首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The ccd locus contributes to the stability of plasmid F by post-segregational killing of plasmid-free bacteria. The ccdB gene product is a potent cell-killing protein and its activity is negatively regulated by the CcdA protein, in this paper, we show that the CcdA protein is unstable and that the degradation of CcdA is dependent on the Lon protease. Differences in the stability of the killer CcdB protein and its antidote CcdA are the key to post-segregational killing. Because the half-life of active CcdA protein is shorter than that of active CcdB protein, persistence of the CcdB protein leads to the death of plasmid-free bacterial segregants.  相似文献   

2.
3.
Summary The ccd operon of plasmid F encodes two genes, ccdA and ccdB, which contribute to the high stability of the plasmid by post-segregational killing of plasmid-free bacteria. The CcdB protein is lethal to bacteria and the CcdA protein is an antagonist of this lethal action. A 520 by fragment containing the terminal part of the ccdA gene and the entire ccdB gene of plasmid F was cloned downstream of the tac promoter. Although the CcdB protein was expressed from this fragment, no killing of host bacteria was observed. We found that the absence of killing was due to the presence of a small polypeptide, CcdA41, composed of the 41 C-terminal residues of the CcdA protein. This polypeptide has retained the ability to regulate negatively the lethal activity of the CcdB protein.  相似文献   

4.
Bacterial toxin-antitoxin (TA) systems encode two proteins, a potent inhibitor of cell proliferation (toxin) and its specific antidote (antitoxin). Structural data has revealed striking similarities between the two model TA toxins CcdB, a DNA gyrase inhibitor encoded by the ccd system of plasmid F, and Kid, a site-specific endoribonuclease encoded by the parD system of plasmid R1. While a common structural fold seemed at odds with the two clearly different modes of action of these toxins, the possibility of functional crosstalk between the parD and ccd systems, which would further point to their common evolutionary origin, has not been documented. Here, we show that the cleavage of RNA and the inhibition of protein synthesis by the Kid toxin, two activities that are specifically counteracted by its cognate Kis antitoxin, are altered, but not inhibited, by the CcdA antitoxin. In addition, Kis was able to inhibit the stimulation of DNA gyrase-mediated cleavage of DNA by CcdB, albeit less efficiently than CcdA. We further show that physical interactions between the toxins and antitoxins of the different systems do occur and define the stoichiometry of the complexes formed. We found that CcdB did not degrade RNA nor did Kid have any reproducible effect on the tested DNA gyrase activities, suggesting that these toxins evolved to reach different, rather than common, cellular targets.  相似文献   

5.
Summary The vermilion gene was used as a target to determine the mutational specificity of ethyl methanesulfonate (EMS) in germ cells of Drosophila melanogaster. To study the impact of DNA repair on the type of mutations induced, both excision-repair-proficient (exr +) and excision-repair-deficient (exr ) strains were used for the isolation of mutant flies. In all, 28 mutants from the exr + strain and 24 from the exr strain, were characterized by sequence analysis. In two mutants obtained from the exr + strain, small deletions were observed. All other mutations were caused by single base-pair changes. In two mutants double base-pair substitutions had occurred. Of the mutations induced in the exr + strain, 22 (76%) were GCAT transitions, 3 (10%) ATTA transversions, 2 (6%) GCTA transversions and 2 (6%) were deletions. As in other systems, the mutation spectrum of EMS in Drosophila is dominated by GCAT transitions. Of the mutations in an exr background, 12 (48%) were GCAT transitions, 7 (28%) ATTA transversions, 5 (20%) GCTA transversions and 1 (4%) was a ATGC transition. The significant increase in the contribution of transversion mutations obtained in the absence of an active maternal excision-repair mechanism, clearly indicates efficient repair of N-alkyl adducts (7-ethyl guanine and 3-ethyl adenine) by the excision-repair system in Drosophila germ cells.  相似文献   

6.
The regulation of the expression of enzyme activities catalyzing initial reactions in the anoxic metabolism of various aromatic compounds was studied at the whole cell level in the denitrifying Pseudomonas strain K 172. The specific enzyme activities were determined after growth on six different aromatic substrates (phenol, 4-hydroxybenzoate, benzoate, p-cresol, phenylacetate, 4-hydroxyphenylacetate) all being proposed to be metabolized anaerobically via benzoyl-CoA. As a control cells were grown on acetate, or aerobically on benzoate. The expression of the following enzyme activities was determined.Phenol carboxylase, as studied by the isotope exchange between 14CO2 and the carboxyl group of 4-hydroxybenzoate; 4-hydroxybenzoyl-CoA reductase (dehydroxylating); p-cresol methylhydroxylase; 4-hydroxybenzyl alcohol dehydrogenase; 4-hydroxybenzaldehyde dehydrogenase; coenzymeA ligases for the aromatic acids benzoate, 4-hydroxybenzoate, phenylacetate, and 4-hydroxyphenylacetate; phenylglyoxylate: acceptor oxidoreductase and 4-hydroxyphenylglyoxylate: acceptor oxidoreductase; aromatic alcohol and aldehyde dehydrogenases.The formation of most active enzymes is strictly regulated; they were only induced when required, the basic activities being almost zero. The observed whole cell regulation pattern supports the postulate that the enzyme activities play a role in anoxic aromatic metabolism and that the compounds are degraded via the following intermediates: Phenol 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; benzoate benzoyl-CoA; p-cresol 4-hydroxybenzaldehyde 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; phenylacetate phenylacetyl-CoA phenylglyoxylate benzoyl-CoA plus CO2; 4-hydroxyphenylacetate 4-hydroxyphenylacetyl-CoA 4-hydroxyphenylglyoxylate 4-hydroxybenzoyl-CoA plus CO2 benzoyl-CoA.  相似文献   

7.
The chromophore in halorhodopsin (HR) which acts as a light-driven chloride pump in halobacteria shares many properties with its counterpart in bacteriorhodopsin (BR): (i) a similar retinal protein interaction, (ii) trans to cis isomerization and (iii) similar intermediates of its photocycle. One major difference between the two chromoproteins is that the HR chromophore does not become deprotonated during its photocycle. A mechanism for the photocycle of HR is presented, which, in close analogy to an earlier proposed mechanism for BR, involves the sequence of all-trans 13-cis, 14s-cis 13-cis all-trans isomerizations of the chromophore, a Schiff base of retinal. In contrast to the situation in BR the 13-cis, 14s-cis13-cis isomerization is induced not by deprotonation of the retinal Schiff base chromophore but rather by the movement of an anion (Cl-) towards the protonated nitrogen of the Schiff's base. The suggested mechanism involves the Schiff base directly in the chloride translocation in halorhodopsin.  相似文献   

8.
A novel syrup containing neofructo-oligosaccharides was produced from sucrose (Brix 70) by whole cells of Penicillium citrinum. The efficiency of fructo-oligosaccharides production was more than 55% and those of the main carbohydrate components, 1-kestose (Fruf 21Fruf 21 Glc), nystose (Fruf 21Fruf 21 Fruf 21 Glc) and neokestose (Fruf 26 Glc12 Fruf), were 22, 14 and 11%, respectively.  相似文献   

9.
Campylobacter sputorum subspeciesbubulus contains a membrane-bound nitrite reductase which catalyses the six-electron reduction of nitrite to ammonia. Formate andL-lactate are used as hydrogen donors. Cells ofC. sputorum grown with nitrate or nitrite contain cytochromes of theb-andc-type and a carbon monoxide-binding cytochromec. In addition, a special membrane-bound carbon monoxide-binding pigment is found. Nitrite reduction with formate orL-lactate as a hydrogen donor is strongly inhibited by 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO). Nitrite reduction by bacterial suspensions with lactate as a hydrogen donor is strongly inhibited by carbonylcyanide-m-chlorophenyl-hydrazone (CCCP) whereas nitrite reduction with formate as a hydrogen donor is not inhibited at all. H+/O values and H+/NO 2 - values were measured with ascorbate + N,N,N,N-tetramethyl-p-phenylenediamine (TMPD), formate (in the absence and presence of carbonic anhydrase) andL-lactate as a hydrogen donor. The results are summarized in a scheme for electron transport from formate or lactate to oxygen or nitrite which shows a periplasmic orientation of formate dehydrogenase and nitrite reductase and a cytoplasmic orientation of lactate dehydrogenase and oxygen reduction, and which shows proton translocation with a H+/2e value of 2.0. The H+/O and H+/NO 2 - values predicted by this scheme are in good agreement with the experimental values.Abbreviations CCCP carbonylcyanide-m-chlorophenylhydrazone - HQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide - MTPP+ methyltriphenylphosphonium cation - TMPD N,N,N,N-tetramethyl-p-phenylenediamine; H+/O (H+/NO 2 - ), number of protons liberated in the outer bulk phase at the reduction of one atom O (one ion NO 2 - ); H+/2e (q+/2e), number of protons (charges) translocated across the cytoplasmic membrane during flow of two electrons to an acceptor  相似文献   

10.
Geshi N  Jørgensen B  Ulvskov P 《Planta》2004,218(5):862-868
The subcellular localization and topology of rhamnogalacturonan I (RG-I) (14)galactosyltransferase(s) ([14]GalTs) from potato (Solanum tuberosum L.) were investigated. Using two-step discontinuous sucrose step gradients, galactosyltransferase (GalT) activity that synthesized 70%-methanol-insoluble products from UDP-[14C]Gal was detected in both the 0.5 M sucrose fraction and the 0.25/1.1 M sucrose interface. The former fraction contained mainly soluble proteins and the latter was enriched in Golgi vesicles that contained most of the UDPase activity, a Golgi marker. By gel-filtration analysis, products of 180–2,000 Da were found in the soluble fraction, whereas in the Golgi-enriched fraction the products were larger than 80 kDa and could be digested with rhamnogalacturonan lyase and (1,4)endogalactanase to yield smaller rhamnogalacturonan oligomers, galactobiose and galactose. The endogalactanase requires (14)galactans with at least three galactosyl residues for cleavage, indicating that the enzyme(s) present in the 0.25/1.1 M Suc interface transferred one or more galactosyl residues to pre-existing (14)galactans producing RG-I side chains in total longer than a trimer. Thus, the (14)GalT activity that elongates (14)-linked galactan on RG-I was located in the Golgi apparatus. This (14)GalT activity was not reduced after treatment of the Golgi vesicles with proteinase, but approximately 75% of the activity was lost after treatment with proteinase in the presence of Triton X-100. In addition, the (14)GalT activity was recovered in the detergent phase after treatment of Golgi vesicles with Triton X-114. Taken together, these observations supported the view that the RG-I (14)GalT that elongates (14)galactan was mainly located in the Golgi apparatus and integrated into the membrane with its catalytic site facing the lumen.Abbreviations GalT Galactosyltransferase - (14)GalT (14)-Galactosyltransferase - H + -ATPase Proton ATPase - HG Homogalacturonan - HSP70 ER resident Bip - mMDH Mitochondrial malate dehydrogenase - RG-I Rhamnogalacturonan I - RG-II Rhamnogalacturonan II - RGP Reversibly glycosylated polypeptide - RG-Lyase Rhamnogalacturonan lyase - Suc Sucrose - UDPase Uridine-5-diphosphatase  相似文献   

11.
12.
The mechanism of ammonia assimilation in nitrogen fixing bacteria   总被引:1,自引:0,他引:1  
Summary Enzymatic and genetic evidence are presented for a new pathway of ammonia assimilation in nitrogen fixing bacteria: ammonium glutamine glutamate. This route to the important glutamate-glutamine family of amino acids differs from the conventional pathway, ammonium glutamate glutamine, in several respects. Glutamate synthetase [(glutamine amide-2-oxoglutarate aminotransferase) (oxidoreductase)], which is clearly distinct from glutamate dehydrogenase, catalyzes the reduced pyridine nucleotide dependent amination of -ketoglutarate with glutamine as amino donor yielding two molecules of glutamate as product. The enzyme is completely inhibited by the glutamine analogue DON, whereas glutamate dehydrogenase is not affected by this inhibitor; the glutamate synthetase reaction is irreversible. Glutamate synthetase is widely distributed in bacteria; the pyridine nucleotide coenzyme specificity of the enzyme varies in many of these species.The activities of key enzymes are modulated by environmental nitrogenous sources; for example, extracts of N2-grown cells of Klebsiella pneumoniae form glutamate almost exclusively by this new route and contain only trace amounts of glutamate dehydrogenase activity whereas NH3-grown cells possess both pathways. Also, the biosynthetically active form of glutamine synthetase with a low K m for ammonium predominates in the N2-grown cell.Several mutant strains of K. pneumoniae have been isolated which fail to fix nitrogen or to grow in an ammonium limited environment. Extracts of these strains prepared from cells grown on higher levels of ammonium have low levels of glutamate synthetase activity and contain the biosynthetically inactive species of glutamine synthetase along with high levels of glutamate dehydrogenase. These mutants missing the new assimilatory pathway have serious defects in their metabolism of many inorganic and organic nitrogen sources; utilization of at least 20 different compounds is effected. We conclude that the new ammonia assimilatory route plays an important role in nitrogenous metabolism and is essential for nitrogen fixation.Abbreviation DON 6-diazo-5-oxo-l-norleucine  相似文献   

13.
New investigations on the flower and fruit structure of extantHamamelidaceae and other LowerHamamelididae together with new finds of fossil flowers and seeds from the Upper and Lower Cretaceous provide the outline of an increasingly more differentiated picture of the early evolution of the subclass. Three patterns of valvate anther dehiscence are recognized in the subfamilyHamamelidoideae (and the subclassHamamelididae). The basic (plesiomorphic) type within theHamamelididae has 2 valves per theca. The type with 1 valve but 2 pollen sacs per theca is both consistent and exclusive for the 5 southern genera of theHamamelidaceae. They seem to be the remnants of a homogeneous group that originated before the Upper Cretaceous. This is supported by fossil hamamelidaceous flowers from the Upper Cretaceous that have thecae with 1 valve. Since several-seededHamamelidaceae predate one-seeded forms in the fossil seed record (in Europe) and the systematic structure of the one-seeded group is relatively more homogeneous, several-seeded groups are considered to be more ancient. Several parallel evolutionary trends are recognized within theHamamelidaceae as well as within the LowerHamamelididae: anther dehiscence with 2 valves per theca 1 slit or 1 valve; pollen sacs per theca 2 1; pollen tricolpate polyforate; exine coarsely reticulate finely reticulate; loss of perianth (tepals or petals and sepals) and concomitant loss of fixed number of floral organs; differentiation of exposed nectaries.  相似文献   

14.
Expression sites of genes encoding (13,14)--glucan 4-glucanohydrolase (EC 3.2.1.73) have been mapped in germinated barley grains (Hordeum vulgare L.) by hybridization histochemistry. A32P-labelled cDNA (copy DNA) probe was hybridized to cryosections of intact barley grains to localize complementary mRNAs. No mRNA encoding (13,14)--glucanase is detected in ungerminated grain. Expression of (13,14)--glucanase genes is first detected in the scutellum after 1 d and is confined to the epithelial layer. At this stage, no expression is apparent in the aleurone. After 2 d, levels of (13,14)--glucanase mRNA decrease in the scutellar epithelium but increase in the aleurone. In the aleurone layer, induction of (13,14)--glucanase gene expression, as measured by mRNA accumulation, progresses from the proximal to distal end of the grain as a front moving away from, and parallel to, the face of the scutellum.Abbreviations cDNA copy DNA - RNase ribonuclease  相似文献   

15.
Summary An amber mutant in the head protein of bacteriophage T4D, amH36 has been induced to revert by a mutator, tsL56 in gene 43 (the structural gene for DNA polymerase, de Waard, Paul and Lehman, 1965) which is known to cause errors in replication. As a consequence the known am base triplet is converted to other triplets which assign certain amino acids. The nature of the replication errors has been analyzed by looking at the insertion of amino acids in a peptide from the head protein of 60 independent am + revertants. Of these, 38 had incorporated tyrosine (like spontaneous revertants also do) while in 21 cases glutamine was inserted and in one case glutamic acid. With the help of the codon catalogue it could be shown that the L56 polymerase promotes an A:TG:C transition as well as more than one type of transversion. The single revertant which had incorporated glutamic acid clearly represents an A:TC:G transversion. The other transversions leading to the insertion of tyrosine indicate that a C:G pair has been converted. In this case the degeneracy of the code does not allow to differentiate between the transversion C:GG:C and C:GA:T. These findings and the absence of certain amino acids as permissible substituents are discussed with regard to the specificity of the errors in replication made by L56 polymerase.  相似文献   

16.
Homogenized tissues and their alkali-soluble and alkali-insoluble fractions of fruiting bodies of the basidiomycetes Laetiporus sulphureus and Piptoporus betulinus were investigated using X-ray diffraction, infrared spectrometry and chemical methods. The presence of (13)--d-glucan, (13)--d-glucan and chitin was established. The relative amounts of these polysaccharides were different in the two species and differences were also found between context and trama. The proportion of (13)--d-glucan was exceptionally high in the context of L. sulphureus (about 78%). In addition, the trama of both species contained a substance resembling a cyclic wax by its X-ray pattern and solubility properties. The substances identified are considered to belong to the hyphal wall  相似文献   

17.
We have used the lacZ reversion assay to study the mutation spectra induced by the Escherichia coli chromosomal umuDC operon and of its two plasmid-borne analogues impCAB and mucAB following exposure of cells to UV light and methyl methane-sulfonate (MMS). We have shown that the impCAB, mucAB and umuDC operons all produce a similar response to UV light which results almost exclusively in AT GC transitions. However, we found that the three operons produced different responses to alkylating agents. We found that with MMS the chromosomal umuDC operon produced almost exclusively AT GC transitions, whilst both mucAB and impCAB produced predominantly transversions. In the case of the impCAB operon the mutation spectrum contained more AT TA than GC TA transversions; this balance was reversed with mucAB. The effect of the copy number of the error-prone DNA repair operons upon the mutagenic spectra was also studied. The results obtained suggest that the copy number of the imp operon does not greatly affect the specificity of base substitutions observed. However, an increase in the copy number of the umuDC operon greatly affected the specificity of base substitution, such that virtually no transitions were produced and the spectrum was dominated by GC/AT TA transversions. It appears that the three error-prone DNA repair operons impCAB, mucAB and umuDC, despite showing strong structural and functional homologies, can display major differences in the spectrum of base changes induced during mutagenesis. We propose that the type of misincorporation/chain extension which DNA polymerase III is allowed to synthesize on a damaged DNA template is extremely sensitive to both the amount and type of error-prone repair proteins present. The modulation of these events by the different proteins can result in widely different mutagenic changes in the repaired DNA.  相似文献   

18.
Fitch and Markowitz' theory of concomitantly variable codons (covarions) in evolution predicted the existence of functional correlation in amino acid residue mutations among present-day cytochromes c. Mutational analysis was carried out on yeast iso-2-cytochrome c, where hydrophobic core residues I20, M64, L85, and M98 and surface residue L9 were mutated, in selected combinations, to those found in mammalian and bird cytochromes c. The functionality assay is based upon the ability of yeast cells to grow in YPGE medium. Furthermore, experiments on the single M64L and M98L mutations as well as the double M64L/M98L mutation using NMR showed that the effects of these mutations are to perturb the structural integrity of the protein. We identified functional correlation in two cases of a pair of residue mutations, the I20 V and M98 L pair and the L9 I and L85 I pair. In both cases, only one of the two alternative, putative evolutionary pathways leads to a functional protein and the corresponding pairs of residue mutations are among those found in present-day cytochromes c. Since valine is predicted to be at position 20 in the ancestral form of cytochrome c, the present data provide an explanation for the ancient requirement of leucine rather than methionine in position 98. The present data provide further evidence for the role of those specific atom–atom interactions in directing a pathway in the evolutionary changes of the amino acid sequence that have taken place in cytochrome c, in accordance with Fitch and Markowitz.  相似文献   

19.
During a survey of the mutations of the low density lipoprotein receptor (LDL-R) gene in Italian patients with familial hypercholesterolemia (FH), we identified a novel point mutation, that creates a new EcoRI site at the 5 end of exon 7, in a heterozygous FH subject (FH-100). The sequence of a cDNA fragment encompassing exon 7 showed the presence of a GT transversion in codon 297; this created a new EcoRI site and produced a missense mutation, leading to a Cys297Phe substitution in repeat A of the epidermal growth factor (EGF) precursor homology domain of LDL-R. Since the substitution of Cys297 disrupts the intracellular transport of the LDL-R protein, as previously demonstrated by site-directed mutagenesis, we suggest that this mutation is the cause of FH in the FH-100 proband. We screened the DNA of 303 Italian FH patients by amplification of exon 7 from genomic DNA followed by digestion with EcoRI or by Southern blotting. Two individuals (FH-64 and FH-127) were found to be carriers of the Cys297Phe mutation. Restriction fragment length polymorphism analysis demonstrated that, in two kindreds (FH-64 and FH-100), the haplotype in linkage with the Cys297Phe mutation was the same, suggesting the presence of a common ancestor. The Cys297Phe mutation has been designated FHTrieste after the name of the city in Northern Italy from which probands FH-100 and FH-127 originate.  相似文献   

20.
The influence of neutral mutation pressure versus selection on base composition evolution is a subject of considerable controversy. Yet the present study represents the first explicit population genetic analysis of this issue in prokaryotes, the group in which base composition variation is most dramatic. Here, we explore the impact of mutation and selection on the dynamics of synonymous changes in Buchnera aphidicola, the AT-rich bacterial endosymbiont of aphids. Specifically, we evaluated three forms of evidence. (i) We compared the frequencies of directional base changes (ATGC vs. GCAT) at synonymous sites within and between Buchnera species, to test for selective preference versus effective neutrality of these mutational categories. Reconstructed mutational changes across a robust intraspecific phylogeny showed a nearly 1:1 ATGC:GCAT ratio. Likewise, stationarity of base composition among Buchnera species indicated equal rates of ATGC and GCAT substitutions. The similarity of these patterns within and between species supported the neutral model. (ii) We observed an equivalence of relative per-site AT mutation rate and current AT content at synonymous sites, indicating that base composition is at mutational equilibrium. (iii) We demonstrated statistically greater equality in the frequency of mutational categories in Buchnera than in parallel mammalian studies that documented selection on synonymous sites. Our results indicate that effectively neutral mutational pressure, rather than selection, represents the major force driving base composition evolution in Buchnera. Thus they further corroborate recent evidence for the critical role of reduced Ne in the molecular evolution of bacterial endosymbionts.Reviewing Editor: Dr. J. William Ballard  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号