首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Increment of DNA topoisomerases in chemically and virally transformed cells   总被引:1,自引:0,他引:1  
The activities of topoisomerases I and II were assayed in subcellular extracts obtained from nontumorigenic BALB/c 3T3 A31 and normal rat kidney (NRK) cell lines and from the same cells transformed by benzo[a]pyrene (BP-A31), Moloney (M-MSV-A31) and Kirsten (K-A31) sarcoma viruses, and simian virus 40 (SV-NRK). The enzymatic activity of topoisomerase I was monitored by the relaxation of negatively supercoiled pBR322 DNA and by the formation of covalent complexes between 32P-labeled DNA and topoisomerase I. Topoisomerase II activity was determined by decatenation of kinetoplast DNA (k-DNA). It was found that nuclear and cytoplasmic type I topoisomerase specific activities were higher in every transformed cell line than in the normal counterparts. These differences cannot be attributed to an inhibitory factor present in A31 cells. When chromatin was treated at increasing ionic strengths, the 0.4 M NaCl extract showed the highest topoisomerase I specific activity. Moreover, in this fraction the transformed cells exhibited the most significant increment in the enzymatic activity as compared with nontransformed cultures. Spontaneously transformed A31 cells showed topoisomerase I activity similar to that of extracts of cells transformed by benzo[a]pyrene. Topoisomerase II specific activity was also increased in SV-NRK cells, as judged by the assay for decatenation of k-DNA to yield minicircle DNA.  相似文献   

2.
3.
We have characterized the topoisomerase I and II activities in nuclear extracts from immature embryos of Zea mays and the effect of the treatment with 2,4-dichlorophenoxyacetic acid (2,4-D) and abscisic acid (ABA). These extracts were shown to be essentially devoid of protease and nuclease activities and they were tested for their ability to relax supercoiled DNA, unknotting P4 DNA and catenate circular duplex DNA under catalytic conditions. Unknotting and catenation reactions are strictly magnesium- and ATP-dependent, but not the relaxation of circular supercoiled DNA allowing the detection of both topoisomerase I and II activities. Two cytotoxic drugs, camptothecin, a plant alkaloid that inhibits cukaryotic topoisomerase I, and epipodophyllotoxin VM-26 (teniposide) that inhibits topoisomerase II, have been assayed in our extracts showing similar inhibitory effects on topoisomerase enzymes. Alkaline phosphatase treatment of nuclear extracts abolishes both topoisomerase activities. Nuclear extracts from embryos treated with 2,4-D showed 200% increase on topoisomerase II activity as compared with untreated ones, but only residual activity was detected in ABA-treated embryos. Nuclear extracts from hormone-treated and untreated embryos showed similar topoisomerase I activity with deviations of less than 25%. These differences are discussed in terms of possible post-translational modifications of the enzymes associated with the increase in proliferation activity of calli.  相似文献   

4.
Topoisomerase I inhibitors from Ruta graveolens are reported for the first time. Potent topoisomerase I inhibitory activity from in vitro culture extracts R. graveolens were observed. Stabilization of DNA–topoisomerase covalent complex was observed in all the tested extracts. The mechanism of topoisomerase inhibition was determined by preincubation studies. The irreversible topoisomerase I mediated relaxation of plasmid in enzyme–substrate preincubation study, indicated that the observed inhibitory activity of extract constituents was not mediated through conformational changes in the DNA. Furthermore, the affinity of inhibitors with the enzyme was tested by enzyme–extract preincubation study. Increase in inhibition of topoisomerase activity and promotion of DNA–enzyme complex was observed after enzyme–extract preincubation. The activity could be assigned to furanocoumarins—psoralen, bergapten and xanthotoxin, identifying them as novel, potent topoisomerase I inhibitors.  相似文献   

5.
D S Samuels  T Tojo  M Homma  N Shimizu 《FEBS letters》1986,209(2):231-234
Purified type I topoisomerase from calf thymus as well as nuclear and cytoplasmic extracts from EGF-stimulated human and mouse fibroblasts in cell culture efficiently convert supercoiled plasmid DNA to the relaxed form. The purified IgG fraction from the sera of Japanese patients with the rheumatic disease scleroderma were shown to inhibit this relaxation activity. Thus, these patients likely produce autoantibodies to topoisomerase I. In addition, the human, bovine and murine enzymes share antigenic determinants recognized by the antisera.  相似文献   

6.
Changes in topoisomerase I activity after irradiation of lymphoid cells   总被引:2,自引:0,他引:2  
The activity of topoisomerase I in nuclear extracts increased about three-fold 5 min after gamma-irradiation (840-2500 rads) of human peripheral blood lymphocytes or cultured lymphoblastoid cells. The change may reflect modification of the enzyme by nuclear ADP-ribosyl transferase, which is known to be activated by DNA breaks.  相似文献   

7.
T Melendy  C Sheline  D S Ray 《Cell》1988,55(6):1083-1088
A type II DNA topoisomerase (topollmt), purified to near homogeneity from the trypanosomatid C. fasciculata has been shown to be localized to the single mitochondrion of these kinetoplastid protozoa. Immunoblots show at least a 10-fold higher level of topollmt (per milligram of protein) in preparations of partially purified mitochondria as compared with those from whole cells. Analyses of type I and type II topoisomerase activities in both mitochondrial and whole cell extracts show a 4- to 5-fold higher specific activity of topollmt in mitochondrial extracts while a nuclear type I topoisomerase has a 4- to 5-fold lower specific activity in the same extract. Immunolocalizations using anti-topollmt antibodies show the enzyme to be present in close association with the mitochondrial DNA networks (kinetoplast DNA or kDNA). This association appears at two distinct locations on opposite sides of the kDNA network.  相似文献   

8.
DNA topoisomerase activity together with the activities of DNA polymerase were detected in a form tightly associated with rat liver nuclear matrices. DNA polymerase activities were solubilized from the nuclear matrices of regenerating rat livers by sonic treatment followed by extraction of these activities with detergent and salt. The predominant activity was mainly α-polymerase as judged from the size determined by sucrose density gradient centrifugation. However, only β-polymerase activity was detected in the matrix of normal rat livers. DNA topoisomerase activity, detected in both regenerating and normal liver nuclear matrices, showed a molecular size of about 4 S in sucrose gradient, and was active in the presence of EDTA. These results suggest that this enzyme belongs to type I topoisomerase.  相似文献   

9.
Biochemical properties of topoisomerase I from normal and regenerating rat liver were analysed using crude or fractionated nuclear extracts. We could not detect significative change in topoisomerase I content or activity (magnesium stimulation and inhibition by ATP) during the course of liver regeneration. Topoisomerase I can be resolved into two species of 97 kDa and 100 kDa, with the same pI of 8.2-8.6 as shown by two dimensional gel electrophoresis. The two polypeptides contained a non-phosphorylated precursor and others forms with variable degrees of phosphorylation. In-vitro dephosphorylation with alkaline phosphatase leads to the disappearance of the phosphorylated forms and inactivation of the enzyme. The affinity of topoisomerase I for chromatin (measured by salt elution) differs markedly between normal and regenerating liver: nearly 50% of topoisomerase I remained bound to the chromatin from normal liver at 250 mM NaCl whereas it was completely eluted from 24-h-regenerating-liver nuclei. The biological significance of these results is discussed.  相似文献   

10.
DNA topoisomerase I catalyzes the relaxation of superhelical DNA tension and is vital for DNA metabolism; therefore, it is essential for growth and development of plants. Here, we have studied the phosphorylation-dependent regulation of topoisomerase I from pea (Pisum sativum). The purified enzyme did not show autophosphorylation but was phosphorylated in an Mg(2+)-dependent manner by endogenous protein kinases present in pea nuclear extracts. This phosphorylation was abolished with calf intestinal alkaline phosphatase and lambda phosphatase. It was also phosphorylated by exogenous casein kinase 2 (CK2), protein kinase C (PKC; from animal sources), and an endogenous pea protein, which was purified using a novel phorbol myristate acetate affinity chromatography method. All of these phosphorylations were inhibited by heparin (inhibitor of CK2) and calphostin (inhibitor of PKC), suggesting that pea topoisomerase I is a bona fide substrate for these kinases. Spermine and spermidine had no effect on the CK2-mediated phosphorylation, suggesting that it is polyamine independent. Phospho-amino acid analysis showed that only serine residues were phosphorylated, which was further confirmed using antiphosphoserine antibody. The topoisomerase I activity increased after phosphorylation with exogenous CK2 and PKC. This study shows that these kinases may contribute to the physiological regulation of DNA topoisomerase I activity and overall DNA metabolism in plants.  相似文献   

11.
Poly(ADP-ribosylation) of DNA topoisomerase I from calf thymus   总被引:13,自引:0,他引:13  
We demonstrate that the activity of the major DNA topoisomerase I from calf thymus is severely inhibited after modification by purified poly(ADP-ribose) synthetase. Polymeric chains of poly(ADP-ribose) are covalently attached to DNA topoisomerase I. These observations with highly purified enzymes suggest that poly(ADP-ribosylation) may be a cellular mechanism for modulating DNA topoisomerase I activity in response to the state of DNA in the nucleus. Although extensive poly(ADP-ribosylation) of the Mr = 100,000 DNA topoisomerase I from calf thymus resulted in greater than 90% enzyme inhibition, exogenous poly(ADP-ribose) does not, by itself, inhibit topoisomerase activity. After modification, the apparent molecular weight of both the topoisomerase enzyme protein and of the topoisomerase enzyme activity was increased. In vitro, the extent of modification of DNA topoisomerase I could be controlled either by changing the ratio of topoisomerase to the synthetase or by varying the reaction time. More than 40 residues of ADP ribose per topoisomerase molecule could be added by the synthetase. Analysis of a poly(ADP-ribosylated) topoisomerase preparation that was about 50% inhibited revealed an average polymer chain length of 7.4, with 1-2 chains per enzyme molecule.  相似文献   

12.
13.
DNA topoisomerases I and II are the two major nuclear enzymes capable of relieving torsional strain in DNA. Of these enzymes, topoisomerase I plays the dominant role in relieving torsional strain during chromatin assembly in cell extracts from oocytes, eggs, and early embryos. We tested if the topoisomerases are used differentially during chromatin assembly in Saccharomyces cerevisiae by a combined biochemical and pharmacological approach. As measured by plasmid supercoiling, nucleosome deposition is severely impaired in assembly extracts from a yeast mutant with no topoisomerase I and a temperature-sensitive form of topoisomerase II (strain top1-top2). Expression of wild-type topoisomerase II in strain top1-top2 fully restored assembly-driven supercoiling, and assembly was equally efficient in extracts from strains expressing either topoisomerase I or II alone. Supercoiling in top1-top2 extract was rescued by adding back either purified topoisomerase I or II. Using the topoisomerase II poison VP-16, we show that topoisomerase II activity during chromatin assembly is the same in the presence and absence of topoisomerase I. We conclude that both topoisomerases I and II can provide the DNA relaxation activity required for efficient chromatin assembly in mitotically cycling yeast cells.  相似文献   

14.
We conducted a comparative study of the properties of topoisomerase I isolated from maize nuclei and mitochondria. We found that nuclear and mitochondrial enzymes possess different ability to bind single stranded DNA. Study of the enzyme activity dependence on Mg2+ demonstrated an absolute dependence of the mitochondrial topoisomerase activity. Contrary, nuclear enzyme activity was not absolutely dependent but stimulated by the magnesium cation. Mitochondrial topoisomerase formed covalent bond with the 5'-end of the cleaved DNA what is unique property of prokaryotic topoisomerase I. Nuclear enzyme bound covalently to the 3'-end like all eukaryotic topoisomerases I. The search through databases revealed genes which could encode mitochondrial topoisomerase I in the genomes of higher plants. Using both cDNA sequencing and in silico methods we demonstrated an existence of the ortholog gene in the maize genome. This gene shares significant homology with prokaryotic topoisomerase I genes that may explain differences in the properties of the mitochondrial and nuclear enzyme. Data obtained is of a significant interest both from the point of view of plant organelle evolution and mitochondrial genome expression mechanisms study.  相似文献   

15.
A type I topoisomerase has been purified more than 4000-fold from calf thymus mitochondria. The enzyme is membrane associated and is effectively solubilized by 1% Triton X-100 treatment of purified mitochondrial inner membranes. This ATP-independent enzyme relaxes positively and negatively supercoiled DNA with delta LK = 1. At low ionic strength, the native enzyme appears to be a monomer (sedimentation coefficient of 4.3 S and Stokes radius of 34 A), but it can form a weakly associated dimer at higher salt concentrations (sedimentation coefficient of 7.0 S and Stokes radius of 47.5 A). The mitochondrial type I topoisomerase is distinguishable from the nuclear enzyme by its (1) pH profile, (2) thermal stability, (3) response to dimethyl sulfoxide and Berenil, and (4) molecular weight. The mitochondrial enzyme is inhibited by elevated concentrations of the bacterial DNA gyrase inhibitor novobiocin, but not nalidixic or oxolinic acids. Sensitivity to N-ethylmaleimide indicates the importance of cysteine for catalytic activity. It is estimated that there are at least five copies of topoisomerase I per mammalian mitochondrion or a minimum of one to two per mitochondrial genome. In a manner similar to that observed with leukemia (nuclear and mitochondrial), calf thymus (nuclear), and HeLa (nuclear) cell type I topoisomerase, the calf thymus mitochondrial enzyme is inhibited by physiological concentrations of ATP.  相似文献   

16.
A defect in DNA topoisomerase II activity in ataxia-telangiectasia cells   总被引:2,自引:0,他引:2  
DNA topoisomerase type I and II activities were determined by serial dilution in nuclear extracts from control and ataxia-telangiectasia lymphoblastoid cells. Topoisomerase I activity, assayed by relaxation of supercoiled plasmid DNA, was found to be approximately the same in both cell types. In order to remove interference from topoisomerase I, the activity of topoisomerase II was measured by the unknotting of knotted P4 phage DNA in the presence of ATP. The activity of topoisomerase II was markedly reduced in two ataxia-telangiectasia cell lines, AT2ABR and AT8ABR, compared to controls. This reduction in activity was detected with increasing concentration of protein and in time course experiments at a single protein concentration. A third cell line, AT3ABR, did not have a detectably lower activity of topoisomerase II when assayed under these conditions. The difference in topoisomerase II activity in the ataxia-telangiectasia cell lines examined may reflect to some extent the heterogeneity observed in this syndrome.  相似文献   

17.
Fanconi anemia (FA) is a genetic disorder associated with genomic instability and cancer predisposition. Cultured cells from FA patients display a high level of spontaneous chromosome breaks and an increased frequency of intragenic deletions, suggesting that FA cells may have deficiencies in properly processing DNA double strand breaks. In this study, an in vitro plasmid DNA end joining assay was used to characterize the end joining capabilities of nuclear extracts from diploid FA fibroblasts from complementation groups A, C, and D. The Fanconi anemia extracts had 3-9-fold less DNA end joining activity and rejoined substrates with significantly less fidelity than normal extracts. Wild-type end joining activity could be reconstituted by mixing FA-D extracts with FA-A or FA-C extracts, while mixing FA-A and FA-C extracts had no effect on end joining activity. Protein expression levels of the DNA-dependent protein kinase (DNA-PK)/Ku-dependent nonhomologous DNA end-joining proteins Xrcc4, DNA ligase IV, Ku70, and Ku86 in FA and normal extracts were indistinguishable, as were DNA-dependent protein kinase and DNA end binding activities. The end joining activity as measured by the assay was not sensitive to the DNA-PK inhibitor wortmannin or dependent on the nonhomologous DNA end-joining factor Xrcc4. However, when DNA/protein ratios were lowered, the end joining activity became wortmannin-sensitive and no difference in end joining activity was observed between normal and FA extracts. Taken together, these results suggest that the FA fibroblast extracts have a deficiency in a DNA end joining process that is distinct from the DNA-PK/Ku-dependent nonhomologous DNA end joining pathway.  相似文献   

18.
DNA topoisomerase activities in concanavalin A-stimulated lymphocytes   总被引:7,自引:0,他引:7  
Topoisomerase activities have been measured in nuclear extracts of concanavalin A-stimulated lymphocytes. In parallel with the wave of DNA synthesis, type II topoisomerase activity was considerably increased. After 72 h treatment, this activity was stimulated approx. 20-fold over the activity in untreated cells. In contrast, type I topoisomerase was poorly stimulated after 24 h treatment, and 4-5-fold after 72 h. These findings, together with our previous results on regenerating rat liver, suggest a major role of topoisomerase II in DNA replication.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号