共查询到20条相似文献,搜索用时 31 毫秒
1.
T T Wu 《Biochimica et biophysica acta》1976,428(3):656-663
Wild type Escherichia coli K-12 cannot grow on xylitol and we have been unsuccessful in isolating a mutant directly which had acquired this new growth ability. However, a mutant had been selected previously for growth on L-1,2-propanediol as the sole source of carbon and energy. This mutant constitutively synthesized a propanediol dehydrogenase. Recently, we have found that this dehydrogenase fortuitously converted xylitol to D-xylose which could normally be metabolized by E. coli K-12. In addition, it was also discovered that the D-xylose permease fortuitously transported xylitol into the cell. A second mutant was thus isolated from the L-1,2-propanediol-growing mutant that was constitutive for the enzymes of the D-xylose pathway. This mutant could indeed grow on xylitol as the sole source of carbon and energy, by utilizing the enzymes normally involved in D-xylose and L-1,2-propanediol metabolism. 相似文献
2.
E Cabiscol E Hidalgo J Badía L Baldom J Ros J Aguilar 《Journal of bacteriology》1990,172(9):5514-5515
Regardless of the respiratory conditions of the culture, Escherichia coli synthesizes an active propanediol oxidoreductase. Under anaerobic conditions, the enzyme remained fully active and accomplished its physiological role, while under aerobic conditions, it was inactivated in a process that did not depend on protein synthesis or on the presence of a carbon source. 相似文献
3.
In Escherichia coli, dihydrofolate reductase is required for both the de novo synthesis of tetrahydrofolate and the recycling of dihydrofolate produced during the synthesis of thymidylate. The coding region of the dihydrofolate reductase gene, folA, was replaced with a kanamycin resistance determinant. Unlike earlier deletions, this mutation did not disrupt flanking genes. When the mutation was transferred into a wild-type strain and a thymidine-(thy) requiring strain, the resulting strains were viable but slow growing on rich medium. Both synthesized less folate than their parents, as judged by the incorporation of radioactive para-aminobenzoic acid. The derivative of the wild-type strain did not grow on any defined minimal media tested. In contrast, the derivative of the thy-requiring strain grew slowly on minimal medium with thy but exhibited auxotrophies on some combinations of supplements. These results suggest that when folates are limited, they can be distributed appropriately to folate-dependent biosynthetic reactions only under some conditions. 相似文献
4.
5.
Crystal structure of an iron-dependent group III dehydrogenase that interconverts L-lactaldehyde and L-1,2-propanediol in Escherichia coli 下载免费PDF全文
Montella C Bellsolell L Pérez-Luque R Badía J Baldoma L Coll M Aguilar J 《Journal of bacteriology》2005,187(14):4957-4966
The FucO protein, a member of the group III "iron-activated" dehydrogenases, catalyzes the interconversion between L-lactaldehyde and L-1,2-propanediol in Escherichia coli. The three-dimensional structure of FucO in a complex with NAD(+) was solved, and the presence of iron in the crystals was confirmed by X-ray fluorescence. The FucO structure presented here is the first structure for a member of the group III bacterial dehydrogenases shown experimentally to contain iron. FucO forms a dimer, in which each monomer folds into an alpha/beta dinucleotide-binding N-terminal domain and an all-alpha-helix C-terminal domain that are separated by a deep cleft. The dimer is formed by the swapping (between monomers) of the first chain of the beta-sheet. The binding site for Fe(2+) is located at the face of the cleft formed by the C-terminal domain, where the metal ion is tetrahedrally coordinated by three histidine residues (His200, His263, and His277) and an aspartate residue (Asp196). The glycine-rich turn formed by residues 96 to 98 and the following alpha-helix is part of the NAD(+) recognition locus common in dehydrogenases. Site-directed mutagenesis and enzyme kinetic assays were performed to assess the role of different residues in metal, cofactor, and substrate binding. In contrast to previous assumptions, the essential His267 residue does not interact with the metal ion. Asp39 appears to be the key residue for discriminating against NADP(+). Modeling L-1,2-propanediol in the active center resulted in a close approach of the C-1 hydroxyl of the substrate to C-4 of the nicotinamide ring, implying that there is a typical metal-dependent dehydrogenation catalytic mechanism. 相似文献
6.
7.
8.
An Escherichia coli mutant (fadB64), with a defective L-3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) which is unable to grow on long-chain fatty acids as the sole carbon source, was shown to possess a fatty acid oxidation complex that contains five beta-oxidation enzymes, including L-3-hydroxyacyl-CoA dehydrogenase. A comparative study of the complexes from the mutant, from its parental strain and from wild-type E. coli B demonstrated the immunological and gross structural identity of all three fatty acid oxidation complexes. A kinetic evaluation of the complexes led to the suggestion that the mutation may have affected the active site of L-3-hydroxyacyl-CoA dehydrogenase so that it is inactive with acetoacetyl-CoA as a substrate, but exhibits an increasing percentage of the parental dehydrogenase activity with increasing chain length of the substrate. 相似文献
9.
10.
A new type of haem-deficient mutant was isolated in Escherichia coli K12 by neomycin selection. The mutant was deficient in uroporphyrinogen III cosynthase activity as indicated by the accumulation of uroporphyrin I and coproporphyrin. The mapping of the corresponding hemD gene by P1-mediated transduction showed that the new gene was located between ilv and cya, at min 83 on the chromosomal map of Escherichia coli K12. 相似文献
11.
Formaldehyde metabolism by Escherichia coli. Carbon and solvent deuterium incorporation into glycerol, 1,2-propanediol, and 1,3-propanediol 总被引:1,自引:0,他引:1
Escherichia coli were grown on 14.3% uniformly 13C-labeled glucose as the sole carbon source and challenged anaerobically with 90% 13C-labeled formaldehyde. The major multiply labeled metabolites were identified by 13C NMR spectroscopy to be glycerol and 1,2-propanediol, and a minor metabolite was shown to be 1,3-propanediol. In each case, formaldehyde is incorporated only into the C1 position. A novel form of 13C NMR isotope dilution analysis of the major products reveals that all the 1,2-diol C1 is formaldehyde derived but that about 40% of the glycerol C1 is derived from bacterial sources. Glycerokinase converted the metabolite [1-13C]glycerol to equal amounts of [3-13C]glycerol 3-phosphate and [1-13C]glycerol 3-phosphate, demonstrating that the metabolite is racemic. When [13C]formaldehyde incubation was carried out in H2O/D2O mixtures, deuterium incorporation was detected by beta- and gamma-isotope shifts. The 1,3-diol is deuterium labeled only at C2 and only once, while the 1,2-diol and glycerol are each labeled independently at both C2 and C3; C3 is multiply labeled. Deuterium incorporation levels are different for each metabolite, indicating that the biosynthetic pathways probably diverge early. 相似文献
12.
E. coli strain A49 carries the themosensitive mutation in the rnpA gene encoding the protein component of RNase P, a tRNA-processing enzyme. Two small RNAs were highly accumulated in the A49 carrying derivatives of ColE1-type plasmids, at nonpermissive temperature. Characterization of these RNAs showed that they were the processed or degraded products derived from RNA I, which is the negative controller of ColE1-type plasmid replication. These derivatives of RNA I only differ in size at the 5' ends. The data of their degradation and synthesis kinetics suggest that they are intermediates of RNA I metabolism. 相似文献
13.
14.
Gamma-aminobutyraldehyde dehydrogenase (ABALDH) from wild-type E. coli K12 was purified to apparent homogeneity and identified as YdcW by MS-analysis. YdcW exists as a tetramer of 202+/-29 kDa in the native state, a molecular mass of one subunit was determined as 51+/-3 kDa. Km parameters of YdcW for gamma-aminobutyraldehyde, NAD+ and NADP+ were 41+/-7, 54+/-10 and 484+/-72 microM, respectively. YdcW is the unique ABALDH in E. coli K12. A coupling action of E. coli YgjG putrescine transaminase and YdcW dehydrogenase in vitro resulted in conversion of putrescine into gamma-aminobutyric acid. 相似文献
15.
Fotheringham IG Grinter N Pantaleone DP Senkpeil RF Taylor PP 《Bioorganic & medicinal chemistry》1999,7(10):2209-2213
L-2-Aminobutyric acid was synthesised in a transamination reaction from L-threonine and L-aspartic acid as substrates in a whole cell biotransformation using recombinant Escherichia coli K12. The cells contained the cloned genes tyrB, ilvA and alsS which respectively encode tyrosine aminotransferase of E. coli, threonine deaminase of E. coli and alpha-acetolactate synthase of B. subtilis 168. The 2-aminobutyric acid was produced by the action of the aminotransferase on 2-ketobutyrate and L-aspartate. The 2-ketobutyrate is generated in situ from L-threonine by the action of the deaminase, and the pyruvate by-product is eliminated by the acetolactate synthase. The concerted action of the three enzymes offers significant yield and purity advantages over the process using the transaminase alone with an eight to tenfold increase in the ratio of product to the major impurity. 相似文献
16.
17.
Ferrous-activated nicotinamide adenine dinucleotide-linked dehydrogenase from a mutant of Escherichia coli capable of growth on 1, 2-propanediol 总被引:2,自引:28,他引:2 下载免费PDF全文
A nicotinamide adenine dinucleotide-linked dehydrogenase has been partially purified from a mutant of Escherichia coli K-12 able to grow on l-1,2-propanediol as carbon and energy source. This enzyme catalyzes the dehydrogenation at carbon 1 of l-1,2-propanediol, glycerol, 1,3-propanediol, ethylene glycol, and ethyl alcohol. The purified protein requires added ferrous or managanous ions. The V(max) and the apparent K(m) for a given substrate vary with the particular metal used. 相似文献
18.
An unusual Escherichia coli K12 mutant for carbamyl phosphate synthetase is described. The mutation was generated by bacteriophage MUI insertion and left a 5% residual activity of the enzyme using either ammonia or glutamine as donors. The mutation is recessive to the wild-type allele and maps at or near the pyrA gene, but the mutant requires only arginine and not uracil for growth. By a second block in the pyrB gene it was possible to shift the accumulated carbamyl phosphate to arginine biosynthesis. The Km values and the levels of ornithine activation and inhibition by UMP were normal in the mutant enzyme. 相似文献
19.
1. The apparent Km values for succinate uptake by whole cells of Escherichia coli K12 depend on pH in the range 6.5-7.4.2. Uptake of succinate in lightly buffered medium is accompanied by proton uptake. 3. The apparent Km values for succinate uptake and for succinate-induced proton uptake are similar. 4. Approximately two protons enter the cell with each succinate molecule. 5. The pattern of inhibition of succinate uptake is similar to that of succinate-induced proton uptake. 6. Uptake of fumarate and malate, which share the succinate-transport system, is also accompanied by the uptake of approximately two protons per molecule of fumarate or malate. 7. Uptake of aspartate by the dicarboxylic acid-transport system is accompanied by the uptake of approximatley two protons per molecule of asparatate. 8. It is concluded that uptake of dicarboxylic acids by the dicarboxylic acid-transport system is obligatorily coupled to proton uptake such that succinate, malate and fumarate are taken up in electroneutral form and asparate is taken up in cationic form. 9. These results are consistent with, though they do not definitely prove, the energization of succinate uptake of the deltapH. 相似文献