtain candidate sequences adjacent to outlier markers in nonmodel species.  相似文献   

19.
The Scandinavian wolf population represents one of the genetically most well-characterized examples of a severely bottlenecked natural population (with only two founders), and of how the addition of new genetic material (one immigrant) can at least temporarily provide a 'genetic rescue'. However, inbreeding depression has been observed in this population and in the absence of additional immigrants, its long-term viability is questioned. To study the effects of inbreeding and selection on genomic diversity, we performed a genomic scan with approximately 250 microsatellite markers distributed across all autosomes and the X chromosome. We found linkage disequilibrium (LD) that extended up to distances of 50 Mb, exceeding that of most outbreeding species studied thus far. LD was particularly pronounced on the X chromosome. Overall levels of observed genomic heterozygosity did not deviate significantly from simulations based on known population history, giving no support for a general selection for heterozygotes. However, we found evidence supporting balancing selection at a number of loci and also evidence suggesting directional selection at other loci. For markers on chromosome 23, the signal of selection was particularly strong, indicating that purifying selection against deleterious alleles may have occurred even in this very small population. These data suggest that population genomics allows the exploration of the effects of neutral and non-neutral evolution on a finer scale than what has previously been possible.  相似文献   

20.
Recently, the use of linkage disequilibrium (LD) to locate genes which affect quantitative traits (QTL) has received an increasing interest, but the plausibility of fine mapping using linkage disequilibrium techniques for QTL has not been well studied. The main objectives of this work were to (1) measure the extent and pattern of LD between a putative QTL and nearby markers in finite populations and (2) investigate the usefulness of LD in fine mapping QTL in simulated populations using a dense map of multiallelic or biallelic marker loci. The test of association between a marker and QTL and the power of the test were calculated based on single-marker regression analysis. The results show the presence of substantial linkage disequilibrium with closely linked marker loci after 100 to 200 generations of random mating. Although the power to test the association with a frequent QTL of large effect was satisfactory, the power was low for the QTL with a small effect and/or low frequency. More powerful, multi-locus methods may be required to map low frequent QTL with small genetic effects, as well as combining both linkage and linkage disequilibrium information. The results also showed that multiallelic markers are more useful than biallelic markers to detect linkage disequilibrium and association at an equal distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号