首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Synthetic magainin analogues with improved antimicrobial activity   总被引:11,自引:0,他引:11  
Based on modifications to enhance the alpha-helical structure of the broad spectrum antibiotic magainin 2, a series of analogues have been synthesized which display an increase up to two orders of magnitude in antimicrobial activity and, in the most favorable case, no appreciable increase in hemolytic activity over magainin 1 at the concentrations tested.  相似文献   

2.
3.
Translocation of proteins across membranes   总被引:1,自引:0,他引:1  
  相似文献   

4.
Membrane pores spontaneously formed by antimicrobial peptides in membranes were crystallized for the first time by manipulating the sample hydration and temperature. Neutron diffraction shows that magainins and protegrins form stable pores in fully hydrated fluid membranes. At lower hydration levels or low temperature, the membrane multilayers crystallize. In one crystalline phase, the pores in each bilayer arrange in a regular hexagonal array and the bilayers are stacked into a hexagonal ABC lattice, corresponding to the cubic close-packed structure of spheres. In another crystalline phase, the bilayers are modulated into the rippled multilamellae, corresponding to a 2D monoclinic lattice. The phase diagrams are described. Crystallization of the membrane pores provides possibilities for diffraction studies that might provide useful information on the pore structures.  相似文献   

5.
6.
Investigation of magainin II amide analogs with cationic charges ranging between +3 and +7 showed that enhancement of the peptide charge up to a threshold value of +5 and conservation of appropriate hydrophobic properties optimized the antimicrobial activity and selectivity. High selectivity was the result of both enhanced antimicrobial and reduced hemolytic activity. Charge increase beyond +5 with retention of other structural motifs led to a dramatic increase of hemolytic activity and loss of antimicrobial selectivity. Selectivity could be restored by reduction of the hydrophobicity of the hydrophobic helix surface (H(hd)), a structural parameter not previously considered to modulate activity. Dye release experiments with lipid vesicles revealed that the potential of peptide charge to modulate membrane activity is limited: on highly negatively charged 1-palmitoyl-2-oleoylphosphatidyl-DL-glycerol bilayers, reinforcement of electrostatic interactions had an activity-reducing effect. On neutral 1-palmitoyl-2-oleoylphosphatidylcholine bilayers, the high activity was determined by H(hd). H(hd) values above a certain threshold led to effective permeabilization of all lipid systems and even compensated for the activity-reducing effect of charge increase on highly negatively charged membranes.  相似文献   

7.
Jang SA  Kim H  Lee JY  Shin JR  Kim da J  Cho JH  Kim SC 《Peptides》2012,34(2):283-289
Buforin IIb-a synthetic analog of buforin II that contains a proline hinge between the two α-helices and a model α-helical sequence at the C-terminus (3× RLLR)-is a potent cell-penetrating antimicrobial peptide. To develop novel antimicrobial peptides with enhanced activities and specificity/therapeutic index, we designed several analogs (Buf III analogs) by substitutions of amino acids in the proline hinge region and two α-helices of buforin IIb, and examined their antimicrobial activity and mechanism of action. The substitution of hydrophobic residues ([F(6)] and [V(8)]) in the proline hinge region with other hydrophobic residues ([W(6)] and [I(8)]) did not affect antimicrobial activity, while the substitution of the first four amino acids RAGL with a model α-helical sequence increased the antimicrobial activity up to 2-fold. Like buforin IIb, Buf III analogs penetrated the bacterial cell membranes without significantly permeabilizing them and were accumulated inside Escherichia coli. Buf III analogs were shown to bind DNA in vitro and the DNA binding affinity of the peptides correlated linearly with their antimicrobial potency. Among the Buf III analogs, the therapeutic index of Buf IIIb and IIIc (RVVRQWPIG[RVVR](3) and KLLKQWPIG[KLLK](3), respectively) were improved 7-fold compared to that of buforin IIb. These results indicate that Buf III analogs appear to be promising candidates for future development as novel antimicrobial agents.  相似文献   

8.
Magainin and PGLa are 23- and 21-residue peptides isolated from the skin of the African clawed frog Xenopus laevis. They protect the frog from infection and exhibit a broad-spectrum antimicrobial activity in vitro. The mechanism of this activity involves the interaction of magainin with microbial membranes. We have measured the secondary structure and membrane-perturbing ability of these peptides to obtain information about this mechanism. Our results show that mgn2a forms a helix with an average length of less than 20 A upon binding to liposomes. At high concentrations (50 mg/mL) mgn2a spontaneously solubilizes phosphatidylcholine liposomes at temperatures above the gel-liquid-crystalline phase transition. Mgn2a appears to bind to the surface of liposomes made of negatively charged lipids without spontaneously penetrating the bilayer. Finally, mgn2a and PGLa interact together with liposomes in a synergistic way that enhances the helix content of one or both of the peptides and allows the peptides to more easily penetrate the bilayer. PGLa mixed with a small nonperturbing amount of magainin 2 amide is 25-43 times as potent as PGLa alone at inducing the release of carboxyfluorescein from liposomes. The results suggest that the mechanism of antimicrobial activity does not involve a channel formed by transmembrane helical peptides.  相似文献   

9.
Interactions of two antimicrobial peptides, magainin 2 and indolicidin, with three different model biomembranes, namely, monolayers, large unilamellar vesicles (LUVs), and giant liposomes, were studied. Insertion of both peptides into lipid monolayers was progressively enhanced when the content of an acidic phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) in a film of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) was increased. Indolicidin and magainin 2 penetrated also into lipid monolayers containing cholesterol (mole fraction, X = 0.1). Membrane association of magainin 2 attenuated lipid lateral diffusion in POPG-containing LUVs as revealed by the decrease in the excimer/monomer fluorescence ratio I(e)/I(m) for the pyrene fatty-acid-containing phospholipid derivative 1-palmitoyl-2-[10-(pyren-1-yl) decanoyl]-sn-glycero-3-phospho-rac-glycerol (PPDPG). Likewise, an increase in steady-state fluorescence anisotropy of the membrane-incorporated diphenylhexatriene (DPH) was observed, revealing magainin 2 to increase acyl chain order and induce segregation of acidic phospholipids. Similar effects were observed for indolicidin. The topological effects of magainin 2 and indolicidin on phospholipid membranes were investigated using optical microscopy of giant vesicles. Magainin 2 had essentially no influence on either SOPC or SOPC:cholesterol (X = 0.1) giant liposomes. However, effective vesiculation was observed when acidic phospholipid (X(PG) = 0.1) was included in the giant vesicles. Indolicidin caused only a minor shrinkage of giant SOPC vesicles whereas the formation of endocytotic vesicles was observed when the giant liposome contained POPG (X(PG) = 0.1). Interestingly, for indolicidin, vesiculation was also observed for giant vesicles composed of SOPC/cholesterol (X(chol) = 0.1). Possible mechanisms of membrane transformation induced by these two peptides are discussed.  相似文献   

10.
Translocation of DNA across bacterial membranes.   总被引:19,自引:1,他引:19       下载免费PDF全文
DNA translocation across bacterial membranes occurs during the biological processes of infection by bacteriophages, conjugative DNA transfer of plasmids, T-DNA transfer, and genetic transformation. The mechanism of DNA translocation in these systems is not fully understood, but during the last few years extensive data about genes and gene products involved in the translocation processes have accumulated. One reason for the increasing interest in this topic is the discussion about horizontal gene transfer and transkingdom sex. Analyses of genes and gene products involved in DNA transfer suggest that DNA is transferred through a protein channel spanning the bacterial envelope. No common model exists for DNA translocation during phage infection. Perhaps various mechanisms are necessary as a result of the different morphologies of bacteriophages. The DNA translocation processes during conjugation, T-DNA transfer, and transformation are more consistent and may even be compared to the excretion of some proteins. On the basis of analogies and homologies between the proteins involved in DNA translocation and protein secretion, a common basic model for these processes is presented.  相似文献   

11.
All cells need to transport proteins across hydrophobic membranes. Several mechanisms have evolved to facilitate this transport, including: (i) the universally-conserved Sec system, which transports proteins in an unfolded conformation and is thought to be the major translocation pathway in most organisms and (ii) the Tat system, which transports proteins that have already obtained some degree of tertiary structure. Here, we present the current understanding of these processes in the domain Archaea, and how they compare to the corresponding pathways in bacteria and eukaryotes.  相似文献   

12.
13.
We present the first study of grazing incidence X-ray diffraction on a model system of phospholipid membranes and antimicrobial peptides. For this purpose, highly oriented multilamellar samples have been prepared on solid substrates. By this technique, the short-range order of the lipid chains in the fluid Lα phase can be investigated quantitatively, including not only the mean distance between acyl chains, but also the associated correlation length. The short-range order in lecithin is found to be severely affected by the amphiphilic peptide magainin 2. Received: 7 June 1999 / Revised version: 6 September 1999 / Accepted: 17 September 1999  相似文献   

14.
T Wieprecht  M Beyermann  J Seelig 《Biochemistry》1999,38(32):10377-10387
Magainins are positively charged amphiphatic peptides which permeabilize cell membranes and display antimicrobial activity. They are usually thought to bind specifically to anionic lipids, and binding studies have been performed almost exclusively with negatively charged membranes. Here we demonstrate that binding of magainins to neutral membranes, a reaction which is difficult to assess with spectroscopic means, can be followed with high accuracy using isothermal titration calorimetry. The binding mechanism can be described by a surface partition equilibrium after correcting for electrostatic repulsion by means of the Gouy-Chapman theory. Unusual thermodynamic parameters are observed for the binding process. (i) The three magainin analogues that were investigated bind to neutral membranes with large exothermic reaction enthalpies DeltaH of -15 to -18 kcal/mol (at 30 degrees C). (ii) The reaction enthalpies increase with increasing temperature, leading to a large positive heat capacity DeltaC(p) of approximately 130 cal mol(-)(1) K(-)(1) (at 25 degrees C). (iii) The Gibbs free energies of binding DeltaG are between -6.4 and -8.6 kcal/mol, resulting in a large negative binding entropy DeltaS. The binding of magainin to small unilamellar vesicles is hence an enthalpy-driven reaction. The negative DeltaH and DeltaS and the large positive DeltaC(p) contradict the conventional understanding of the hydrophobic effect. CD experiments reveal that the membrane-bound fraction of magainin is approximately 80% helical at 8 degrees C, decreasing to approximately 60% at 45 degrees C. Since the random coil --> alpha-helix transition in aqueous solution is known to be an exothermic process, the same process occurring at the membrane surface is shown to account for up to 65% of the measured reaction enthalpy. In addition to membrane-facilitated helix formation, the second main driving force for membrane binding is the insertion of the nonpolar amino acid side chains into the lipid bilayer. It also contributes a negative DeltaH and follows the pattern for the nonclassical hydrophobic effect. Addition of cholesterol drastically reduces the extent of peptide binding and reveals an enthalpy-entropy compensation mechanism. Membrane permeability was measured with a dye assay and correlated with the extent of peptide binding. The level of dye efflux is linearly related to the amount of surface-bound peptide and can be traced back to a membrane perturbation effect.  相似文献   

15.
We show that the three core histones H2A, H3 and H4 can transverse lipid bilayers of large unilamellar vesicles (LUVs) and multilamellar vesicles (MLVs). In contrast, the histone H2B, although able to bind to the liposomes, fails to penetrate the unilamellar and the multilamellar vesicles. Translocation across the lipid bilayer was determined using biotin-labeled histones and an ELISA-based system. Following incubation with the liposomes, external membrane-bound biotin molecules were neutralized by the addition of avidin. Penetrating biotin-histone conjugates were exposed by Triton treatment of the neutralized liposomes. The intraliposomal biotin-histone conjugates, in contrast to those attached only to the external surface, were attached to the detergent lysed lipid molecules. Thus, biotinylated histone molecules that were exposed only following detergent treatment of the liposomes were considered to be located at the inner leaflet of the lipid bilayers. The penetrating histone molecules failed to mediate translocation of BSA molecules covalently attached to them. Translocation of the core histones, including H2B, was also observed across mycoplasma cell membranes. The extent of this translocation was inversely related to the degree of membrane cholesterol. The addition of cholesterol also reduced the extent of histone penetration into the MLVs. Although able to bind biotinylated histones, human erythrocytes, erythrocyte ghosts and Escherichia coli cells were impermeable to them. Based on the present and previous data histones appear to be characterized by the same features that characterize cell penetrating peptides and proteins (CPPs).  相似文献   

16.
Futaki S  Nakase I  Suzuki T  Youjun Z  Sugiura Y 《Biochemistry》2002,41(25):7925-7930
A basic peptide derived from HIV-1 Tat has been reported to have the ability to translocate through cell membranes and to bring exogenous proteins into cells. We have demonstrated that these features could be observed among many arginine-rich peptides, and the presence of a ubiquitous internalization mechanism for arginine-rich oligopeptides has been suggested. In this report, we report that these features are also applicable to the peptides having branched-chain structures. Peptides that have arginine residues on four branched chains (R(n))(4) [n (number of arginine residues)= 0-6] were prepared. Fluorescence microscopic observation revealed that the (R(2))(4) peptide exhibited the most efficient translocation. The dependence on the number of arginine residues of the translocation efficiency and cellular localization was also observed for the branched-chain peptides as was seen in the linear peptides. Quite interestingly, efficient translocation was also recognized in the (RG(3)R)(4) peptide, where three glycine residues intervened between two arginine residues on each chain of (R(2))(4). The results strongly suggested that a linear structure was not indispensable for the translocation of arginine-rich peptides and that there could be considerable flexibility in the location of the arginine residue in the molecules.  相似文献   

17.
Translocation of proteins across the multiple membranes of complex plastids.   总被引:18,自引:0,他引:18  
Secondary endosymbiosis describes the origin of plastids in several major algal groups such as dinoflagellates, euglenoids, heterokonts, haptophytes, cryptomonads, chlorarachniophytes and parasites such as apicomplexa. An integral part of secondary endosymbiosis has been the transfer of genes for plastid proteins from the endosymbiont to the host nucleus. Targeting of the encoded proteins back to the plastid from their new site of synthesis in the host involves targeting across the multiple membranes surrounding these complex plastids. Although this process shows many overall similarities in the different algal groups, it is emerging that differences exist in the mechanisms adopted.  相似文献   

18.
Membrane translocation mechanism of the antimicrobial peptide buforin 2   总被引:4,自引:0,他引:4  
The antimicrobial peptide magainin 2 isolated from the skin of the African clawed frog Xenopus laevis crosses lipid bilayers by transiently forming a peptide-lipid supramolecular complex pore inducing membrane permeabilization and flip-flop of membrane lipids [Matsuzaki, K., Murase, O., Fujii, N., and Miyajima, K. (1996) Biochemistry 35, 11361-11368]. In contrast, the antimicrobial peptide buforin 2 discovered in the stomach tissue of the Asian toad Bufo bufo gargarizans efficiently crosses lipid bilayers without inducing severe membrane permeabilization or lipid flip-flop, and the Pro(11) residue plays a key role in this unique property [Kobayashi, S, Takeshima, K., Park, C. B., Kim, S. C., and Matsuzaki, K. (2000) Biochemistry 39, 8648-8654]. To elucidate the translocation mechanism, the secondary structure and the orientation of the peptide in lipid bilayers as well as the effects of the peptide concentration, the lipid composition, and the cis-trans isomerization of the Pro peptide bond on translocation efficiency were investigated. The translocation efficiencies of F10W-buforin 2 (BF2), P11A-BF2, and F5W-magainin 2 (MG2) across egg yolk L-alpha-phosphatidyl-DL-glycerol (EYPG)/egg yolk L-alpha-phosphatidylcholine (1/1) bilayers were dependent supralinearly on the peptide concentration, suggesting that the translocation mechanisms of these peptides are similar. The incorporation of the negative curvature-inducing lipid egg yolk L-alpha -phosphatidylethanolamine completely suppressed the translocation of BF2, indicating the induction of the positive curvature by BF2 on the membrane is related to the translocation process, similarly to MG2. In pure EYPG, where the repulsion between polycationic BF2 molecules is reduced, membrane permeabilization and coupling lipid flip-flop were clearly observed. Structural studies by use of Fourier transform infrared-polarized attenuated total reflection spectroscopy indicated that BF2 assumed distorted helical structures in EYPG/EYPC bilayers. A BF2 analogue with an alpha-methylproline, which fixed the peptide bond to the trans configuration, translocated similarly to the parent peptide, suggesting the cis-trans isomerization of the Pro peptide bond is not involved in the translocation process. These results indicate that BF2 crosses lipid bilayers via a mechanism similar to that of MG2. The presence of Pro(11) distorts the helix, concentrating basic amino acid residues in a limited amphipathic region, thus destabilizing the pore by enhanced electrostatic repulsion, enabling efficient translocation.  相似文献   

19.
The two exotoxins of Bacillus anthracis , the causative agent of anthrax, are the oedema toxin (PA–EF) and the lethal toxin (PA–LF). They exert their catalytic activities within the cytosol. The internalization process requires receptor-mediated endocytosis and passage through acidic vesicles. We investigated the translocation of EF and LF enzymatic moieties across the target cell membrane. By selective permeabilization of the plasma membrane with Clostridium perfringens delta-toxin, we observed free full-size lethal factor (LF) within the cytosol, resulting from specific translocation from early endosomes. In contrast, oedema factor (EF) remained associated with the membranes of vesicles.  相似文献   

20.
The antimicrobial peptides magainin 2 and PGLa, isolated from the skin of the African clawed frog Xenopus laevis, show marked synergism [Westerhoff, H. V., Zasloff, M., Rosner, J. L., Hendler, R. W., de Waal, A., Vaz Gomes, A., Jongsma, A. P. M., Riethorst, A., and Juretic, D. (1995) Eur. J. Biochem. 228, 257-264]. We suggested previously that these peptides form a potent heterodimer composed of either parallel or antiparallel helices in membranes [Matsuzaki, K., Mitani, Y., Akada, K., Murase, O., Yoneyama, S., Zasloff, M., and Miyajima, K. (1998) Biochemistry 37, 15144-15153]. To detect the putative heterodimer by chemical cross-linking, analogues of magainin 2 and PGLa with a Cys residue at either terminus were synthesized. These cross-linking experiments suggested that both peptides form a parallel heterodimer in membranes composed of phosphatidylglycerol/phosphatidylcholine but not in either buffer or a helix-promoting 2,2,2-trifluoroethanol/buffer mixture. The isolated parallel heterodimers exhibited an order of magnitude higher membrane permeabilization activity compared with the monomeric species, indicating that the observed synergism is due to heterodimer formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号