共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Compatibility of chick embryo eye anlagen with the ectoderm of the early amphibian gastrula in vitro
A T Mikha?lov 《Ontogenez》1984,15(5):542-547
Eye vesicles were isolated from the early chick embryos (stage 9+ after Hamburger and Hamilton, 1951) and combined with the Rana temporaria early gastrula ectoderm (EGE) in vitro. The tissues were jointly incubated in medium 199 diluted twice with deionized water at 22 +/- 1 degree for 7-8 days or the eye vesicles were removed from the EGE ectoderm within 16-18 h. At the joint long-term incubation of these tissues, a toxic effect of the chick embryonic tissues on the EGE cells was noted. In none of the experiments, the inducing effect of the eye vesicle on the EGE was found. Similar data were obtained when the EGE was jointly cultivated with the brain (stage 9-10) and retina (stage 15) of chick embryos. The brain of the chick embryos at stage 15 exerted a weak neuralizing effect on the EGE. In the control experiments, the eye vesicles explanted with the chick embryonic ectoderm remained viable till the end of cultivation but no lentoids formed in the ectoderm. The absence of lens-inducing effect at the joint cultivation of the chick embryonic eye vesicles with the EGE is considered as a result of disturbance of the synthesis or secretion of the corresponding agents rather than a sequence of the species "incompatibility" of the inductor and reacting tissue. Hence, the use of "xenogenic" tissue recombinants is not justified when analyzing the lens-inducing activity of the eye vesicles. 相似文献
3.
4.
5.
Tension-dependent collective cell movements in the early gastrula ectoderm of Xenopus laevis embryos
Ventral ectodermal explants taken from early gastrula embryos of Xenopus laevis were artificially stretched either by two opposite concentrated forces or by a distributed force applied to the internal explant’s layer. These modes of stretching reflect different mechanical situations taking place in the normal development. Two main types of kinematic response to the applied tensions were detected. First, by 15 min after the onset of concentrated stretching a substantial proportion of the explant’s cells exhibited a concerted movement towards the closest point of the applied stretching force. We define this movement as tensotaxis. Later, under both concentrated and distributed stretching, most of the cell’s trajectories became reoriented perpendicular to the stretching force, and the cells started to intercalate between each other, both horizontally and vertically. This was accompanied by extensive elongation of the outer ectodermal cells and reconstruction of cell-cell contacts. The intercalation movements led first to a considerable reduction in the stretch-induced tensions and then to the formation of peculiar bipolar ”embryoid” shapes. The type and intensity of the morphomechanical responses did not depend upon the orientation of a stretching force in relation to the embryonic axes. We discuss the interactions of the passive and active components in tension-dependent cell movements and their relations to normal morphogenetic events. Received: 26 April 1999 / Accepted: 30 August 1999 相似文献
6.
Jeffrey Dean Barbara Claas 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2014,200(7):657-667
Sighted African clawed toads use their lateral lines to detect stimulus distance, although accuracy and precision are poorer than for stimulus direction. Single surface wave trains elicited discrete turns and/or swims towards the wave origin. Most responses were brief, ending with the toad stationary (70 % overall; 54–86 % individual toads) or pausing before turning away (11 %; 1–24 %). Lunges or capturing movements with the arms (13 %; 10–22 %) also indicated where toads expected to find prey. Overall, 94 % (88–100 %) of oriented responses had well-defined endpoints. Swim distance—measured as means, medians, and upper and lower quartiles—and the number of bilateral leg kicks increased with stimulus distance. Swim distance also depended upon stimulus angle due to features of turning. Most responses (81 %; 62–92 %) ended short of the wave origin. Regression slopes were 0.45 ± 0.04 mm/mm for stimulus distances up to 85 mm (ca. 2–3x body lengths), 0.16 ± 0.07 mm/mm for distances of 85–130 mm, and non-significant for larger distances to 220 mm. Slopes were steeper for responses that included lunges or capture movements. In only 15 % (3–26 %) of responses were both turn direction and swim distance sufficiently accurate for the toad to sweep through the wave origin. 相似文献
7.
Kudoh T Concha ML Houart C Dawid IB Wilson SW 《Development (Cambridge, England)》2004,131(15):3581-3592
Studies in fish and amphibia have shown that graded Bmp signalling activity regulates dorsal-to-ventral (DV) patterning of the gastrula embryo. In the ectoderm, it is thought that high levels of Bmp activity promote epidermal development ventrally, whereas secreted Bmp antagonists emanating from the organiser induce neural tissue dorsally. However, in zebrafish embryos, the domain of cells destined to contribute to the spinal cord extends all the way to the ventral side of the gastrula, a long way from the organiser. We show that in vegetal (trunk and tail) regions of the zebrafish gastrula, neural specification is initiated at all DV positions of the ectoderm in a manner that is unaffected by levels of Bmp activity and independent of organiser-derived signals. Instead, we find that Fgf activity is required to induce vegetal prospective neural markers and can do so without suppressing Bmp activity. We further show that Bmp signalling does occur within the vegetal prospective neural domain and that Bmp activity promotes the adoption of caudal fate by this tissue. 相似文献
8.
Inductive effects of fibroblast growth factor and lithium ion on Xenopus blastula ectoderm 总被引:9,自引:0,他引:9
We have studied the response of Xenopus blastula ectoderm to fibroblast growth factor and to lithium ion. The properties of acidic and basic FGF are very similar showing a 50% induction level at 1-2 ng ml-1 and a progressive increase of muscle formation up to concentrations of 100-200 ng ml-1. The elongation of explants also shows a dose-response relationship. The minimum contact requirement for induction of ectoderm explants is about 90 min and the stage range of ectodermal competence extends from midblastula to early gastrula, both these figures resembling those obtained in embryological experiments with vegetal tissue as the inducer. Lithium chloride concentrations which produce anteriorization of whole embryos have no effect on isolated ectoderms unless accompanied by FGF. Simultaneous treatment with FGF and Li lead to a marked enhancement of both elongation and muscle formation over that produced by FGF alone. By contrast, ventral marginal explants show increased elongation and muscle formation if treated with lithium alone suggesting that they have already received a low-dose FGF treatment within the embryo. It is concluded that endogenous FGF may be solely responsible for inducing the ventral mesoderm and that dorsalization of ventral mesoderm to the level of somitic muscle might be achieved either by a very high local concentration of FGF in the dorsal region, or by the action of a second, synergistic, agent in the dorsal region. 相似文献
9.
10.
We studied effects of forskolin, an activator of adenylate cyclase activity, and dioctanoyl-cyclic adenosine monophosphate (do-cAMP) on neutralizing (N) activity of concanavalin A (Con A). Biological testing was performed using explanted animal pole ectoderm of the Rana temporaria early gastrula. Con A treatment (200 micrograms/ml, 2 h) resulted in neutralization of 70-90% explants. If the explants were previously treated with forskolin (100 microM, 1 h), Con A effect decreased to 10%. When Con A and forskolin were applied simultaneously, no N-effect was observed. The same results were obtained with simultaneous treatment of the explants with Con A and do-cAMP (10(-5) M). Moreover, treatment with forskolin of the explants previously treated with Con A inhibited their neural differentiation. We suggest that N-effect of Con A is calcium dependent; the increase in intracellular cAMP after treatment of explants with forskolin or do-cAMP interferes with intracellular Ca2+ release and this results in the inhibited N-effect of Con A. 相似文献
11.
《中国科学:生命科学英文版》2015,(5)
Mutations of integrin-interacting protein Kindlin-1 cause Kindler syndrome and deregulation of Kindlin-1 is implicated in human cancers. The Kindlin-1-related diseases are confined in limited tissue types. However, Kindlin-1 tissue distribution and the dogma that governs Kindlin-1 expression in normal human body are elusive. This study examined Kindlin-1 expression in normal human adult organs, human and mouse embryonic organs by immunohistochemical analyses. We identified a general principle that the level of Kindlin-1 expression in tissues is tightly correlated with the corresponding germ layers from which these tissues originate. We compared the expression of Kindlin-1 with Kindlin-2 and found that Kindlin-1 is highly expressed in epithelial tissues derived from ectoderm and endoderm, whereas Kindlin-2 is mainly expressed in mesoderm-derived tissues. Likewise, Kindlin-1 was also found highly expressed in endoderm/ectoderm-derived tissues in human and mouse embryos. Our findings indicate that Kindlin-1 may play an importance role in the development of endoderm/ectoderm related tissues. 相似文献
12.
13.
14.
Summary The effect of aging on the neural competence of the presumptive ectoderm of the early gastrula, and the effect of aged ectoderm on the differentiation of the still uninvaginated dorsal blastoporal lip at the small yolk-plug stage — representing the trunk organizer — were examined by the sandwich method inCynops pyrrhogaster.The presumptive ectoderm to be used as reaction system was taken from 0 to 36 h exogastrulae obtained by operation at the early gastrula stage and combined with trunk organizer. In the 0 to 12 h explants typical trunktail structures were formed. With further aging of the presumptive ectoderm a decrease in frequency of spinal cord, notochord, and muscle and a simultaneous increase in frequency of mesenchyme and mesothelium were observed. In the 30 and 36 h explants neural competence had largely disappeared, the frequency of notochord and muscle become very low and their differentiation very poor, whereas the frequency of mesenchyme and mesothelium reached very high levels.We infer a reciprocal relationship between the induced spinal cord and the differentiation of notochord and muscle, as well as a transformation of notochordal material into mesenchyme and mesothelium under the influence of the aged ectoderm. The mode of action of the trunk organizer in normal development is discussed. 相似文献
15.
16.
The developmental relationship between the posterior embryonic and extraembryonic regions of the mammalian gastrula is poorly understood. Although many different cell types are deployed within this region, only the primordial germ cells (PGCs) have been closely studied. Recent evidence has suggested that the allantois, within which the PGCs temporarily take up residence, contains a pool of cells, called the Allantoic Core Domain (ACD), critical for allantoic elongation to the chorion. Here, we have asked whether the STELLA-positive cells found within this region, thought to be specified PGCs, are actually part of the ACD and to what extent they, and other ACD cells, contribute to the allantois and fetal tissues. To address these hypotheses, STELLA was immunolocalized to the mouse gastrula between Early Streak (ES) and 12-somite pair (-s) stages (~6.75-9.0 days post coitum, dpc) in histological sections. STELLA was found in both the nucleus and cytoplasm in a variety of cell types, both within and outside of the putative PGC trajectory. Fate-mapping the headfold-stage (~7.75-8.0 dpc) posterior region, by which time PGCs are thought to be segregated into a distinct lineage, revealed that the STELLA-positive proximal ACD and intraembryonic posterior primitive streak (IPS) contributed to a wide range of somatic tissues that encompassed derivatives of the three primary germ layers. This contribution included STELLA-positive cells localizing to tissues both within and outside of the putative PGC trajectory. Thus, while STELLA may identify a subpopulation of cells destined for the PGC lineage, our findings reveal that it may be part of a broader niche that encompasses the ACD and through which the STELLA population may contribute cells to a wide variety of posterior tissues of the mouse gastrula. 相似文献
17.
Inductive interactions in the spatial and temporal restriction of lens-forming potential in embryonic ectoderm of Xenopus laevis 总被引:3,自引:0,他引:3
The process of lens cell determination in amphibians is currently viewed as one involving a series of inductive interactions. On the basis of previous investigations, these interactions are thought to begin during gastrulation when the presumptive foregut endoderm and then the heart mesoderm come into contact with the presumptive lens ectoderm. This earlier period of induction is followed by the later interaction of the optic vesicle with the lens-forming ectoderm. Transplantation experiments were performed to determine the relative significance of the early and later periods of induction in the process of lens cell determination in the anuran Xenopus laevis. Various ectodermal tissues were transplanted either into the lens-forming region of open neural plate stage host embryos or over the newly formed optic vesicle of later neurula stage embryos. All transplanted tissues were labeled with the intracellular marker horseradish peroxidase to assess the exact origins of any induced lens structures. The results indicate that all nonneural ectodermal tissues have some lens-forming potential early during gastrulation; however, this potential is restricted to the lens-forming region, and perhaps nearby regions, later in development during the time of neurulation. Furthermore, the results show that the optic vesicle is not a substantial inductor of the lens in tissues that have not been previously exposed to the earlier series of inductive interactions that take place during gastrulation and neurulation. Since the optic vesicle does not appear to be a sufficient inductor of the lens, these earlier inductive interactions are, therefore, essential in the process of lens cell determination in Xenopus. These earlier inductive interactions lead to a steady increase in what may be called a lens-forming bias in the presumptive lens ectoderm during this period of development. The eventual loss in the ability of nonlens ventral ectoderm to respond to these lens inductors is presumably the result of other determinative processes that occur in this tissue. 相似文献
18.
Neural induction of ectoderm cells has been reconstituted and examined in a microculture system derived from dissociated early gastrula cells of Xenopus laevis. We have used monoclonal antibodies as specific markers to monitor cellular differentiation from three distinct ectoderm lineages in culture (N1 for CNS neurons from neural tube, Me1 for melanophores from neural crest and E3 for skin epidermal cells from epidermal lineages). CNS neurons and melanophores differentiate when deep layer cells of the ventral ectoderm (VE, prospective epidermis region; 150 cells/culture) and an appropriate region of the marginal zone (MZ, prospective mesoderm region; 5-150 cells/culture) are co-cultured, but not in cultures of either cell type on their own; VE cells cultured alone yield epidermal cells as we have previously reported. The extent of inductive neural differentiation in the co-culture system strongly depends on the origin and number of MZ cells initially added to culture wells. The potency to induce CNS neurons is highest for dorsal MZ cells and sharply decreases as more ventrally located cells are used. The same dorsoventral distribution of potency is seen in the ability of MZ cells to inhibit epidermal differentiation. In contrast, the ability of MZ cells to induce melanophores shows the reverse polarity, ventral to dorsal. These data indicate that separate developmental mechanisms are used for the induction of neural tube and neural crest lineages. Co-differentiation of CNS neurons or melanophores with epidermal cells can be obtained in a single well of co-cultures of VE cells (150) and a wide range of numbers of MZ cells (5 to 100). Further, reproducible differentiation of both neural lineages requires intimate association between cells from the two gastrula regions; virtually no differentiation is obtained when cells from the VE and MZ are separated in a culture well. These results indicate that the inducing signals from MZ cells for both neural tube and neural crest lineages affect only nearby ectoderm cells. 相似文献
19.