首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wild type Escherichia coli K-12 cannot grow on xylitol and we have been unsuccessful in isolating a mutant directly which had acquired this new growth ability. However, a mutant had been selected previously for growth on L-1,2-propanediol as the sole source of carbon and energy. This mutant constitutively synthesized a propanediol dehydrogenase. Recently, we have found that this dehydrogenase fortuitously converted xylitol to D-xylose which could normally be metabolized by E. coli K-12. In addition, it was also discovered that the D-xylose permease fortuitously transported xylitol into the cell. A second mutant was thus isolated from the L-1,2-propanediol-growing mutant that was constitutive for the enzymes of the D-xylose pathway. This mutant could indeed grow on xylitol as the sole source of carbon and energy, by utilizing the enzymes normally involved in D-xylose and L-1,2-propanediol metabolism.  相似文献   

2.
Wild type Escherichia coli K-12 cannot grow on xylitol and we have been unsuccessful in isolating a mutant directly which had acquired this new growth ability. However, a mutant had been selected previously for growth on L-1,2-propanediol as the sole source of carbon and energy. This mutant constitutively synthesized a propanediol dehydrogenase. Recently, we have found that this dehydrogenase fortuitously converted xylitol to D-xylose which could normally be metabolized by E. coli K-12. In addition, it was also discovered that the D-xylose permease fortuitously transported xylitol into the cell. A second mutant was thus isolated from the L-1,2-propanediol-growing mutant that was constitutive for enzymes of the D-xylose pathway. This mutant could indeed grow on xylitol as the sole source of carbon and energy, by utilizing the enzymes normally involved in D-xylose and L-1,2-propanediol metabolism.  相似文献   

3.
A nicotinamide adenine dinucleotide-linked dehydrogenase has been partially purified from a mutant of Escherichia coli K-12 able to grow on l-1,2-propanediol as carbon and energy source. This enzyme catalyzes the dehydrogenation at carbon 1 of l-1,2-propanediol, glycerol, 1,3-propanediol, ethylene glycol, and ethyl alcohol. The purified protein requires added ferrous or managanous ions. The V(max) and the apparent K(m) for a given substrate vary with the particular metal used.  相似文献   

4.
Wild-type strains of Escherichia coli are unable to use L-1,2-propanediol as a carbon and energy source. A series of mutants, able to grow on this compound at progressively faster rates, had been isolated by repeated transfers to a medium containing 20 mM L-1,2-propanediol. These strains synthesize at high constitutive levels a propanediolmicotinamide adenine dinucleotide oxidoreductase, an enzyme serving as a lactaldehyde during L-fucose fermentation by wild type cells. In this study, a mutant that can grow rapidly on the novel carbon source was subjected to further selection in a medium containing L-1,2-propanediol never exceeding 0.5 mM to obtain a derivative that has an increased power to extract the substrate from the medium. The emerging mutant exhibited four changes at the enzymatic level: (i) fuculose 1-phosphate aldolase activity is lost; (ii) the constitutive propanediol oxidoreductase activity is increased in its level; (iii) lactaldehyde dehydrogenase becomes constitutive and shows an elevated specific activity in crude extracts; and (iv) at low concentrations of propanediol, the facilitated diffusion across the cell membrane is enhanced. Changes two to four seem to act in concert in the trapping of propanediol by hastening its rate of entry and conversion to an ionized metabolite, lactate.  相似文献   

5.
Wild type Escherichia coli K-12 cannot grow on xylitol and we have been unsuccessful in isolating a mutant directly which had acquired this new growth ability. However, a mutant had been selected previously for growth on -1,2-propanediol as the sole source of carbon and energy. This mutant constitutively synthesized a propanediol dehydrogenase. Recently, we have found that this dehydrogenase fortuitously converted xylitol to -xylose which could normally be metabolized by E. coli K-12. In addition, it was also discovered that the -xylose permease fortuitously transported xylitol into the cell. A second mutant was thus isolated from the -1,2-propanediol-growing mutant that was constitutive for enzymes of the -xylose pathway. This mutant could indeed grow on xylitol as the sole source of carbon and energy, by utilizing the enzymes normally involved in -xylose and -1,2-propanediol metabolism.  相似文献   

6.
Synthesis of cobalamin de novo by Salmonella enterica serovar Typhimurium strain LT2 and the absence of this ability in Escherichia coli present several problems. This large synthetic pathway is shared by virtually all salmonellae and must be maintained by selection, yet no conditions are known under which growth depends on endogenous B12. The cofactor is required for degradation of 1,2-propanediol and ethanolamine. However, cofactor synthesis occurs only anaerobically, and neither of these carbon sources supports anaerobic growth with any of the alternative electron acceptors tested thus far. This paradox is resolved by the electron acceptor tetrathionate, which allows Salmonella to grow anaerobically on ethanolamine or 1,2-propanediol by using endogenously synthesized B12. Tetrathionate provides the only known conditions under which simple cob mutants (unable to make B12) show a growth defect. Genes involved in this metabolism include the ttr operon, which encodes tetrathionate reductase. This operon is globally regulated by OxrA (Fnr) and induced anaerobically by a two-component system in response to tetrathionate. Salmonella reduces tetrathionate to thiosulfate, which it can further reduce to H2S, by using enzymes encoded by the genes phs and asr. The genes for 1,2-propanediol degradation (pdu) and B12 synthesis (cob), along with the genes for sulfur reduction (ttr, phs, and asr), constitute more than 1% of the Salmonella genome and are all absent from E. coli. In diverging from E. coli, Salmonella acquired some of these genes unilaterally and maintained others that are ancestral but have been lost from the E. coli lineage.  相似文献   

7.
An Escherichia coli K12 strain was constructed that synthesized elevated quantities of Klebsiella aerogenes D-arabitol dehydrogenase; the enzyme accounted for about 5% of the soluble protein in this strain. Some 280 mg of enzyme was purified from 180 g of cell paste. The purified enzyme was active as a monomer of 46,000 mol.wt. The amino acid composition and kinetic constants of the enzyme for D-arabitol and D-mannitol are reported. The apparent Km for D-mannitol was more than 3-fold that for D-arabitol, whereas the maximum velocities with both substrates were indistinguishable. The enzyme purified from the E. coli K12 construct was indistinguishable by the criteria of molecular weight, electrophoretic mobility in native polyacrylamide gel and D-mannitol/D-arabitol activity ratio from D-arabitol dehydrogenase synthesized in wild-type K. aerogenes. Purified D-arabitol dehydrogenase showed no immunological cross-reaction with K. aerogenes ribitol dehydrogenase. During electrophoresis in native polyacrylamide gels, oxidation by persulphate catalysed the formation of inactive polymeric forms of the enzyme. Dithiothreitol and pre-electrophoresis protected against this polymerization.  相似文献   

8.
Y M Chen  Y Zhu    E C Lin 《Journal of bacteriology》1987,169(7):3289-3294
Mutant analysis revealed that complete utilization of L-fucose and L-rhamnose by Escherichia coli requires the activity of a common NAD-linked aldehyde dehydrogenase which converts L-lactaldehyde to L-lactate. Mutations affecting this activity mapped to the ald locus at min 31, well apart from the fuc genes (min 60) encoding the trunk pathway for L-fucose dissimilation (as well as L-1,2-propanediol oxidoreductase) and the rha genes (min 88) encoding the trunk pathway for L-rhamnose dissimilation. Mutants that grow on L-1,2-propanediol as a carbon and energy source also depend on the ald gene product for the conversion of L-lactaldehyde to L-lactate.  相似文献   

9.
Wild-type strains of Escherichia coli are unable to use L-1,2-propanediol as a carbon and energy source. Strain 3, a mutant selected for the ability to grow on this compound at progressively more rapid rates, synthesizes constitutively a nicotinamide adenine dinucleotide-linked propanediol oxidoreductase. This enzyme is normally synthesized during anaerobic growth on L-fucose when it functions as a lactaldehyde reductase. Propanediol, the end product of this fermentation process, escapes irretrievably into the medium. The propanediol-utilizing mutant can no longer grow on fucose in either the presence or absence of molecular oxygen. In the present study nine independent lines of propanediol-positive mutants were characterized. One mutant, strain 418, attained a propanediol growth rate close to that of strain 3 without loss of the ability to grow on fucose. In all cases examined, however, prolonged selection on propanediol did result in the emergence of fucose-negative mutants. All of these mutants had enzyme patterns similar to that of strain 3; namely, fucose permease, fucose isomerase, and fuculose kinase were noninducible, whereas fuculose 1-phosphate aldolase was constitutive. In strain 418 and in the fucose-positive predecessors of the other mutants, the first four enzymes in the pathway remained inducible, as in the wild-type strain. Improvements in the growth rate on propanediol appeared to reflect principally the increased activity level of the oxidoreductase during the early stages of evolution. According to transductional analysis, the mutations affecting the ability to grow on propanediol and those that affect the expression of the first enzymes in the fucose pathway were very closely linked. The loss of the ability to grow on fucose is thought to be a mechanistic consequence incidental to the remodeling of the regulatory system in favor of the utilization of the novel carbon source.  相似文献   

10.
An Escherichia coli mutant (fadB64), with a defective L-3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) which is unable to grow on long-chain fatty acids as the sole carbon source, was shown to possess a fatty acid oxidation complex that contains five beta-oxidation enzymes, including L-3-hydroxyacyl-CoA dehydrogenase. A comparative study of the complexes from the mutant, from its parental strain and from wild-type E. coli B demonstrated the immunological and gross structural identity of all three fatty acid oxidation complexes. A kinetic evaluation of the complexes led to the suggestion that the mutation may have affected the active site of L-3-hydroxyacyl-CoA dehydrogenase so that it is inactive with acetoacetyl-CoA as a substrate, but exhibits an increasing percentage of the parental dehydrogenase activity with increasing chain length of the substrate.  相似文献   

11.
Escherichia coli K-12 converts L-fucose to dihydroxyacetone phosphate (C-1 to C-3) and L-lactaldehyde (C-4 to C-6) by a pathway specified by the fuc regulon. Aerobically, L-lactaldehyde serves as a carbon and energy source by the action of an aldehyde dehydrogenase of broad specificity; the product, L-lactate, is then converted to pyruvate. Anaerobically, L-lactaldehyde serves as an electron acceptor to regenerate NAD from NADH by the action of an oxidoreductase; the reduced product, L-12-propanediol, is excreted. A strain selected for growth on L-galactose (a structural analog of L-fucose) acquired a broadened inducer specificity because of an altered fucR gene encoding the activator protein for the fuc regulon (Y. Zhu and E. C. C. Lin, J. Mol. Evol. 23:259-266, 1986). In this study, a second mutation that abolished aldehyde dehydrogenase activity was discovered. The L-fucose pathway converts L-galactose to dihydroxyacetone phosphate and L-glyceraldehyde. Aldehyde dehydrogenase then converts L-glyceraldehyde to L-glycerate, which is toxic. Loss of the dehydrogenase averts the toxicity during growth on L-galactose, but reduces by one-half the aerobic growth yield on L-fucose. When mutant cells induced in the L-fucose system were incubated with radioactive L-fucose, accumulation of radioactivity occurred if the substrate was labeled at C-1 but not if it was labeled C-6. Complete aerobic utilization of carbons 4 through 6 of L-fucose depends not only on an adequate activity of aldehyde dehydrogenase to trap L-lactaldehyde as its anionic acid but also on the lack of L-1,2-propanediol oxidoreductase activity, which converts L-lactaldehyde to a readily excreted alcohol.  相似文献   

12.
Wild-type Escherichia coli cannot grow on L-1,2-propanediol; mutants that can do so have increased basal activity of an NAD-linked L-1,2-propanediol oxidoreductase. This enzyme belongs to the L-fucose system and functions normally as L-lactaldehyde reductase during fermentation of the methylpentose. In wild-type cells, the activity of this enzyme is fully induced only anaerobically. Continued aerobic selection for mutants with an improved growth rate on L-1,2-propanediol inevitably leads to full constitutive expression of the oxidoreductase activity. When this occurs, L-fuculose 1-phosphate aldolase concomitantly becomes constitutive, whereas L-fucose permease, L-fucose isomerase, and L-fuculose kinase become noninducible. It is shown in this study that the noninducibility of the three proteins can be changed by two different kinds of suppressor mutations: one mapping external to and the other within the fuc gene cluster. Both mutations result in constitutive synthesis of the permease, the isomerase, and the kinase, without affecting synthesis of the oxidoreductase and the aldolase. Since expression of the fuc structural genes is activated by a protein specified by the regulator gene fucR, and since all the known genes of the fuc system are clustered at minute 60.2 of the chromosome, the external gene in which the suppressor mutation can occur probably has an unrelated function in the wild-type strain. The internal suppressor mutation might be either in fucR or in the promoter region of the genes encoding the permease, the isomerase, and the kinase, if these genes belong to the same operon.  相似文献   

13.
In Escherichia coli, L-fucose is dissimilated via an inducible pathway mediated by L-fucose permease, L-fucose isomerase, L-fucose kinase, and L-fuculose 1-phosphate aldolase. The last enzyme cleaves the six-carbon substrate into dihydroxyacetone phosphate and L-lactaldehyde. Aerobically, lactaldehyde is oxidized to L-lactate by a nicotinamide adenine dinucleotide (NAD)-linked dehydrogenase. Anaerobically, lactaldehyde is reduced by an NADH-COUPLED REDUCTASE TO L-1,2-propanediol, which is lost into the medium irretrievably, even when oxygen is subsequently introduced. Propanediol excretion is thus the end result of a dismutation that permits further anaerobic metabolism of dihydroxy-acetone phosphate. A mutant selected for its ability to grow aerobically on propanediol as a carbon and energy source was reported to produce lactaldehyde reductase constitutively and at high levels, even aerobically. Under the new situation, this enzyme serves as a propanediol dehydrogenase. It was also reported that the mutant had lost the ability to grow on fucose. In the present study, it is shown that in wild-type cells the full synthesis of lactaldehyde dehydrogenase requires the presence of both molecular oxygen and a small molecule effector, and the full synthesis of lactaldehyde reductase requires anaerobiosis and the presence of a small molecule effector. The failure of mutant cells to grow on fucose reflects the impairment of a regulatory element in the fucose system that prevents the induction of the permease, the isomerase, and the kinase. The aldolase, on the other hand, is constitutively synthesized. Three independent fucose-utilizing revertants of the mutant all produce the permease, the isomerase, the kinase, as well as the aldolase, constitutively. These strains grow less well than the parental mutant on propanediol.  相似文献   

14.
The anaerobic metabolism of marginally lethal levels of [13C]formaldehyde by Escherichia coli (K12, MU352, CRB, and CR63) was followed in vivo by 13C NMR. The products include 1,2-propanediol. Under aeration, the 1,2-propanediol is converted to hydroxyacetone. The hydroxyacetone is reconverted to 1,2-propanediol when aeration is stopped. The process can be cycled by varying the rate of aeration.  相似文献   

15.
Sixteen conditional lethal mutants of bacteriophage T4D have been isolated which grow on Escherichia coli CR63 (a su+ streptomycin-sensitive K12 strain) but are restricted by CR/s (a streptomycin-resistant derivative of CR63). These mutants have been given the prefix str. Four of these mutants are amber and 12 appear to be missense. Eleven of the 12 missense mutants appear to be "pseudo-amber" (i.e. they are restricted by a su- E. coli B strain but not by a su- K12 strain); the other missense mutant was not restricted by either B or K12. The str mutations mapped in 12 different genes. Most were clustered in a region of early genes (gene 56 to gene 47). Fifty-eight amber and 10 "pseudo-amber" mutants isolated previously for their inability to grow on E. coli B were tested for restriction by CR/s. All the amber mutants grew normally on CR/s, whereas all 10 "pseudo-amber" mutants were restricted by CR/s. This implies that the phenotype of the "pseudo-amber" mutants is the result of a ribosomal difference between the permissive host CR63 and the restrictive hosts B and CR/s. These str mutants should prove to be useful alternatives to amber mutants for genetic and biochemical studies of bacteriophage T4 and for studies of the E. coli ribosome. It should be possible ot isolate similar mutants in other bacteriophages provided that streptomycin resistant hosts are available.  相似文献   

16.
Salmonella enterica forms polyhedral organelles involved in coenzyme B(12)-dependent 1,2-propanediol degradation. These organelles are thought to consist of a proteinaceous shell that encases coenzyme B(12)-dependent diol dehydratase and perhaps other enzymes involved in 1,2-propanediol degradation. The function of these organelles is unknown, and no detailed studies of their structure have been reported. Genes needed for organelle formation and for 1,2-propanediol degradation are located at the 1,2-propanediol utilization (pdu) locus, but the specific genes involved in organelle formation have not been identified. Here, we show that the pduA gene encodes a shell protein required for the formation of polyhedral organelles involved in coenzyme B(12)-dependent 1,2-propanediol degradation. A His(6)-PduA fusion protein was purified from a recombinant Escherichia coli strain and used for the preparation of polyclonal antibodies. The anti-PduA antibodies obtained were partially purified by a subtraction procedure and used to demonstrate that the PduA protein localized to the shell of the polyhedral organelles. In addition, electron microscopy studies established that strains with nonpolar pduA mutations were unable to form organelles. These results show that the pduA gene is essential for organelle formation and indicate that the PduA protein is a structural component of the shell of these organelles. Physiological studies of nonpolar pduA mutants were also conducted. Such mutants grew similarly to the wild-type strain at low concentrations of 1,2-propanediol but exhibited a period of interrupted growth in the presence of higher concentrations of this growth substrate. Growth tests also showed that a nonpolar pduA deletion mutant grew faster than the wild-type strain at low vitamin B(12) concentrations. These results suggest that the polyhedral organelles formed by S. enterica during growth on 1,2-propanediol are not involved in the concentration of 1,2-propanediol or coenzyme B(12), but are consistent with the hypothesis that these organelles moderate aldehyde production to minimize toxicity.  相似文献   

17.
Escherichia coli are capable of growing anaerobically on L-rhamnose as a sole source of carbon and energy and without any exogenous hydrogen acceptor. When grown under such condition, synthesis of a nicotinamide adenine dinucleotide-linked L-lactaldehydepropanediol oxidoreductase is induced. The functioning of this enzyme results in the regeneration of nicotinamide adenine dinucleotide. The enzyme was purified to electrophoretic homogeneity. It has a molecular weight of 76,000, with two subunits that are indistinguishable by electrophoretic mobility. The enzyme reduces L-lactaldehyde to L-1,2-propanediol with reduced nicotinamide adenine dinucleotide as a cofactor. The Km were 0.035 mM L-lactaldehyde and 1.25 mM L-1,2-propanediol, at pH 7.0 and 9.5, respectively. The enzyme acts only on the L-isomers. Strong substrate inhibition was observed with L-1,2-propanediol (above 25 mM) in the dehydrogenase reaction. The enzyme has a pH optimum of 6.5 for the reduction of L-lactaldehyde and of 9.5 for the dehydrogenation of L-1,2-propanediol. The enzyme is, according to the parameters presented in this report, indistinguishable from the propanediol oxidoreductase induced by anaerobic growth on fucose.  相似文献   

18.
A mutant of Escherichia coli K12 was isolated which shows enhanced resistance towards near-ultraviolet (NUV) light plus 8-methoxypsoralen (MPS) compared with its wild-type parent strain. The PUVA (NUV + MPS)-resistant strain remains as sensitive for far-ultraviolet (FUV) light as its parent strain. A recA- derivative of this mutant strain was as sensitive to PUVA as its reca- parental strain. A polyacrylamide gel electrophoresis study of total cell lysates from the mutant bacteria showed that a protein of approximately 55 kd was synthesised in higher concentrations compared with its synthesis in the wild-type parent strain. Furthermore, synthesis of this protein was reduced in the recA- derivative of the mutant strain suggesting that the recA gene product might be acting as a regulator of the synthesis of the 55-kd protein. It is suggested that in E. coli damage to DNA by PUVA can be repaired by a specific RecA LexA-inducible repair system and the repair efficiency is enhanced if the 55-kd protein is present in concentrations higher than that synthesised by the wild-type parent E. coli.  相似文献   

19.
Mutant strain ME544, which is able to grow on glycerol slowly, was derived from glycerol-negative mutant strain G011, which is a derivative strain of Cellulomonas sp. NT3060 and is defective in both the enzyme activities of glycerol kinase and glycerol 3-phosphate dehydrogenase. The mutant strain still lacked both the enzyme activities involved in the dissimilation of glycerol and had the same level of glycerol dehydrogenase activity as the parent strain. Dihydroxyacetone kinase activity in mutant strain ME544 was inducibly formed, reaching 4-fold the level in mutant strain G011 in glycerol medium. Thus, the mutant strain seemed to dissimilate glycerol by means of glycerol dehydrogenase followed by an increase in dihydroxyacetone kinase. Subsequently, a mutant strain, GP1807, which was resistant to the inhibition of growth on glycerol by 1,2-propanediol, was derived from mutant strain ME544. Glycerol dehydrogenase activity of the mutant strain was amplified about 6-fold compared to that of the wild type strain.  相似文献   

20.
The dha regulon of Klebsiella pneumoniae specifying fermentative dissimilation of glycerol was mobilized by the broad-host-range plasmid RP4:mini Mu and introduced conjugatively into Escherichia coli. The recipient E. coli was enabled to grow anaerobically on glycerol without added hydrogen acceptors, although its cell yield was less than that of K. pneumoniae. The reduced cell yield was probably due to the lack of the coenzyme-B12-dependent glycerol dehydratase of the dha system. This enzyme initiates the first step in an auxiliary pathway for disposal of the extra reducing equivalents from glycerol. The lack of this enzyme would also account for the absence of 1,3-propanediol (a hallmark fermentation product of glycerol) in the spent culture medium. In a control experiment, a large quantity of this compound was detected in a similar culture medium following the growth of K. pneumoniae. The other three known enzymes of the dha system, glycerol dehydrogenase, dihydroxyacetone kinase and 1,3-propanediol oxidoreductase, however, were synthesized at levels comparable to those found in K. pneumoniae. Regulation of the dha system in E. coli appeared to follow the same pattern as in K. pneumoniae: the three acquired enzymes were induced by glycerol, catabolite repressed by glucose, and glycerol dehydrogenase was post-translationally inactivated during the shift from anaerobic to aerobic growth. The means by which the E. coli recipient can achieve redox balance without formation of 1,3-propanediol during anaerobic growth on glycerol remains to be discovered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号