共查询到20条相似文献,搜索用时 8 毫秒
1.
Resnik ER Keck M Sukovich DJ Herron JM Cornfield DN 《American journal of physiology. Lung cellular and molecular physiology》2007,292(4):L953-L959
Oxygen causes perinatal pulmonary dilatation. Although fetal pulmonary artery smooth muscle cells (PA SMC) normally respond to an acute increase in oxygen (O2) tension with a decrease in cytosolic calcium ([Ca2+]i), an acute increase in O2 tension has no net effect on [Ca(2+)](i) in PA SMC derived from lambs with chronic intrauterine pulmonary hypertension (PHTN). The present experimental series tests the hypothesis that an acute increase in O2 tension decreases capacitative calcium entry (CCE) in normal, but not hypertensive, fetal PA SMC. PA SMC were isolated from late-gestation fetal lambs after either ligation of the ductus arteriosus (PHTN) or sham (control) operation at 127 days gestation. PA SMC were isolated from the distal PA (>or=4th generation) and maintained under hypoxic conditions ( approximately 25 Torr) in primary culture. After fura 2 loading, apparent [Ca2+]i in PA SMC was determined as the ratio of 340- to 380-nm fluorescence intensity. Under both hypoxic and normoxic conditions, cyclopiazonic acid (CPA) increased [Ca2+]i more in PHTN than in control PA SMC. CCE was determined in PA SMC under hypoxic and normoxic conditions, after superfusion with zero extracellular Ca2+ and intracellular store depletion with CPA, followed by superfusion with Ca2+-containing solution, in the presence of the voltage-operated calcium channel blockade. CCE was increased in PHTN compared with control PA SMC under conditions of both acute and sustained normoxia. Transient receptor potential channel gene expression was greater in control compared with PHTN PA SMC. PHTN may compromise perinatal pulmonary vasodilation, in part, by modulating PA SMC CCE. 相似文献
2.
Yang M Ding X Murray PA 《American journal of physiology. Lung cellular and molecular physiology》2008,294(5):L1007-L1012
We assessed the roles of the protein kinase C (PKC) and the tyrosine kinase (TK) signaling pathways in regulating capacitative calcium entry (CCE) in human pulmonary artery smooth muscle cells (PASMCs) and investigated the effects of intravenous anesthetics (midazolam, propofol, thiopental, ketamine, etomidate, morphine, and fentanyl) on CCE in human PASMCs. Fura-2-loaded human PASMCs were placed in a dish (37 degrees C) on an inverted fluorescence microscope. Intracellular Ca2+ concentration ([Ca2+]i) was measured as the 340/380 fluorescence ratio in individual PASMCs. Thapsigargin, a sarcoplasmic reticulum Ca2+-adenosine triphosphatase inhibitor, was used to deplete intracellular Ca2+ stores after removing extracellular Ca2+. CCE was then activated by restoring extracellular Ca2+ (2.2 mM). The effects of PKC activation and inhibition, TK inhibition, and the intravenous anesthetics on CCE were assessed. Thapsigargin caused a transient increase in [Ca2+]i. Restoring extracellular Ca2+ caused a rapid peak increase in [Ca2+]i, followed by a sustained increase in [Ca2+]i; i.e., CCE was stimulated in human PASMCs. PKC activation attenuated (P < 0.05), whereas PKC inhibition potentiated (P < 0.05), both peak and sustained CCE. TK inhibition attenuated (P < 0.05) both peak and sustained CCE. Midazolam, propofol, and thiopental each attenuated (P < 0.05) both peak and sustained CCE, whereas ketamine, etomidate, morphine, and fentanyl had no effect on CCE. Our results suggest that CCE in human PASMCs is influenced by both the TK and PKC signaling pathways. Midazolam, propofol, and thiopental each attenuated CCE, whereas ketamine, etomidate, morphine, and fentanyl had no effect on CCE. 相似文献
3.
低氧对培养的不同内径的肺动脉平滑肌细胞增殖的影响 总被引:4,自引:0,他引:4
目的和方法:分离培养三种不同内径的肺动脉平滑肌细胞(PASMCs),用^3H-TdR掺入速率和细胞计数作为细胞增殖的指标,观察低氧对其增殖作用的影响。结果:低氧对三种不同内径的PASMCs(内径分别为>1000μm、500-800μm、300-400μm)增殖促进作用显著不同,其^3H-TdR掺入速率和细胞计数分别增加23.5%和11.1%、60.0%和33.8%、141.4%和52.0%,选择对低氧最敏感的PASMCs(内径为300-400μm),进一步探讨低氧促PASMCs增殖作用的细胞机制:钙拮抗剂verapail、蛋白激酶C抑制剂staurosporine(Stau)和细胞Na-H交换抑制剂amiloride可显著降低低氧情况下PASMCs^3H-TdR掺入速率和细胞计数。结论:低氧对三种不同内径的PASMCs增殖促进作用显著不同; Ca^2 、蛋白激酶C和Na^2 -H^ 交换的激活,可能是低氧促PASMCs增殖的重要胞内信息转导机制。 相似文献
4.
OBJECTIVE: The purpose of this study was to evaluate the contribution of capacitative calcium influx to intracellular calcium levels during agonist-induced stimulation of vascular smooth muscle cells. METHODS: Aortic vascular smooth muscle cells (A7r5) were loaded with Indo-1 and intracellular calcium transients were measured. Cells were challenged with either arginine vasopressin (0. 5 microM) or thapsigargin (1 microM). Lanthanum (1 mM) was used to block capacitative calcium influx through store-operated channels. Calcium traces were analyzed for basal, peak and plateau responses. Recordings were derivatized and integrated to gain additional information. Nonlinear regression provided a time constant that describes restoration of ionic equilibrium involving both sequestration and extrusion pathways. RESULTS: Stimulation of cells with thapsigargin produced a non-L-type calcium influx that was attenuated by lanthanum. Cells excited with vasopressin exhibited a rapid calcium increase followed by a gradual decrease to a plateau level. Lanthanum pretreatment prior to stimulation caused no significant change in baseline, peak or plateau calcium levels as compared to control. Lanthanum caused no significant change in maximal calcium release rate, calcium integrals or time constant as compared to control. CONCLUSIONS: Capacitative calcium entry can occur in vascular smooth muscle cells, but does not appear to contribute significantly to the vasopressin response. 相似文献
5.
Wang J Shimoda LA Weigand L Wang W Sun D Sylvester JT 《American journal of physiology. Lung cellular and molecular physiology》2005,288(6):L1059-L1069
Hypoxic pulmonary vasoconstriction (HPV) requires influx of extracellular Ca2+ in pulmonary arterial smooth muscle cells (PASMCs). To determine whether capacitative Ca2+ entry (CCE) through store-operated Ca2+ channels (SOCCs) contributes to this influx, we used fluorescent microscopy and the Ca2+-sensitive dye fura-2 to measure effects of 4% O2 on intracellular [Ca2+] ([Ca2+]i) and CCE in primary cultures of PASMCs from rat distal pulmonary arteries. In PASMCs perfused with Ca2+-free Krebs Ringer bicarbonate solution (KRBS) containing cyclopiazonic acid to deplete Ca2+ stores in sarcoplasmic reticulum and nifedipine to prevent Ca2+ entry through L-type voltage-operated Ca2+ channels (VOCCs), hypoxia markedly enhanced both the increase in [Ca2+]i caused by restoration of extracellular [Ca2+] and the rate at which extracellular Mn2+ quenched fura-2 fluorescence. These effects, as well as the increased [Ca2+]i caused by hypoxia in PASMCs perfused with normal salt solutions, were blocked by the SOCC antagonists SKF-96365, NiCl2, and LaCl3 at concentrations that inhibited CCE >80% but did not alter [Ca2+]i responses to 60 mM KCl. In contrast, the VOCC antagonist nifedipine inhibited [Ca2+]i responses to hypoxia by only 50% at concentrations that completely blocked responses to KCl. The increased [Ca2+]i caused by hypoxia was completely reversed by perfusion with Ca2+-free KRBS. LaCl3 increased basal [Ca2+]i during normoxia, indicating effects other than inhibition of SOCCs. Our results suggest that acute hypoxia enhances CCE through SOCCs in distal PASMCs, leading to depolarization, secondary activation of VOCCs, and increased [Ca2+]i. SOCCs and CCE may play important roles in HPV. 相似文献
6.
Jernigan NL Broughton BR Walker BR Resta TC 《American journal of physiology. Lung cellular and molecular physiology》2006,290(3):L517-L525
We have recently demonstrated that chronic hypoxia (CH) attenuates nitric oxide (NO)-mediated decreases in pulmonary vascular smooth muscle (VSM) intracellular free calcium concentration ([Ca2+]i) and promotes NO-dependent VSM Ca2+ desensitization. The objective of the current study was to identify potential mechanisms by which CH interferes with regulation of [Ca2+]i by NO. We hypothesized that CH impairs NO-mediated inhibition of store-operated (capacitative) Ca2+ entry (SOCE) or receptor-operated Ca2+ entry (ROCE) in pulmonary VSM. To test this hypothesis, we examined effects of the NO donor, spermine NONOate, on SOCE resulting from depletion of intracellular Ca2+ stores with cyclopiazonic acid, and on UTP-induced ROCE in isolated, endothelium-denuded, pressurized pulmonary arteries (213 +/- 8 microm inner diameter) from control and CH (4 wk at 0.5 atm) rats. Arteries were loaded with fura-2 AM to continuously monitor VSM [Ca2+]i. We found that the change in [Ca2+]i associated with SOCE and ROCE was significantly reduced in vessels from CH animals. Furthermore, spermine NONOate diminished SOCE and ROCE in vessels from control, but not CH animals. We conclude that NO-mediated inhibition of SOCE and ROCE is impaired after CH-induced pulmonary hypertension. 相似文献
7.
8.
Kovac JR Chrones T Sims SM 《American journal of physiology. Gastrointestinal and liver physiology》2008,295(1):G88-G98
Angiotensin converting enzyme (ACE) has been shown to be involved in regulation of apoptosis in nonintestinal tissues. This study examined the role of ACE in the modulation of intestinal adaptation utilizing ACE knockout mice (ACE-/-). A 60% small bowel resection (SBR) was used, since this model results in a significant increase in intestinal epithelial cell (EC) apoptosis as well as proliferation. Baseline villus height, crypt depth, and intestinal EC proliferation were higher, and EC apoptosis rates were lower in ACE-/- compared with ACE+/+ mice. After SBR, EC apoptosis rates remained significantly lower in ACE-/- compared with ACE+/+ mice. Furthermore, villus height and crypt depth after SBR continued to be higher in ACE-/- mice. The finding of a lower bax-to-bcl-2 protein ratio in ACE-/- mice may account for reduced EC apoptotic rates after SBR in ACE-/- compared with ACE+/+ mice. The baseline higher rate of EC proliferation in ACE-/- compared with ACE+/+ mice may be due to an increase in the expression of several EC growth factor receptors. In conclusion, ACE appears to have an important role in the modulation of intestinal EC apoptosis and proliferation and suggests that the presence of ACE in the intestinal epithelium has a critical role in guiding epithelial cell adaptive response. 相似文献
9.
We investigated whether cyclic stretch affects TRPC4 or TRPC6 expression and calcium mobilization in cultured vascular smooth muscle cells. In aortic and mesenteric smooth muscle cells isolated from male Sprague-Dawley rats, TRPC4 expression was decreased after 5 h stretch and remained suppressed through 24 h stretch. After removal of the stretch stimulus, TRPC4 expression recovered within 2 h. Stretch did not affect TRPC6 expression. Stretch also decreased capacitative calcium entry, while agonist-induced calcium influx was increased. Similar results were obtained in primary aortic smooth muscle cells. TRPC4 mRNA levels were not decreased in response to mechanical strain. TRPC4 downregulation was also achieved by increasing extracellular calcium and was attenuated by gadolinium and MG132, suggesting that TRPC4 protein is regulated by intracellular calcium concentration and/or the ubiquitin-proteasome pathway. These data suggest that stretch-induced downregulation of TRPC4 protein expression and capacitative calcium entry may be a protective mechanism to offset stretch-induced increases in intracellular calcium. 相似文献
10.
Effects of T8993G mutation in mitochondrial DNA (mtDNA), associated with neurogenical muscle weakness, ataxia and retinitis pigmentosa (NARP), on the cytoskeleton, mitochondrial network and calcium homeostasis in human osteosarcoma cells were investigated. In 98% NARP and rho(0) (lacking mtDNA) cells, the organization of the mitochondrial network and actin cytoskeleton was disturbed. Capacitative calcium entry (CCE) was practically independent of mitochondrial energy status in osteosarcoma cell lines. The significantly slower Ca(2+) influx rates observed in 98% NARP and rho(0), in comparison to parental cells, indicates that proper actin cytoskeletal organization is important for CCE in these cells. 相似文献
11.
It was found that a collapse of the mitochondrial calcium buffering caused by the protonophoric uncoupler CCCP, antimycin A plus oligomycin, or the inhibitor of the mitochondrial Ca2+/Na+ exchanger led to a strong inhibition of thapsigargin-induced capacitative Ca2+ entry (CCE) into Jurkat cells suspended in a medium at pH 7.2. The effect of these inhibitors was markedly less significant at higher extracellular pH. Moreover, dysfunction of the mitochondrial calcium handling greatly decreased CCE sensitivity to extracellular Ca2+ when the pH of extracellular solution was 7.2 (apparent Kd toward extracellular Ca2+ rose from 2.3 +/- 0.6 mm in control cells to 11.0 +/- 1.7 mM in CCCP-treated cells) as compared with pH 7.8 (apparent Kd toward extracellular Ca2+ increased from 1.3 +/- 0.4 mM in control cells to 2.4 +/- 0.4 mM in uncoupler-treated cells). Changes in intracellular pH triggered by methylamine did not influence Ca2+ influx. This suggests that, in Jurkat cells, store-operated calcium channels sense extracellular pH change as a parameter that modifies their sensitivity to intracellular Ca2+. In contrast, in human osteosarcoma cells, changes in extracellular pH as well as mitochondrial uncoupling did not exert any inhibitory effects on CCE. 相似文献
12.
目的:探讨外源性载脂蛋白E(apoE)对低氧诱导小鼠肺动脉平滑肌细胞(PASMCs)增殖的影响及其机制。方法:采用组织块贴壁法原代培养小鼠PASMCs,取对数生长期PASMCs,分常氧组、常氧+apoE组、低氧组和低氧+apoE组,常氧组培养条件为:21% O2、5% CO2,低氧组培养条件为:1% O2、5% CO2,外源性加apoE使终浓度为10 μg/ml,培养时间为48 h,重复三次。EdU掺入法检测细胞增殖情况,Western blot法检测apoE、增殖细胞核抗原(PCNA)、蛋白激酶C(PKC)和磷酸化蛋白激酶C(p-PKC)蛋白的表达。结果:与常氧组比较,低氧组PASMCs增殖率提高64.7%,PCNA蛋白和p-PKC蛋白表达分别上调69.0%和120.0%,而apoE蛋白表达下调51.0%(P均<0.05);与低氧组比较,低氧+apoE组PASMCs增殖率降低19.6%,PCNA蛋白和p-PKC蛋白表达分别下调19.8%和103.2%(P均<0.05);各组间PKC蛋白表达无显著性差异,常氧组p-PKC蛋白表达与常氧+apoE组的相比也无显著性差异(P均>0.05)。结论:apoE能抑制低氧诱导小鼠PASMCs增殖,其机制可能与阻碍PKC途径有关。 相似文献
13.
14.
慢性间歇性低氧降低急性缺氧对大鼠肺动脉平滑肌细胞膜上电压门控性钾通道的抑制 总被引:2,自引:1,他引:1
为了从离子通道水平上探讨机体低氧适应的离子机制,本实验将雄性 SD 大鼠随机分为常氧对照组和慢性间歇性低氧组[氧浓度(10 ± 0.5) %, 间断缺氧每天 8 h]。用酶解法急性分离单个大鼠肺内动脉平滑肌细胞(pulmonary artery smoothmuscle cells, PASMCs),以全细胞膜片钳技术记录 PASMCs 膜上的电压门控性钾通道 (voltage-gated potassium channel, KV) 电流,观察急性缺氧对慢性间歇性低氧大鼠 PASMCs 的 KV 的影响, 为机体适应低氧能力提供实验依据。结果显示:⑴常氧对照组在电流钳下,急性缺氧可使膜电位明显去极化(由-47.2 ±2.6 mV 去极到 -26.7 ±1.2 mV ); 在电压钳下, 急性缺氧可显著抑制 KV电流( 60 mV 时, KV电流密度从 153.4 ± 9.5 pA/pF降到 70.1 ± 10.6 pA/pF), 峰电流的抑制率为(57.6 ± 3.3) %, 电流-电压关系曲线向右下移。⑵慢性间歇性低氧组KV电流密度随低氧时间延长而逐渐减少(慢性低氧10 d后就有显著性意义),电流- 电压关系曲线逐渐右下移。⑶急性缺氧对慢性间歇性低氧大鼠PASMCs KV电流的抑制作用随慢性间歇性低氧时间延长而逐渐减弱。上述观察结果提示慢性间歇性低氧减弱急性缺氧对 KV 的抑制, 这可能是机体低氧适应的一种重要机制。 相似文献
15.
Goyal R Creel KD Chavis E Smith GD Longo LD Wilson SM 《American journal of physiology. Lung cellular and molecular physiology》2008,295(5):L905-L914
Cytosolic Ca(2+) signaling dynamics are important to pulmonary arterial reactivity, and alterations are implicated in pulmonary vascular disorders. Yet, adaptations in cellular Ca(2+) homeostasis and receptor-mediated Ca(2+) signaling with maturation from fetal to adult life in pulmonary arterial smooth muscle cells (PASMCs) are not known. The present study tested the hypothesis that cytosolic Ca(2+) homeostasis and receptor-generated Ca(2+) signaling adapt with maturation in sheep PASMCs. Digitalized fluorescence microscopy was performed using isolated PASMCs from fetal and adult sheep that were loaded with the Ca(2+) indicator fura 2. The results show that basal cytosolic and sarcoplasmic reticulum Ca(2+) levels are attained before birth. Similarly, Ca(2+) efflux pathways from the cytosol and basal as well as capacitative Ca(2+) entry (CCE) are also developed before birth. However, receptor-mediated Ca(2+) signaling adapts with maturation. Prominently, serotonin stimulation elicited Ca(2+) elevations in very few fetal compared with adult PASMCs; in contrast, phenylephrine elevated Ca(2+) in a similar percentage of fetal and adult PASMCs. Serotonin and phenylephrine elicited Ca(2+) increases of a similar magnitude in reactive cells of fetus and adult, supporting the assertion that inositol trisphosphate signaling is intact. Caffeine and ATP elevated Ca(2+) in equivalent numbers of fetal and adult PASMCs. However, the caffeine-induced cytosolic Ca(2+) increase was significantly greater in fetal PASMCs, whereas the ATP-elicited increase was greater in adult cells. Overall, the results of this study demonstrate selective adaptations in receptor-mediated Ca(2+) signaling, but not in cellular Ca(2+) homeostasis. 相似文献
16.
Disruption of the filamentous actin cytoskeleton is necessary for the activation of capacitative calcium entry in naive smooth muscle cells 总被引:3,自引:0,他引:3
It has been proposed that cytoskeleton plays a key positive role in the activation of capacitative calcium entry (CCE), which supported the secretion-like hypothesis for the mechanisms underlying this process. However, its role on CCE in native smooth muscle is unknown. Here we demonstrate that CCE in isolated gallbladder myocytes was enhanced by cytochalasin D or latrunculin A treatments (agents that cause actin disassembly) whereas it was reduced by jasplakinolide treatment (which causes actin polymerization), suggesting that actin cytoskeleton acts as a barrier in CCE. In addition, we show for the first time that depletion of intracellular Ca2+ stores by thapsigargin and cholecystokinin in BAPTA-loaded cells induced a decrease in F-actin content that was consistent with a link between CCE and actin reorganization. In conclusion, these data suggest an active participation of actin reorganization in the implementation of CCE and support a conformational coupling model for this process in naive smooth muscle cells. 相似文献
17.
18.
Wang J Shimoda LA Sylvester JT 《American journal of physiology. Lung cellular and molecular physiology》2004,286(4):L848-L858
Mammalian homologs of transient receptor potential (TRP) genes in Drosophila encode TRPC proteins, which make up cation channels that play several putative roles, including Ca2+ entry triggered by depletion of Ca2+ stores in endoplasmic reticulum (ER). This capacitative calcium entry (CCE) is thought to replenish Ca2+ stores and contribute to signaling in many tissues, including smooth muscle cells from main pulmonary artery (PASMCs); however, the roles of CCE and TRPC proteins in PASMCs from distal pulmonary arteries, which are thought to be the major site of pulmonary vasoreactivity, remain uncertain. As an initial test of the possibility that TRPC channels contribute to CCE and Ca2+ signaling in distal PASMCs, we measured [Ca2+]i by fura-2 fluorescence in primary cultures of myocytes isolated from rat intrapulmonary arteries (>4th generation). In cells perfused with Ca2+-free media containing cyclopiazonic acid (10 microM) and nifedipine (5 microM) to deplete ER Ca2+ stores and block voltage-dependent Ca2+ channels, restoration of extracellular Ca2+ (2.5 mM) caused marked increases in [Ca2+]i whereas MnCl2 (200 microM) quenched fura-2 fluorescence, indicating CCE. SKF-96365, LaCl3, and NiCl2, blocked CCE at concentrations that did not alter Ca2+ responses to 60 mM KCl (IC50 6.3, 40.4, and 191 microM, respectively). RT-PCR and Western blotting performed on RNA and protein isolated from distal intrapulmonary arteries and PASMCs revealed mRNA and protein expression for TRPC1, -4, and -6, but not TRPC2, -3, -5, or -7. Our results suggest that CCE through TRPC-encoded Ca2+ channels could contribute to Ca2+ signaling in myocytes from distal intrapulmonary arteries. 相似文献
19.
Ng LC Kyle BD Lennox AR Shen XM Hatton WJ Hume JR 《American journal of physiology. Cell physiology》2008,294(1):C313-C323
Previous studies have shown that, in acutely dispersed canine pulmonary artery smooth muscle cells (PASMCs), depletion of both functionally independent inositol 1,4,5-trisphosphate (IP(3))- and ryanodine-sensitive Ca(2+) stores activates capacitative Ca(2+) entry (CCE). The present study aimed to determine if cell culture modifies intracellular Ca(2+) stores and alters Ca(2+) entry pathways caused by store depletion and hypoxia in canine PASMCs. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured in fura 2-loaded cells. Mn(2+) quench of fura 2 signal was performed to study divalent cation entry, and the effects of hypoxia were examined under oxygen tension of 15-18 mmHg. In acutely isolated PASMCs, depletion of IP(3)-sensitive Ca(2+) stores with cyclopiazonic acid (CPA) did not affect initial caffeine-induced intracellular Ca(2+) transients but abolished 5-HT-induced Ca(2+) transients. In contrast, CPA significantly reduced caffeine- and 5-HT-induced Ca(2+) transients in cultured PASMCs. In cultured PASMCs, store depletion or hypoxia caused a transient followed by a sustained rise in [Ca(2+)](i). The transient rise in [Ca(2+)](i) was partially inhibited by nifedipine, whereas the nifedipine-insensitive transient rise in [Ca(2+)](i) was inhibited by KB-R7943, a selective inhibitor of reverse mode Na(+)/Ca(2+) exchanger (NCX). The nifedipine-insensitive sustained rise in [Ca(2+)](i) was inhibited by SKF-96365, Ni(2+), La(3+), and Gd(3+). In addition, store depletion or hypoxia increased the rate of Mn(2+) quench of fura 2 fluorescence that was also inhibited by these blockers, exhibiting pharmacological properties characteristic of CCE. We conclude that cell culture of canine PASMCs reorganizes IP(3) and ryanodine receptors into a common intracellular Ca(2+) compartment, and depletion of this store or hypoxia activates voltage-operated Ca(2+) entry, reverse mode NCX, and CCE. 相似文献
20.
低氧性肺血管收缩反应(HPV)是指在急性低氧时,肺泡氧分压降到某一临界值,肺血管发生的快速、可逆的收缩反应,以纠正肺泡通气/灌流的不匹配。HPV的发生与肺动脉平滑肌细胞上K^+、Ca^2+、Cl^-通道的状态密切相关,而这些通道在不同部位的肺动脉上分布存在差异,因此不同部位的肺动脉在低氧中所表现的收缩反应程度也不同,本综述将对上述通道在肺动脉上的分布特点及其在HPV中的作用做一总结。 相似文献