首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aggregation is a serious obstacle for recovery of biologically active heterologous proteins from inclusion bodies (IBs) produced by recombinant bacteria. E. coli transformed with a vector containing the cDNA for Bothropstoxin-1 (BthTx-1) expressed the recombinant product as IBs. In order to obtain the native toxin, insoluble and aggregated protein was refolded using high hydrostatic pressure (HHP). IBs were dissolved and refolded (2 kbar, 16 h), and the effects of protein concentration, as well as changes in ratio and concentration of oxido-shuffling reagents, guanidine hydrochloride (GdnHCl), and pH in the refolding buffer, were assayed. A 32% yield (7.6 mg per liter of bacterial culture) in refolding of the native BthTx-1 was obtained using optimal conditions of the refolding buffer (Tris–HCl buffer, pH 7.5, containing 3 mM of a 2:3 ratio of GSH/GSSG, and 1 M GdnHCl). Scanning electron microscopy (SEM) showed that that disaggregation of part of IBs particles occurred upon compression and that the morphology of the remaining IBs, spherical particles, was not substantially altered. Dose-dependent cytotoxic activity of high-pressure refolded BthTx-1 was shown in C2C12 muscle cells.  相似文献   

2.
Fusion ferritin (heavy chain ferritin, FH+light chain ferritin, FL), an iron-binding protein, was primarily purified from recombinantEscherichia coli by two-step sonications with urea [1]. Unfolded ferritin was refolded by gel filtration chromatography (GFC) with refolding enhancer, where 50 mM Na-phosphate (pH 7.4) buffer containing additives such as Tween 20, PEG, andl-arginine was used. Ferritin is a multimeric protein that contains approximately 20 monomeric units for full activity. Fusion ferritin was expressed in the form of inclussion bodies (Ibs). The IBs were initially solubilized in 4 M urea denaturant. The refolding process was then performed by decreasing the urea concentration on the GFC column to form protein multimers. The combination of the buffer-exchange effect of GFC and the refolding enhancers in refolding buffer resulted in an efficient route for producing properly folded fusion ferritin.  相似文献   

3.
To make the native LHRH immunogenic, a multimer of LHRH interspersed with T non-B peptides (r-LHRH-d2) was expressed as recombinant protein in Escherichia coli. The expression level of the recombinant protein was around 15% of the total cellular protein and it aggregated as inclusion bodies. Inclusion bodies from the bacterial cells were isolated and purified to homogeneity. Instead of high concentrations of chaotropic agents, r-LHRH- d2 was solubilized in 50 mM citrate buffer at pH 3 containing 2 M urea. The protein was refolded by 5-fold dilution (pulsatile) with cold 10 mM citrate buffer at pH 6 in presence of 0.3 M L-arginine. Purification of r-LHRH-d2 was carried out by successive passages on CM-Sepharose column at pH 6.0 which retained extraneous proteins and pH 4.8 at which r-LHRH-d2 bound to the resin. The elution was carried out by using linear salt gradient (0.1-1 M NaCl). The overall yield of the purified r-LHRH-d2 was 40% of the initial inclusion body proteins. The purity and homogeneity were confirmed by a single homogeneous peak on analytical HPLC eluting out at 29.51 min and by single band on SDS-PAGE reactive with polyvalent anti-LHRH antibodies. Mass spectroscopic analysis indicated the protein to be of 16.6 kDa which equals the theoretically expected mass. The N-terminal amino acid analysis of r-LHRH-d2 showed the sequence which corresponded to the designed protein. The CD spectrum of the refolded r-LHRH-d2 showed that the multimer has considerable beta sheet structure like the monomeric LHRH protein.  相似文献   

4.
A DNA encoding the 6-kDa early secretory antigenic target (ESAT-6) of Mycobacterium tuberculosis was inserted into a bacterial expression vector of pQE30 resulting in a 6x His-esat-6 fusion gene construction. This plasmid was transformed into Escherichia coli strain M15 and effectively expressed. The expressed fusion protein was found almost entirely in the insoluble form (inclusion bodies) in cell lysate. The inclusion bodies were solubilized with 8M urea or 6M guanidine-hydrochloride at pH 7.4, and the recombinant protein was purified by Ni-NTA column. The purified fusion protein was refolded by dialysis with a gradient of decreasing concentration of urea or guanidine hydrochloride or by the size exclusion protein refolding system. The yield of refolded protein obtained from urea dialysis was 20 times higher than that from guanidine-hydrochloride. Sixty-six percent of recombinant ESAT-6 was successfully refolded as monomer protein by urea gradient dialysis, while 69% of recombinant ESAT-6 was successfully refolded as monomer protein by using Sephadex G-200 size exclusion column. These results indicate that urea is more suitable than guanidine-hydrochloride in extracting and refolding the protein. Between the urea gradient dialysis and the size exclusion protein refolding system, the yield of the monomer protein was almost the same, but the size exclusion protein refolding system needs less time and reagents.  相似文献   

5.
The luciferase secreted by the deep-sea shrimp Oplophorus consists of 19 and 35kDa proteins. The 19-kDa protein (19kOLase), the catalytic component of luminescence reaction, was expressed in Escherichia coli using the cold-shock inducted expression system. 19kOLase, expressed as inclusion bodies, was solubilized with 6M urea and purified by urea-nickel chelate affinity chromatography. The yield of 19kOLase was 16 mg from 400 ml of cultured cells. 19kOLase in 6M urea could be refolded rapidly by dilution with 50mM Tris-HCl (pH 7.8)-10mM EDTA, and the refolded protein showed luminescence activity. The luminescence properties of refolded 19kOLase were characterized, in comparison with native Oplophorus luciferase. Luminescence intensity with bisdeoxycoelenterazine as a substrate was stimulated in the presence of organic solvents. The 19kOLase is a thermolabile protein and is 98 % inhibited by 1muM Cu2+. The cysteine residue of 19kOLase is not essential for catalysis of the luminescence reaction.  相似文献   

6.
In this work, the recombinant human bone morphogenetic protein 2 (rhBMP-2) gene was cloned from MG-63 cells by RT-PCR, and the protein was expressed in Escherichia coli expression system, purified by Ni–NTA column under denaturing conditions and refolded at 4 °C by urea gradient dialysis. We found that the protein refolding yield was increased with the increase of pH value from pH 6.0 to pH 9.0. The yield was 42% and 96% at pH 7.4 and pH 9.0, respectively, while that at pH 6.0 was only 3.4%. The cell culture results showed that the rhBMP-2 refolded at pH 7.4 urea gradient dialysis had higher biological activity for MG-63 cell proliferation and differentiation than that refolded at pH 9.0 since pH 7.4 is closer to the conditions in vivo leading to the formation of dimers through the interchain disulfide bond. Moreover, the biological activity for MG-63 was promoted with the increase of rhBMP-2 concentration in the cell culture medium. This work may be important for the in vitro production and biomedical application of rhBMP-2 protein.  相似文献   

7.
To prevent in vivo degradation, small peptides are usually expressed in fusion proteins from which target peptides can be released by proteolytic or chemical reagents. In this report, a modified Ssp dnaB mini-intein linked with a chitin binding domain tag was used as a fusion partner for production of human brain natriuretic peptide (hBNP), a hormone for the treatment of congestive heart failure. The fusion protein was expressed as an inclusion body in Escherichia coli. After refolding, the fusion protein was purified with a chitin affinity column, and dnaB mini-intein mediated peptide-bond hydrolysis was triggered by shifting the pH in the chitin column to 7.0 at 25 degrees C for 16 h, which led to the release and separation of hBNP from its fusion partner. The hBNP sample was further purified with reverse phase HPLC and its biological activity was assayed in vitro. It was found that hBNP had a potent vasodilatory effect on rabbit aortic strips with an EC(50) of (1.24+/-0.32)x10(-6)mg/ml, which was similar to that of the synthetic BNP standard. The expression strategy described here promises to produce small peptides without use of proteolytic or chemical reagents.  相似文献   

8.
Expression of recombinant proteins in Escherichia coli is normally accompanied by the formation of inclusion bodies (IBs). To obtain the protein product in an active (native) soluble form, the IBs must be first solubilized, and thereafter, the soluble, often denatured and reduced protein must be refolded. Several technically feasible alternatives to conduct IBs solubilization and on-column refolding have been proposed in recent years. However, rarely these on-column refolding alternatives have been evaluated from an economical point of view, questioning the feasibility of their implementation at a preparative scale. The presented study assesses the economic performance of four distinct process alternatives that include pH induced IBs solubilization and protein refolding (pH_IndSR); IBs solubilization using urea, dithiothreitol (DTT), and alkaline pH followed by batch size-exclusion protein refolding; inclusion bodies (IBs) solubilization using urea, DTT, and alkaline pH followed by simulated moving bed (SMB) size-exclusion protein refolding, and IBs solubilization using urea, DTT and alkaline pH followed by batch dilution protein refolding. The economic performance was judged on the basis of the direct fixed capital, and the production cost per unit of product (P(C)). This work shows that (1) pH_IndSR system is a relatively economical process, because of the low IBs solubilization cost; (2) substituting β-mercaptoethanol for dithiothreithol is an attractive alternative, as it significantly decreases the product cost contribution from the IBs solubilization; and (3) protein refolding by size-exclusion chromatography becomes economically attractive by changing the mode of operation of the chromatographic reactor from batch to continuous using SMB technology.  相似文献   

9.
Human flotillin-1 (reggie-2), a major hydrophobic protein of biomembrane microdomain lipid rafts, was cloned and expressed in Escherichia coli with four different fusion tags (hexahistidine, glutathione S-transferase, NusA, and thioredoxin) to increase the yield. The best expressed flotillin-1 with thioredoxin tag was solubilized from inclusion bodies, first purified by immobilized metal affinity column under denaturing condition and direct refolded on column by decreasing urea gradient method. The thioredoxin tag was cleaved by thrombin, and the flotillin-1 protein was further purified by anion exchanger and gel filtration column. The purified protein was verified by denaturing gel electrophoresis and Western blot. The typical yield was 3.4 mg with purity above 98% from 1L culture medium. Using pull-down assay, the interaction of both the recombinant flotillin-1 and the native flotillin-1 from human erythrocyte membranes with c-Cbl-associated protein or neuroglobin was confirmed, which demonstrated that the recombinant proteins were functional active. This is the first report describing expression, purification, and characterization of active recombinant raft specific protein in large quantity and highly purity, which would facilitate further research such as X-ray crystallography.  相似文献   

10.
The genes encoding carboxypeptidase Y (CPY) and CPY propeptide (CPYPR) from Saccharomyces cerevisiae were cloned and expressed in Escherichia coli. Six consecutive histidine residues were fused to the C-terminus of the CPYPR for facilitated purification. High-level expression of CPY and CPYPR-His(6) was achieved but most of the expressed proteins were present in the form of inclusion bodies in the bacterial cytoplasm. The CPY and CPYPR-His(6) produced as inclusion bodies were separated from the cells and solubilized in 6 and 3 M guanidinium chloride, respectively. The denatured CPYPR-His(6) was refolded by dilution 1:30 into the renaturation buffer (50 mM Tris-HCl containing 0.5 M NaCl and 3 mM EDTA, pH 8.0), and the refolded CPYPR-His(6) was further purified to 90% purity by single-step immobilized metal ion affinity chromatography. The denatured CPY was refolded by dilution 1:60 into the renaturation buffer containing CPYPR-His(6) at various concentrations. Increasing the molar ratio of CPYPR-His(6) to CPY resulted in an increase in the CPY refolding yield, indicating that the CPYPR-His(6) plays a chaperone-like role in in vitro folding of CPY. The refolded CPY was purified to 92% purity by single-step p-aminobenzylsuccinic acid affinity chromatography. When refolding was carried out in the presence of 10 molar eq CPYPR-His(6), the specific activity, N-(2-furanacryloyl)-l-phenylalanyl-l-phenylalanine hydrolysis activity per milligram of protein, of purified recombinant CPY was found to be about 63% of that of native S. cerevisiae CPY.  相似文献   

11.
The major immunodominant integral outer membrane protein C (OmpC) from Salmonella typhi Ty21a was overexpressed, without the signal peptide, in Escherichia coli. The protein aggregates as inclusion bodies (IBs) in the cytoplasm. OmpC from IBs was solubilized with 4 M urea and refolded. This involved rapid dilution of unfolded OmpC into a refolding buffer containing polyoxyethylene-9-lauryl ether (C(12)E(9)) and glycerol. The refolded OmpC (rfOmpC) was shown to be structurally similar to the native OmpC by SDS-PAGE, Western blotting, tryptic digestion, ultrafiltration, circular dichroism, and fluorescence spectroscopic techniques. Crystals of rfOmpC were obtained in preliminary crystallization trials. The rfOmpC also sets a stage for rational design by recombinant DNA technology for vaccine design and high resolution structure determination.  相似文献   

12.
高效表达了HCV核心区基因抗原之后,对表达蛋白C_(27)进行了纯化。经研究,重组蛋白是以包涵体形式存在于宿主菌内的。C_(27)重组蛋白分别经过包涵体洗涤、DEAE阴离子交换层析和S-200分子筛两步柱层析纯化之后,纯度大于95%,纯化得率为53.2%,总回收率为17.9%。纯化工艺流程简单、得率高,适合向规模化生产发展。  相似文献   

13.
A human-derived single-chain Fv (scFv) antibody fragment specific against human CTLA4 (CD152) was produced at high level in Escherichia coli. The scFv gene was cloned from a phagemid to the expression vector pQE30 with a N-terminal 6His tag fused in-frame, and expressed as a 29 kDa protein in E. coli as inclusion bodies. The inclusion body of scFv was isolated from E. coli lysate, solubilized in 8M urea with 10mM dithiothreitol, and purified by ion-exchange chromatography. Method for in vitro refolding of the scFv was established. The effects of refolding buffer composition, protein concentration and temperature on the refolding yield were investigated. The protein was renatured finally by dialyzing against 3mM GSH, 1mM GSSG, 150 mM NaCl, 1M urea, and 50 mM Tris-Cl (pH 8.0) for 48 h at 4 degrees C, and then dialyzed against phosphate-buffered saline (pH 7.4) to remove remaining denaturant. This refolding protocol generated up to a 70% yield of soluble protein. Soluble scFv was characterized for its specific antigen-binding activity by indirect cellular ELISA. The refolded scFv was functionally active and was able to bind specifically to CTLA4 (CD152). The epitopes recognized by refolded anti-CTLA4 scFv do not coincide with those epitopes recognized by CD80/CD86.  相似文献   

14.
We have investigated the effect of changing the column diameter and length on the size exclusion chromatography (SEC) refolding of beta-lactamase from Escherichia coli-derived inclusion bodies (IBs). Inclusion bodies were recovered and solubilised in 6 M GdnHCl and 5 mM DTT. Up to 16 mg of denatured, solubilised beta-lactamase was loaded onto size exclusion columns packed with Sephacryl S-300 media (fractionation range: 10(4)-1.5 x 10(6) Da). beta-Lactamase was refolded by eluting the loaded sample with 1 M urea in 0.05 M phosphate buffer, pH 7 at 23 degrees C. The following columns were studied: 26 x 400, 16 x 400 and 26 x 200 mm, with a range of mobile phase flow rates from 0.33 to 4.00 ml/min. beta-Lactamase was successfully refolded in all three columns and at all flow rates studied. The beta-lactamase activity peak coincided with the major protein peak. Reducing the column diameter had little effect on refolding performance. The enzyme activity recovered was relatively independent of the mobile phase linear velocity. Reducing the column length gave a poorer resolution of the protein peaks, but the enzyme activity peaks were well resolved. Calculation of the partition coefficients for beta-lactamase activity showed that the 26 x 400 column gave the greatest refolding performance.  相似文献   

15.
Meiotic recombination is initiated by controlled dsDNA breaks (DSBs). Rec12 (Spo11) protein of fission yeast is essential for the formation of meiotic DSBs in vivo, for meiotic recombination, and for segregation of chromosomes during meiosis I. Rec12 is orthologous to Top6A topoisomerase of Archaea and is likely the catalytic subunit of a meiotic recombinase that introduces recombinogenic DSBs. However, despite intensive effort, it has not been possible to produce Rec12 protein in a soluble form required to permit biochemical analyses of function. To obtain purified Rec12 protein for in vitro studies, a rec12(+) cDNA was generated, cloned into vector pET15b(+), and expressed in Escherichia coli. Rec12 protein was produced at moderate levels and it partitioned into insoluble fractions of whole-cell extracts. The protein was enriched based upon its differential solubility in two different denaturants and was further purified by column chromatography. A combinatorial, fractional, factorial approach was used to identify conditions under which Rec12 protein could be refolded. Four parameters were most important and, following optimization, soluble Rec12 protein was obtained. Gel filtration demonstrated that refolded Rec12 protein exists as a monomer in solution, suggesting that additional proteins may be required to assemble biologically-active Rec12 dimers, as inferred previously from genetic data [Cell Chromosome 1 (2002) 1]. The production of refolded Rec12 in a soluble form will allow for characterization in vitro of this key meiotic recombination enzyme.  相似文献   

16.
Vascular leak syndrome (VLS) is the major dose-limiting toxicity of immunotoxin therapy. In our previous study, a modified PE38KDEL, denoted PE38KDELKQK, was engineered to eliminate VLS. The PE38KDELKQK-based immunotoxin has been proved to retain potent anti-tumor activity but with a remarkable attenuation in VLS. In the present study, we have constructed and expressed a recombinant immunotoxin CD25-PE38KDELKQK containing humanized anti-CD25 single-chain antibody (scFv) genetically fused to PE38KDELKQK in Escherichia coli. After washing with buffer containing 2 M urea, the purity of inclusion body was about 82%. The denatured inclusion bodies were refolded on-column in Tris buffer (pH 8.0) containing 4mM of GSH and 1 mM of GSSG using a gradient of decreasing urea. We found that the presence of GSH/GSSG (4:1) in the on-column refolding buffer was important for efficient refolding. In addition, slow flow rate was another important factor could increase refolding. Under these conditions, the activity of the refolded protein could reach about 90% of that of the native protein. The refolded proteins were purified to homogeneity ( approximately 95% purity) by a combination of His-Ni(2+) metal affinity chromatography and gel filtration chromatography. The in vitro cytotoxicity assay indicated the purified immunotoxin CD25-PE38KDELKQK had specific cytotoxicity to CD25-positive leukemic cells comparable to wild-type CD25-PE38KDEL (wt). In contrast, CD25-PE38KDELKQK was shown to be much weaker in inducing VLS in mice than wt. The protein expression, purification, and refolding system established in this paper is important for further study on immunotoxin CD25-PE38KDELKQK.  相似文献   

17.
Bitistatin is a single-chain disintegrin which contains 83 amino acids and is internally crosslinked with seven disulfide bonds. This platelet aggregation inhibitor, which binds with high affinity to the alphaIIbbeta3 integrin, has potential use as the basis for a radiotracer to locate thrombi and emboli by scintigraphic imaging. A method amenable to large-scale, consistent production of bitistatin was sought. A synthetic gene coding for bitistatin was inserted into two different Escherichia coli expression vectors. One vector expressed recombinant bitistatin (rBitistatin) as a cleavable fusion protein and the other expressed rBitistatin as an isolated protein. In both cases, rBitistatin contained an additional amino acid (Gly) at the N-terminus compared with the native protein. The fusion protein was purified by affinity chromatography, then cleaved enzymatically to release rBitistatin, which was purified by reversed-phase high performance liquid chromatography (HPLC) to a single active form. The rBitistatin produced as an isolated protein was purified from cell lysate by HPLC in a reduced form, then refolded, and purified again by HPLC. Yields of active rBitistatin averaged 12 mg/L for expression as an isolated protein, 10 times as high as when the fusion protein was employed. Structural assays confirmed the expected mass and sequence of the product. Functional assays (inhibition of platelet aggregation in vitro, equilibrium binding to platelets in vitro, and binding of labeled protein to experimental thrombi and emboli in vivo) confirmed that rBitistatin retained the functional characteristics of native bitistatin.  相似文献   

18.
Dimethylglycine dehydrogenase (Me(2)GlyDH) is a mitochondrial enzyme that catalyzes the oxidative demethylation of dimethylglycine to sarcosine. The enzyme requires flavin adenine dinucleotide (FAD), which is covalently bound to the apoprotein via a histidyl(N3)-(8alpha)FAD linkage. In the present study, the mature form of rat Me(2)GlyDH has been over-expressed in Escherichia coli as an N-terminally 6-His-tagged fusion protein. The over-expressed protein distributed almost equally between the soluble and insoluble (inclusion bodies) cell fraction. By applying the soluble cell lysate to a nickel-chelating column, two fractions were eluted, both containing a nearly homogeneous protein with a molecular mass of 93 kDa, on SDS-PAGE. The first protein fraction was identified by Western blotting analysis as the covalently flavinylated Me(2)GlyDH. It showed optical properties and specific activity (240 nmol/min/mg protein) similar to those of the native holoenzyme. The second fraction was identified as an underflavinylated (apo-) form of Me(2)GlyDH, with a 70% lower specific activity. The recombinant holoenzyme exhibited optimal activity at pH 8.5, an activation energy of about 80 kJ/mol, and two KM values for N,N-dimethylglycine (KM1 = 0.05 mM and KM2 = 9.4 mM), as described for the native holoenzyme. Starting from the inclusion bodies, the unfolded flavinylated enzyme was solubilized by SDS treatment and refolded by an 80-fold dilution step, with a reactivation yield of 50-60%.  相似文献   

19.
Purification to homogeneity of human placental acid sphingomyelinase   总被引:1,自引:0,他引:1  
Acid sphingomyelinase was purified to homogeneity from human placenta in the presence of a dialyzable detergent, n-octyl-beta-D-glucopyranoside. The major steps in the procedure included column chromatographies with Con A-Sepharose, sphingosylphosphorylcholine-Sepharose 4B, hexyl-agarose, and Mono P. The purified enzyme with pI 7.4 had a specific activity of approx 170,000 units/mg protein with a yield of 3.6%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a single protein band of Mr 62,000. Gel filtration with a Superose 12 column gave a single peak, and the enzyme in the presence 50 mM n-octyl-beta-D-glucopyranoside was of Mr 123,000, indicating that the native enzyme occurs in a dimeric form. The optimal pH was 5.5 with both sphingomyelin and an artificial substrate, 2-N-hexadecanoylamino-4-nitrophenylphosphorylcholine. The Km values were 55 microM with sphingomyelin and 340 microM with the artificial substrate. The enzyme activity was not affected by Mg2+ (1-5 mM), confirming that the enzyme is acid sphingomyelinase. The enzyme was stable at -80 degrees C for more than 4 months. In addition to the enzyme with pI 7.4, the Mono P chromatofocusing gave two peaks (pI 7.0 and 6.7) possessing the enzymatic activity.  相似文献   

20.
Human paraoxonase (hPON3) is a high density lipoprotein-related glycoprotein with multi-enzymatic properties and antioxidant activity which is proposed to participate in the prevention of low density lipoprotein (LDL) oxidation. In this study, hPON3 gene was amplified from Human Fetal Liver Marathon-Ready cDNA and expressed in Escherichia coli. A majority of the expressed protein existed as inclusion bodies. The inclusion bodies were solubilized with Triton X-100 and refolded in vitro. The refolded rhPON3 was purified by DEAE-Sepharose Fast Flow and its purity was up to 90%. The Km and Vmax values of refolded rhPON3, in respect to phenylacetate hydrolysis were 7.47 +/- 2.14 mM and 66 +/- 17 U/min/mg (n = 3). The Km and Vmax values of refolded rhPON3, in respect to dihydrocoumarin hydrolysis were 0.83 +/- 0.21 mM and 621 +/- 66 U/min/mg (n = 3). The refolded rhPON3 exhibited similar antioxidant activity to that of rhPON3 purified from the soluble fraction of cell lysate and could effectively protect LDL from Cu2+ induced oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号