首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Light dependency of the photosynthetic recovery of Nostoc flagelliforme   总被引:7,自引:0,他引:7  
PS II photochemical efficiency (Fv/Fm) of Nostoc flagelliforme was examined after rewetting in order to investigate the light-dependency of its photosynthetic recovery. Fv/Fm was not detected in the dark, but was immediately recognized in the light. Different levels of light irradiation (4, 40 and 400 μmol photon m2 s-1) displayed different effects on the recovery process of photosynthesis. The intermediate level led to the best recovery of photochemical efficiency; the low light required longer and the high light inhibited the extent of the recovered efficiency. It was concluded that the photosynthetic recovery of N. flagelliforme is both light-dependent and influenced by photon flux density. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
A survey was made to check the authenticity of both dried and cookedNostoc flagelliforme retailed as Fat Choy in Hong Kong,using microscopic and histochemical methods. Results indicated that faked itemswere found in 70% of the 30 samples of dried Fat Choy retailed in seafoodstoresand herb shops and in all 5 samples of cooked Fat Choy obtained from Chineserestaurants. The faked items were non-cellular and packed with starch grains ormasses and black pigments. Staining the faked items with iodine solution turnthem into dark blue or black, whereas the genuine samples remained dullgreenish. This widespread adulteration probably reflects the limited supply ofthis alga which is banned in China from further collection and trading.  相似文献   

3.
Diurnal photosynthesis of Nostoc flagelliforme wasinvestigated at varied levels of CO2 concentrations and desiccationin order to estimate the effects of enriched CO2 and watering on itsdaily production. Photosynthetic activity was closely correlated with thedesiccated status of the algal mats, increased immediately after watering,reached a maximum at moderate water loss, and then declined with furtherdesiccation. Increased CO2 concentration enhanced the diurnalphotosynthesis and raised the daily production. Watering twice per day enhancedthe daily production due to prolonged period of active photosynthesis. Thevalues of daily net production were 132–1280 molCO2 g (d. wt)–1 d–1,corresponding to about 0.6–6.1% daily increase in dry weight.High-CO2-grown mats required higher levels of photon flux density tosaturate the alga's photosynthesis in air. Air-grown mats showed higherphotosynthetic affinity for CO2 and higher levels of darkrespirationcompared with high-CO2-grown samples.  相似文献   

4.
Nostoc flagelliforme is a terrestrial cyanobacterium with high economic value. Dissociated cells separated from a natural colony of N. flagelliforme were cultivated for 7 days under either phototrophic, mixotrophic or heterotrophic culture conditions. The highest biomass, 1.67 g L−1 cell concentration, was obtained under mixotrophic culture, representing 4.98 and 2.28 times the biomass obtained in phototrophic and heterotrophic cultures, respectively. The biomass in mixotrophic culture was not the sum as that in photoautotrophic and heterotrophic cultures. During the first 4 days of culture, the cell concentration in mixotrophic culture was lower than the sum of those in photoautotrophic and heterotrophic cultures. However, from the 5th day, the cell concentration in mixotrophic culture surpassed the sum of those obtained from the other two trophic modes. Although the inhibitor of photosynthetic electron transport DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] efficiently inhibited autotrophic growth of N. flagelliforme cells, under mixotrophic culture they could grow by using glucose. The addition of glucose changed the response of N.flagelliforme cells to light. The maximal photosynthetic rate, dark respiration rate and light compensation point in mixotrophic culture were higher than those in photoautotrophic cultures. These results suggest that photoautotrophic (photosynthesis) and heterotrophic (oxidative metabolism of glucose) growth interact in mixotrophic growth of N. flagelliforme cells.  相似文献   

5.
Aquatic-living colonial filaments of the terrestrial cyanobacterium Nostoc flagelliforme, developed from single cells in laboratory under aquatic conditions, were cultured at different salt concentrations (0–400 mM), and their photosynthetic responses were investigated to see their physiological tolerance. Light-saturated photosynthesis, photosynthetic efficiency and dark respiration showed the highest values in treatments at 20 mM NaCl for 24 or 48 h incubation. Changes in salt level exerted little influence on light saturation point and light compensation point. Patterns of photosynthetic performance as a function of salt were the same after 48 h as those after 24 h treatment, with the largest values at 20 mM NaCl, though photochemical efficiency increased with increased NaCl concentrations in the colonies treated for 48 h. From an applied point of view, the laboratory-generated aquatic living colonies are able to tolerate salt stress when transferred from aquatic to terrestrial environments.  相似文献   

6.
Effects of ammonium on the photosynthetic recovery of Nostoc flagelliforme Berk. et M. A. Curtis were assayed when being rehydrated in low‐K+ or high‐K+ medium. Its photosynthetic recovery was K+ limited after 3 years of dry storage. The potassium absorption of N. flagelliforme reached the maximum after 3 h rehydration in low‐K+ medium but at 5 min in high‐K+ medium. The K+ content of N. flagelliforme rehydrated in high‐K+ medium was much higher than that in low‐K+ medium. The maximal PSII quantum yield (Fv/Fm) value of N. flagelliforme decreased significantly when samples were rehydrated in low‐K+ medium treated with 5 mM NH4Cl. However, the treatment of 20 mM NH4Cl had little effect on its Fv/Fm value in high‐K+ medium. The relative Fv/Fm 24 h EC50 (concentration at which 50% inhibition occurred) value of NH4+ in high‐K+ medium (64.35 mM) was much higher than that in low‐K+ medium (22.17 mM). This finding indicated that high K+ could alleviate the inhibitory action of NH4+ upon the photosynthetic recovery of N. flagelliforme during rehydration. In the presence of 10 mM tetraethylammonium chloride (TEACl), the relative Fv/Fm 24 h EC50 value of NH4+ was increased to 46.34 and 70.78 mM, respectively, in low‐K+ and high‐K+ media. This observation suggested that NH4+ entered into N. flagelliforme cells via the K+ channel. Furthermore, NH4+ could decrease K+ absorption in high‐K+ medium.  相似文献   

7.
Nostoc cycadae isolated from the host Cycas revoluta grew well in medium devoid of combined nitrogen but maximum growth was in medium containing nitrate (4.1 g chlorophyll a ml-1). Aerated coralloid roots in the dark produced more NH3 when treated with l-methionine-dl-sulphoximine (MSO), an inhibitor of glutamine synthetase. With cultured N. cycadae and freshly isolated N. cycadae, NH3 production was enhanced by adding a host-tissue extract in the light or in the dark, whereas it was decreased by adding MSO. Nitrogenase activity was four times higher in coralloid root than in the cultured endophyte N. cycadae. The host-tissue extract may inhibit NH3 assimilatory pathways, thus inducing production of NH3 that can be utilized by the host itself.V. Singh, M.R. Goyle and E.R.S. Talpasayi are with the Laboratory of Algal Physiology and Biochemistry and A.K. Srivastava is with the Ecology Research Laboratory, both of the Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, India.  相似文献   

8.
9.
The terrestrial blue-green alga (cyanobacterium), Nostoc flagelliforme, was cultured in air at variouslevels of CO2, light and watering to see theireffects on its growth. The alga showed the highestrelative growth rate at the conditions of highCO2 (1500 ppm), high light regime (219–414mol m-2s-1) and twice daily watering,but the lowest rate at the conditions of low light(58–114 mol m-2s-1) and daily twicewatering. Increased watering had little effect ongrowth rate at 350 ppm CO2, but increased byabout 70% at 1500ppm CO2 under high lightconditions. It was concluded that enriched CO2could enhance the growth of N. flagelliformewhen sufficient light and water was supplied.  相似文献   

10.
该研究以不同失水处理的发菜为研究材料,以充分吸水状态的发菜为对照,利用高通量测序技术和qRT PCR技术检测了干旱胁迫下发菜光合作用相关基因差异表达规律,并对光合色素和酶活在干旱胁迫下的变化进行了研究。结果表明:(1)发菜在不同程度干旱胁迫下有113个光合作用相关基因差异表达,其中失水30%、75%和100%的发菜分别有44个、74个和91个光合作用相关基因差异表达。(2)随着干旱胁迫程度的加深藻胆素、叶绿素a和类胡萝卜素含量逐渐降低,Rubisco活性随着干旱胁迫程度的增强先上升后下降,GAPDH活性随着干旱胁迫的增强呈现下降的趋势。研究表明,发菜通过光合作用相关基因的差异表达调控光合作用以适应干旱胁迫。该研究结果对进一步研究发菜干旱胁迫响应机制及其耐旱光合机理奠定了基础。  相似文献   

11.
Anin vitro cytotoxicity screening of theTyphonium flagelliforme extracts indicated high cytotoxicity effect on human lung carcinoma NCl-H23 cells and human mammary gland carcinoma T-47D cells, but the extracts were not active on human liver carcinoma HepG2 cells. NCl-H23 cells were more susceptible toT. flagelliforme extracts than T-47D cells. EDP50 values of the hexane fractions of the mature plant and thein vitro plantlet ofT. flagelliforme on NCl-H23 cells were less than 2 μg/mL Extract from the mature plant was relatively more cytotoxic than the one fromin vitro plantlet except for the hexane fraction. The chloroform and butanol fraction of the mature plant had higher cytotoxicity effect than the fraction fromin vitro plantlet on NCl-H23 cells. All the 3 fractions (hexane, chloroform, and butanol) of the mature plant exhibited higher cytotoxicity effects on human mammary gland carcinoma T-47D cells than the 3 fractions ofin vitro plantlet. However, the human liver carcinoma cells were resistant toT. flagelliforme extracts except for higher concentration of hexane fractions of both the mature and thein vitro plants and the chloroform fraction of the mature plant. Micropropagated plantlets ofT. flagelliforme could hence be used as herbal materials for the treatment of human lung and breast cancers.  相似文献   

12.
The present work investigated the inorganic carbon (Ci) uptake, fluorescence quenching and photo‐inhibition of the edible cyanobacterium Ge‐Xian‐Mi (Nostoc) to obtain an insight into the role of CO2 concentrating mechanism (CCM) operation in alleviating photo‐inhibition. Ge‐Xian‐Mi used HCO3 in addition to CO2 for its photosynthesis and oxygen evolution was greater than the theoretical rates of CO2 production derived from uncatalysed dehydration of HCO3. Multiple transporters for CO2 and HCO3 operated in air‐grown Ge‐Xian‐Mi. Na+‐dependent HCO3 transport was the primary mode of active Ci uptake and contributed 53–62% of net photosynthetic activity at 250 µmol L?1 KHCO3 and pH 8.0. However, the CO2‐uptake systems and Na+‐independent HCO3 transport played minor roles in Ge‐Xian‐Mi and supported, respectively, 39 and 8% of net photosynthetic activity. The steady‐state fluorescence decreased and the photochemical quenching increased in response to the transport‐mediated accumulation of intracellular Ci. Inorganic carbon transport was a major factor in facilitating quenching during the initial stage and the initial rate of fluorescence quenching in the presence of iodoacetamide, an inhibitor of CO2 fixation, was 88% of control. Both the initial rate and extent of fluorescence quenching increased with increasing external dissolved inorganic carbon (DIC) and saturated at higher than 200 µmol L?1 HCO3. The operation of the CCM in Ge‐Xian‐Mi served as a means of diminishing photodynamic damage by dissipating excess light energy and higher external DIC in the range of 100–10000 µmol L?1 KHCO3 was associated with more severe photo‐inhibition under strong irradiance.  相似文献   

13.
Ge-Xian-Mi (an edible species of Nostoc) grows insome mountain paddy fields in China during winter and forms macroscopicallyvisible subspherical colonies. The geology and climate at one of its locations,Hefeng County, were investigated, and the present-day situation of Ge-Xian-Miwas assessed in order to raise awareness that it may be endangered. There wereformerly 796 ha of rice fields suited to its growth in HefengCounty and the maximum annual yield ever reached was 25 t. Theannual mean temperature is about 12.2 °C, and the annualrainfall is 1934 mm with mean relative humidity of 78–87%.The distribution of Ge-Xian-Mi was found to be associated with the source ofwater and the pH values of water suited to its growth were 6.2–6.3. Soilsin its habitats were enriched with phosphorus and contained more microbes thanthose without its distribution. With changing agricultural techniques most ofthe habitats are endangered or already extinct. The widespread use ofherbicides, pesticides and fertilizers containing chlorine had been suggestedtobe an important factor limiting its distribution. The taxonomic identity ofGe-Xian-Mi is discussed.  相似文献   

14.
RNA pools were extracted from cells of Nostoc commune UTEX 584 in exponential growth (liquid cultures) and from cells which had been immobilized and dried rapidly at -99.5 MPa. Levels of incorporation of 35S-methionine, five- to sixfold higher than the endogenous level, were obtained after in vitro translation of the RNA preparations in a heterologous S30 cell-free system purified from Escherichia coli Q13. The levels of incorporation, obtained with a homologous N. commune UTEX 584 S30 system, were much lower. The requirement for magnesium in the heterologous system was 15–21 mM, translation of N. commune UTEX 584 RNA was inhibited when the RNA concentration was greater than 0.3 mg ml–1, and translation was stimulated significantly by the presence of ammonium chloride. Few qualitative differences were observed between the pattern of proteins (SDS-PAGE) obtained after translation of the RNA pools from cells in exponential growth, and from those cells subjected to immobilization and rapid drying. The data suggest that short-term desiccation of N. commune UTEX 584 does not have a marked selective effect on the composition of the mRNA pool. In contrast, preparations of RNA from field materials of Nostoc commune HUN (desiccated for 5 years) were unable to drive high rates of translation in any of the systems tested and optimized for use in this study.  相似文献   

15.
Nostoc flagelliforme cells were studied with regard to the physico-chemical characterization of the extracellular polysaccharides (EPS) secreted in a liquid suspension culture. The hydrolyzed EPS were determined to be composed of four neutral sugars, which were glucose (43.2%), xylose (20.6%), galactose (29.9%), and mannose (6.3%). The glucuronic acid was the only uronic acid identified in the residue. The apparent molecular weight was estimated at 2.79×105. The Fourier transform infrared spectra showed that the EPS evidenced characteristics typical of non-sulfated polysaccharides. The UV spectrum and Bradford reaction indicated that there were no nucleic acids and proteins in them. The thermal analysis showed a decomposition peak at 245°C on the thermogravimetric (TG) curves. The scanning electron microscope (SEM) analysis indicated that the EPS possessed a porous structure. The observed microstructural irregularities indicated that the polysaccharide was a type of amorphous solid. These results showed that the EPS ofN. flagelliforme cells might be ernployed as a substitute for those normally derived from field colonies. The results of this study may prove to be beneficial to the protection of the natural resource represented byN. flagelliforme.  相似文献   

16.
There are several apparent developmental stages in the life cycle of Nostoc sphaeroides Kützing, an edible cyanobacterium found mainly in paddy fields in central China. The cytochemical changes in developmental stages such as hormogonia, aseriate stage, filamentous stage and colony in N. sphaeroides were examined using fluorescent staining and colorimetric methods. The staining of acidic and sulfated polysaccharides increased with development when hormogonia were used as the starting point. Acidic polysaccharides (AP) were most abundant at the aseriate stage and then decreased, while the sulfated polysaccharides (SP) were highest at the colony stage. Quantitatively, along the developmental process from hormogonia to colony, total carbohydrates first increased, then became stable, and then reached their highest level at the colony stage, while reducing sugars were highest at the hormogonia stage and then decreased sharply once development began. SP were not detectable in the hot water soluble polysaccharides (HWSP), and hormogonia had the lowest content of AP, while old colonies had the highest. The AP content of the aseriate stage, filamentous stage and young colony stage were very similar. The evolutionary relationships reflected in the developmental stages of N. sphaeroides are discussed.  相似文献   

17.
Adaptation to salt in the cyanobacterium Nostocmuscorum, is composed of a few mechanisms which together lead to the generation of a salt-tolerant cell. The initial mechanism combines a stimulation of photosynthetic activity with the accumulation of sucrose as an osmoregulator. The secondary mechanism involves the adaptation of N2 fixation activity and protein biosynthesis. The adaptation is most efficient in response to NaCl-induced stress and functions only partially under stress induced by either KCl or a nonionic osmoticum such as mannitol.  相似文献   

18.
glmM编码的磷酸葡糖胺变位酶是肽聚糖合成前体的关键酶。为探究发菜glmM响应干旱胁迫的表达调控机制及明确其分子信息,本研究对干旱胁迫条件下发菜glmM在转录水平的差异表达进行了分析,并对glmM的表达水平、磷酸化修饰、乙酰化修饰和琥珀酰化修饰水平进行了检测,克隆了发菜glmM,进行了序列分析和原核表达。结果表明,干旱胁迫条件下,发菜glmM在转录水平上的表达量先增加后减少,glmM上调表达,glmM的磷酸化修饰水平逐渐增加,乙酰化修饰水平相对稳定,琥珀酰化修饰水平有明显变化。设计特异性引物克隆glmM基因,获得全长1416 bp发菜glmM基因,与肺衣(5183)glmM的核苷酸序列同源性为95%,氨基酸同源性为97%。将glmM在大肠杆菌中表达,获得一个51.45 kD的外源蛋白,MALDI-TOF-TOF/MS分析证明该蛋白为磷酸葡糖胺变位酶。研究结果为深入研究发菜glmM的分子信息、生物学功能及其响应干旱胁迫的分子机制提供帮助。  相似文献   

19.
During October to December 2003 we carried out experiments to assess the impact of high solar radiation levels (as normally occurring in a tropical region of Southern China) on the cyanobacteria Nostoc sphaeroides and Arthrospira (Spirulina) platensis. Two types of experiments were done: a) Short-term (i.e., 20 min) oxygen production of samples exposed to two radiation treatments (i.e., PAR+UVR—280–700 nm, and PAR only—400–700 nm, PAB and P treatments, respectively), and b) Long-term (i.e., 12 days) evaluation of photosynthetic quantum yield (Y) of samples exposed to three radiation treatments (i.e., PAB; PA (PAR+UV-A, 320–700 nm) and P treatments, respectively). N. sphaeroides was resistant to UVR, with no significant differences (P>0.05) in oxygen production within 20 min of exposure, but with a slight inhibition of Y within hours. A fast recovery of Y was observed after one day even in samples exposed to full solar radiation. A. platensis, on the other hand, was very sensitive to solar radiation (mainly to UV-B), as determined by oxygen production and Y measurements. A. platensis had a circadian rhythm of photosynthetic inhibition, and during the first six days of exposure to solar radiation, it varied between 80 and 100% at local noon, but cells recovered significantly during afternoon hours. There was a significant decrease in photosynthetic inhibition after the first week of exposure with values less than 50% at local noon in samples receiving full solar radiation. Samples exposed to PA and P treatments recovered much faster (within 2–3 days), and there were no significant differences in Y between the three radiation treatments when irradiance was low (late afternoon to early morning). Long-term acclimation seems to be important in A. platensis to cope with high UVR levels however, it is not attained through the synthesis of UV-absorbing compounds but it seems to be mostly related to adaptive morphological changes.  相似文献   

20.

Background

The cyanobacterial genus Nostoc includes several species forming centimetre-large gelatinous colonies in nutrient-poor freshwaters and harsh semi-terrestrial environments with extended drought or freezing. These Nostoc species have filaments with normal photosynthetic cells and N2-fixing heterocysts embedded in an extensive gelatinous matrix of polysaccharides and many other organic substances providing biological and environmental protection. Large colony size imposes constraints on the use of external resources and the gelatinous matrix represents extra costs and reduced growth rates.

Scope

The objective of this review is to evaluate the mechanisms behind the low rates of growth and mortality, protection against environmental hazards and the persistence and longevity of gelatinous Nostoc colonies, and their ability to economize with highly limiting resources.

Conclusions

Simple models predict the decline in uptake of dissolved inorganic carbon (DIC) and a decline in the growth rate of spherical freshwater colonies of N. pruniforme and N. zetterstedtii and sheet-like colonies of N. commune in response to a thicker diffusion boundary layer, lower external DIC concentration and higher organic carbon mass per surface area (CMA) of the colony. Measured growth rates of N. commune and N. pruniforme at high DIC availability comply with general empirical predictions of maximum growth rate (i.e. doubling time 10–14 d) as functions of CMA for marine macroalgae and as functions of tissue thickness for aquatic and terrestrial plants, while extremely low growth rates of N. zetterstedtii (i.e. doubling time 2–3 years) are 10-fold lower than model predictions, either because of very low ambient DIC and/or an extremely costly colony matrix. DIC uptake is limited by diffusion at low concentrations for all species, although they exhibit efficient HCO3 uptake, accumulation of respiratory DIC within the colonies and very low CO2 compensation points. Long light paths and light attenuation by structural substances in large Nostoc colonies cause lower quantum efficiency and assimilation number and higher light compensation points than in unicells and other aquatic macrophytes. Extremely low growth and mortality rates of N. zetterstedtii reflect stress-selected adaptation to nutrient- and DIC-poor temperate lakes, while N. pruniforme exhibits a mixed ruderal- and stress-selected strategy with slow growth and year-long survival prevailing in sub-Arctic lakes and faster growth and shorter longevity in temperate lakes. Nostoc commune and its close relative N. flagelliforme have a mixed stress–disturbance strategy not found among higher plants, with stress selection to limiting water and nutrients and disturbance selection in quiescent dry or frozen stages. Despite profound ecological differences between species, active growth of temperate specimens is mostly restricted to the same temperature range (0–35 °C; maximum at 25 °C). Future studies should aim to unravel the processes behind the extreme persistence and low metabolism of Nostoc species under ambient resource supply on sediment and soil surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号