首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The small G protein Ran, which is important for nucleocytoplasmic shuttling of proteins is present, but does not interact with EcR, Usp, and EcR/Usp. As shown by oligomycin treatment, EcR, Usp, and EcR/Usp import is energy dependent. Export of EcR and EcR/Usp is mediated by exportin-1 (CRM-1) as shown by the inhibiting effect of leptomycin B (LMB). Usp remains in the nucleus for more than 24 h. Nuclear retainment of EcR and Usp is energy dependent as shown by treatment with oligomycin. No export signal could be identified for Usp. The data confirm that EcR and Usp can enter the nucleus independently and that intracellular localization is regulated individually for each receptor. It is also demonstrated that the export signal of EcR is inaccessible after heterodimerization with Usp.  相似文献   

2.
The Ecdysone receptor (EcR) is distributed between cytoplasm and nucleus in CHO cells. Nuclear localization is increased by the ligand Muristerone A. The most important heterodimerization partner Ultraspiracle (Usp) is localized predominantly in the nucleus. We used the diethylentriamine nitric oxide adduct DETA/NO, which releases NO and destroys the zinc-finger structure of nuclear receptors, to investigate whether nuclear EcR and Usp interact with DNA. If expressed separately, Usp and EcR in the absence of hormone do not interact with DNA. The hormone-induced increase in nuclear EcR is due to enhanced DNA binding. In the presence of Usp, EcR is shifted nearly quantitatively into the nucleus. Only a fraction (approximately 30%) of the heterodimer is sensitive to DETA/NO. Interaction of the heterodimer with DNA is mediated mainly by the C-domain of EcR. Deletion of the DNA-binding domain of Usp only slightly reduces nuclear localization of EcR/Usp, although the nuclear localization signal of Usp is not present anymore. The results indicate that EcR and Usp can enter the nucleus independently, but cotransport of both receptors mediated by dimerization via the ligand binding domains is possible even in the absence of hormone.  相似文献   

3.
Androgen receptor (AR) belongs to the steroid receptor superfamily that regulates gene expression in a ligand-dependent fashion. AR is localized to the cytoplasm in the absence of androgen and translocates into the nuclei to activate gene expression in the presence of ligand. Regulation of AR nuclear import and export represents an essential step in androgen action. A nuclear localization signal (NLS) has been identified in the DNA-binding domain and hinge region of AR and other steroid receptors. Studies on nuclear export of AR, however, are limited, and what might be the underlying mechanism regulating the intracellular localization of steroid receptors is unclear. Our studies have identified a leptomycin B-insensitive nuclear export signal (NESAR) in the ligand-binding domain of AR, which is active in the absence of androgen and repressed upon ligand binding. Consistent with its androgen-sensitivity, NESAR contains amino acid residues in the immediate vicinity of the bound ligand. NESAR is necessary for AR nuclear export and is dominant over the NLS in the DNA-binding domain and hinge region in the absence of hormone. Our findings suggest that androgen can regulate NESAR and, subsequently, the NLS of the AR, providing a mechanism by which androgen regulates AR nuclear/cytoplasmic shuttling. Estrogen receptor alpha and mineralocorticoid receptor also contain functional NES, suggesting that this ligand-regulated NES is conserved among steroid receptors.  相似文献   

4.
Nuclear localization signals (NLSs) and nuclear export signals (NESs) are important intramolecular regulatory elements for protein nucleocytoplasmic trafficking. This regulation confers spatial specificity to signal initiation and transduction in eukaryotic cells and thus is fundamental to the viability of all eukaryotic organisms. Here, we developed a simple and rapid method in which activity of putative NLSs or NESs was reported by subcellular localization of two tandem fluorescent proteins in fusion with the respective NLSs or NESs after agroinfiltration-mediated transient expression in leaves of Nicotiana benthamiana (Nb). We further demonstrated that the predicted NES from amino acid residue (aa) 9 to 22 and the NLS from aa91 to 101 in the broad-spectrum disease resistance protein RPW8.2 possess nuclear export and import activity, respectively. Additionally, by testing overlapping fragments covering the full length of RPW8.2, we identified another NLS from aa65 to 74 with strong nuclear import activity and two tandem non-canonical NESs in the C-terminus with strong nuclear export activity. Taken together, our results demonstrated the utility of a simple method to evaluate potential NLSs and NESs in plant cells and suggested that RPW8.2 may be subject to opposing nucleocytoplasmic trafficking forces for its subcellular localization and functional execution.  相似文献   

5.
6.
Plasticity of the ecdysone receptor DNA binding domain   总被引:3,自引:0,他引:3  
Ecdysteroids coordinate molting and metamorphosis in insects via a heterodimer of two nuclear receptors, the ecdysone receptor (EcR) and the ultraspiracle (Usp) protein. Here we show how the DNA-recognition alpha-helix and the T box region of the EcR DNA-binding domain (EcRDBD) contribute to the specific interaction with the natural response element and to the stabilization of the EcRDBD molecule. The data indicate a remarkable mutational tolerance with respect to the DNA-binding function of the EcRDBD. This is particularly manifested in the heterocomplexes formed between the EcRDBD mutants and the wild-type Usp DNA-binding domain (UspDBD). Circular dichroism (CD) spectra and protein unfolding experiments indicate that, in contrast to the UspDBD, the EcRDBD is characterized by a lower alpha-helix content and a lower stability. As such, the EcRDBD appears to be an intrinsically unstructured protein-like molecule with a high degree of intramolecular plasticity. Because recently published crystal structures indicate that the ligand binding domain of the EcR is also characterized by the extreme adaptability, we suggest that plasticity of the EcR domains may be a key factor that allows a single EcR molecule to mediate diverse biological effects.  相似文献   

7.
Fluorescence recovery after photobleaching (FRAP) in spontaneous multinuclear cells shows that both rat and human constitutive active/androstane receptors (CARs) are shuttling proteins with both nuclear localization signals (NLSs) and nuclear export signals (NESs). We previously identified two NLSs in rat CAR: NLS1 in the hinge region (residues 100-108) and NLS2 in the ligand-binding domain (residues 111-320). In the present study, we compared the intracellular localization signals between rat and human CARs. There was a marked difference in their intracellular localization in COS-7 cells because, unlike rat CAR, human CAR does not contain NLS1 due to an amino acid change at position 106. A CRM1-dependent leucine-rich NES, which is sensitive to an inhibitory effect of leptomycin B, was found in the cytoplasmic retention region previously identified within the ligand-binding domain of rat CAR (residues 220-258). We found that human CAR instead has a NES in the ligand-binding domain between residues 170 and 220. Also, we detected CRM1-independent C-terminal NESs between residues 317-358 of rat and human CARs. Removal of NLS1 by N-terminal truncation and mutation of xenochemical response signal caused rat CAR to localize in the cytoplasm of COS-7 cells, which we suspect is due to the masking of NLS2.  相似文献   

8.
9.
Ecdysteroids coordinate essential biological processes in Drosophila through a complex of two nuclear receptors, the ecdysteroid receptor (EcR) and the ultraspiracle protein (Usp). Biochemical experiments have shown that, in contrast to Usp, the EcR molecule is characterized by high intramolecular plasticity. To investigate whether this plasticity is sufficient to form EcR complexes with nuclear receptors other than Usp, we studied the interaction of EcR with the DHR38 nuclear receptor. Previous in vitro experiments suggested that DHR38 can form complexes with Usp and thus disrupt Usp-EcR interaction with the specific hsp27pal response element. This article provides the experimental evidence that EcR is able to form complexes with DHR38 as well. The recombinant DNA-binding domains (DBDs) of EcR and DHR38 interact specifically on hsp27pal. However, the interaction between the receptors is not restricted to their isolated DBDs. We pre\xadsent data that indicate that the full-length EcR and DHR38 can also form specific complexes within the nuclei of living cells. This interaction is mediated by the hinge region of EcR, which was recently classified as an intrinsically disordered region. Our results indicate that DHR38 might modulate the activity of the Usp-EcR heterodimer by forming complexes with both of its components.  相似文献   

10.
The mechanisms that regulate the nucleocytoplasmic localization of human deubiquitinases remain largely unknown. The nuclear export receptor CRM1 binds to specific amino acid motifs termed NESs (nuclear export sequences). By using in silico prediction and experimental validation of candidate sequences, we identified 32 active NESs and 78 inactive NES-like motifs in human deubiquitinases. These results allowed us to evaluate the performance of three programs widely used for NES prediction, and to add novel information to the recently redefined NES consensus. The novel NESs identified in the present study reveal a subset of 22 deubiquitinases bearing motifs that might mediate their binding to CRM1. We tested the effect of the CRM1 inhibitor LMB (leptomycin B) on the localization of YFP (yellow fluorescent protein)- or GFP (green fluorescent protein)-tagged versions of six NES-bearing deubiquitinases [USP (ubiquitin-specific peptidase) 1, USP3, USP7, USP21, CYLD (cylindromatosis) and OTUD7B (OTU-domain-containing 7B)]. YFP-USP21 and, to a lesser extent, GFP-OTUD7B relocated from the cytoplasm to the nucleus in the presence of LMB, revealing their nucleocytoplasmic shuttling capability. Two sequence motifs in USP21 had been identified during our survey as active NESs in the export assay. Using site-directed mutagenesis, we show that one of these motifs mediates USP21 nuclear export, whereas the second motif is not functional in the context of full-length USP21.  相似文献   

11.
The oncogenic deubiquitylating enzyme (DUB) Unp/Usp4, which binds to the retinoblastoma family of tumor suppressor proteins, was originally described as a nuclear protein. However, more recent studies have shown it to be cytoplasmic. In addition, analysis of its subcellular localization has been complicated by the existence of the paralog Usp15. In this study, we resolved this controversy by investigating the localization of exogenously expressed Usp4 (using red fluorescent protein-Usp4) and of endogenous Usp4 (using highly specific antibodies that can distinguish Usp4 from Usp15). We found that by inhibiting nuclear export with leptomycin B, both exogenous and endogenous Usp4 accumulate in the nucleus. Further, using a Rev-green fluorescent protein-based export assay, we confirmed the existence of a nuclear export signal ((133)VEVYLLELKL(142)) in Usp4. In addition, a functional nuclear import signal ((766)QPQKKKK(772)) was also identified, which was specifically recognized by importin alpha/beta. Finally, we show that the equilibrium of Usp4 subcellular localization varies between different cell types. Usp4 is thus the first DUB reported to have nucleocytoplasmic shuttling properties. The implications of this shuttling for its function as a DUB are discussed.  相似文献   

12.
As a shuttling protein, p53 is constantly transported through the nuclear pore complex. p53 nucleocytoplasmic transport is carried out by a bipartite nuclear localization signal (NLS) located at its C-terminal domain and two nuclear export signals (NES) located in its N- and C-terminal regions, respectively. The role of nucleocytoplasmic shuttling in p53 ubiquitination and degradation has been a subject of debate. Here we show that the two basic amino acid groups in the p53 bipartite NLS function collaboratively to import p53. Mutations disrupting individual amino acids in the NLS, although causing accumulation of p53 in the cytoplasm to various degrees, reduce but do not eliminate the NLS activity, and these mutants remain sensitive to MDM2 degradation. However, disrupting both parts of the bipartite NLS completely blocks p53 from entering the nucleus and causes p53 to become resistant to MDM2-mediated degradation. Similarly, mutations disrupting four conserved hydrophobic amino acids in the p53 C-terminal NES block p53 export and prohibit it from MDM2 degradation. We also show that colocalization of a nonshuttling p53 with MDM2 either in the nucleus or in the cytoplasm is sufficient for MDM2-induced p53 polyubiquitination but not degradation. Our data provide new insight into the mechanism and regulation of p53 nucleocytoplasmic shuttling and degradation.  相似文献   

13.
Interactions between transport receptors and phenylalanine-glycine (FG) repeats on nucleoporins drive the translocation of receptor-cargo complexes through nuclear pores. Tap, a transport receptor that mediates nuclear export of cellular mRNAs, contains a UBA-like and NTF2-like folds that can associate directly with FG repeats. In addition, two nuclear export sequences (NESs) within the NTF2-like region can also interact with nucleoporins. The Tap-RNA complex was shown to bind to three nucleoporins, Nup98, p62, and RanBP2, and these interactions were enhanced by Nxt1. Mutations in the Tap-UBA region abolished interactions with all three nucleoporins, whereas the effect of point mutations within the NTF2-like domain of Tap known to disrupt Nxt1 binding or nucleoporin binding were nucleoporin dependent. A mutation in any of these Tap domains was sufficient to reduce RNA export but was not sufficient to disrupt Tap interaction with the NPC in vivo or its nucleocytoplasmic shuttling. However, shuttling activity was reduced or abolished by combined mutations within the UBA and either the Nxt1-binding domain or NESs. These data suggest that Tap requires both the UBA- and NTF2-like domains to mediate the export of RNA cargo, but can move through the pores independently of these domains when free of RNA cargo.  相似文献   

14.
The chicken anemia virus protein Apoptin selectively induces apoptosis in transformed cells while leaving normal cells intact. This selectivity is thought to be largely due to cell type-specific localization: Apoptin is cytoplasmic in primary cells and nuclear in transformed cells. The basis of Apoptin cell type-specific localization and activity remains to be determined. Here we show that Apoptin is a nucleocytoplasmic shuttling protein whose localization is mediated by an N-terminal nuclear export signal (NES) and a C-terminal nuclear localization signal (NLS). Both signals are required for cell type-specific localization, since Apoptin fragments containing either the NES or the NLS fail to differentially localize in transformed and primary cells. Significantly, cell type-specific localization can be conferred in trans by coexpression of the two separate fragments, which interact through an Apoptin multimerization domain. We have previously shown that Apoptin interacts with the APC1 subunit of the anaphase-promoting complex/cyclosome (APC/C), resulting in G(2)/M cell cycle arrest and apoptosis in transformed cells. We found that the nucleocytoplasmic shuttling activity is critical for efficient APC1 association and induction of apoptosis in transformed cells. Interestingly, both Apoptin multimerization and APC1 interaction are mediated by domains that overlap with the NES and NLS sequences, respectively. Apoptin expression in transformed cells induces the formation of PML nuclear bodies and recruits APC/C to these subnuclear structures. Our results reveal a mechanism for the selective killing of transformed cells by Apoptin.  相似文献   

15.
Regulated nucleocytoplasmic transport of proteins is central to cellular function and dysfunction during processes such as viral infection. Active protein trafficking into and out of the nucleus is dependent on the presence within cargo proteins of intrinsic specific modular signals for nuclear import (nuclear localization signals, NLSs) and export (nuclear export signals, NESs). Rabies virus (RabV) phospho (P) protein, which is largely responsible for antagonising the host anti-viral response, is expressed as five isoforms (P1-P5). The subcellular trafficking of these isoforms is thought to depend on a balance between the activities of a dominant N-terminal NES (N-NES) and a distinct C-terminal NLS (C-NLS). Specifically, the N-NES-containing isoforms P1 and P2 are cytoplasmic, whereas the shorter P3-P5 isoforms, which lack the N-NES, are believed to be nuclear through the activity of the C-NLS. Here, we show for the first time that RabV P contains an additional strong NLS in the N-terminal region (N-NLS), which, intriguingly, overlaps with the N-NES. This arrangement represents a novel nuclear trafficking module where the N-NLS is inactive in P1 but becomes activated in P3, concomitant with truncation of the N-NES, to become the principal targeting signal conferring nuclear accumulation. Understanding this unique switch arrangement of overlapping, co-regulated NES/NLS sequences is vital to delineating the critical role of RabV P protein in viral infection.  相似文献   

16.
17.
Protein kinase D2 (PKD2) belongs to the PKD family of serine/threonine kinases that is activated by phorbol esters and G protein-coupled receptors (GPCRs). Its C-terminal regulatory domain comprises two cysteine-rich domains (C1a/C1b) followed by a pleckstrin homology (PH) domain. Here, we examined the role of the regulatory domain in PKD2 phorbol ester binding, catalytic activity, and subcellular localization: The PH domain is a negative regulator of kinase activity. C1a/C1b, in particular C1b, is required for phorbol ester binding and gastrin-stimulated PKD2 activation, but it has no inhibitory effect on the catalytic activity. Gastrin triggers nuclear accumulation of PKD2 in living AGS-B cancer cells. C1a/C1b, not the PH domain, plays a complex role in the regulation of nucleocytoplasmic shuttling: We identified a nuclear localization sequence in the linker region between C1a and C1b and a nuclear export signal in the C1a domain. In conclusion, our results define the critical components of the PKD2 regulatory domain controlling phorbol ester binding, catalytic activity, and nucleocytoplasmic shuttling and reveal marked differences to the regulatory properties of this domain in PKD1. These findings could explain functional differences between PKD isoforms and point to a functional role of PKD2 in the nucleus upon activation by GPCRs.  相似文献   

18.
19.
Tob, a member of the Tob and BTG antiproliferative protein family, plays an important role in many cellular processes including cell proliferation. In this study, we have addressed molecular mechanisms regulating subcellular localization of Tob. Treatment with leptomycin B, an inhibitor of nuclear export signal (NES) receptor, resulted in a change in subcellular distribution of Tob from its pan-cellular distribution to nuclear accumulation, indicating the existence of NES in Tob. Our results have then identified an N-terminal region (residues 2-14) of Tob as a functional NES. They have also shown that Tob has a functional, bipartite nuclear localization signal (NLS) in residues 18-40. Thus, Tob is shuttling between the nucleus and the cytoplasm by its NES and NLS. To examine a possible relationship between subcellular distribution of Tob and its function, we exogenously added a strong NLS sequence or a strong NES sequence or both to Tob. The obtained results have demonstrated that the strong NLS-added Tob has a much weaker activity to inhibit cell cycle progression from G0/G1 to S phase. These results suggest that cytoplasmic localization or nucleocytoplasmic shuttling is important for the antiproliferative function of Tob.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号