首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J K?rdel  S Forsén  W J Chazin 《Biochemistry》1989,28(17):7065-7074
A wide range of two-dimensional 1H NMR experiments have been used to completely assign the 500-MHz 1H NMR spectrum of recombinant Ca2+-saturated bovine calbindin D9k (76 amino acids, Mr = 8500). In solution, calbindin D9k exists as an equilibrium mixture of isoforms with trans (75%) and cis (25%) isomers of the peptide bond at Pro43 [Chazin et al. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 2195-2198], which results in two sets of 1H NMR signals from approximately half of the amino acids. The complete 1H NMR assignments for the major, trans-Pro43 isoform are presented here. By use of an integrated strategy for spin system identification, 62 of the 76 spin systems could be assigned to the appropriate residue type. Sequence-specific assignments were then obtained by the standard method. Secondary structure elements were identified on the basis of networks of sequential and medium-range nuclear Overhauser effects (NOEs), 3JHN alpha spin coupling constants, and the location of slowly exchanging amide protons. Four helical segments and a short beta-sheet between the two calcium binding loops are found. These elements of secondary structure and a few additional long-range NOEs provide the global fold. Good agreement is found between the solution and crystal structures of the minor A form of bovine calbindin D9k and between the solution structures of the minor A form of bovine calbindin D9k and intact porcine calbindin D9k.  相似文献   

2.
M Akke  T Drakenberg  W J Chazin 《Biochemistry》1992,31(4):1011-1020
The three-dimensional solution structure of native, intact porcine calbindin D9k has been determined by distance geometry and restrained molecular dynamics calculations using distance and dihedral angle constraints obtained from 1H NMR spectroscopy. The protein has a well-defined global fold consisting of four helices oriented in a pairwise antiparallel manner such that two pairs of helix-loop-helix motifs (EF-hands) are joined by a linker segment. The two EF-hands are further coupled through a short beta-type interaction between the two Ca(2+)-binding loops. Overall, the structure is very similar to that of the highly homologous native, minor A form of bovine calbindin D9k determined by X-ray crystallography [Szebenyi, D. M. E., & Moffat, K. (1986) J. Biol. Chem. 261, 8761-8776]. A model structure built from the bovine calbindin D9k crystal structure shows several deviations larger than 2 A from the experimental distance constraints for the porcine protein. These structural differences are efficiently removed by subjecting the model structure to the experimental distance and dihedral angle constraints in a restrained molecular dynamics protocol, thereby generating a model that is very similar to the refined distance geometry derived structures. The N-terminal residues of the intact protein that are absent in the minor A form appear to be highly flexible and do not influence the structure of other regions of the protein. This result is important because it validates the conclusions drawn from the wide range of studies that have been carried out on minor A forms rather than the intact calbindin D9k.  相似文献   

3.
The effect of decreased protein flexibility on the stability and calcium binding properties of calbindin D9k has been addressed in studies of a disulfide bridged calbindin D9k mutant, denoted (L39C + P43M + I73C), with substitutions Leu 39-->Cys, Ile 73-->Cys, and Pro 43-->Met. Backbone 1H NMR assignments show that the disulfide bond, which forms spontaneously under air oxidation, is well accommodated. The disulfide is inserted on the opposite end of the protein molecule with respect to the calcium sites, to avoid direct interference with these sites, as confirmed by 113Cd NMR. The effect of the disulfide bond on calcium binding was assessed by titrations in the presence of a chromophoric chelator. A small but significant effect on the cooperativity was found, as well as a very modest reduction in calcium affinity. The disulfide bond increases Tm, the transition midpoint of thermal denaturation, of calcium free calbindin D9k from 85 to 95 degrees C and Cm, the urea concentration of half denaturation, from 5.3 to 8.0 M. Calbindins with one covalent bond linking the two EF-hand subdomains are equally stable regardless if the covalent link is the 43-44 peptide bond or the disulfide bond. Kinetic remixing experiments show that separated CNBr fragments of (L39C + P43M + I73C), each comprising one EF-hand, form disulfide linked homodimers. Each homodimer binds two calcium ions with positive co-operativity, and an average affinity of 10(6) M-1. Disulfide linkage dramatically increases the stability of each homodimer. For the homodimer of the C-terminal fragment Tm increases from 59 +/- 2 without covalent linkage to 91 +/- 2 degrees C with disulfide, and Cm from approximately 1.5 to 7.5 M. The overall topology of this homodimer is derived from 1H NMR assignments and a few key NOEs.  相似文献   

4.
Calbindin D28k is a protein abundant in the mammalian central nervous system and in epithelial tissue involved in Ca2+ transport. Human calbindin D28k was cloned into a Pet3a vector and expressed in Escherichia coli. The protein was purified in three steps: (i) heat precipitation of bacterial proteins, (ii) ion-exchange chromatography on a DEAE-cellulose column in the presence of calcium, and (iii) ion-exchange chromatography on a DEAE-Sephacel column in the presence of EDTA. The protein was then supplemented with calcium and dialyzed against neutral water. The final yield was 20-50 mg of pure, homogeneous calcium-loaded calbindin D28k per liter of bacterial culture. The identity and purity of the protein were confirmed by immunoblotting, SDS-polyacrylamide gel electrophoresis, and agarose gel electrophoresis in the absence and presence of calcium and 1H NMR spectroscopy. The entire expression and purification protocol takes only 3 days and is easy to scale up and down. It was designed to minimize degradation and deamidation.  相似文献   

5.
Fragment complementation of calbindin D28k   总被引:1,自引:0,他引:1       下载免费PDF全文
Calbindin D28k is a highly conserved Ca2+-binding protein abundant in brain and sensory neurons. The 261-residue protein contains six EF-hands packed into one globular domain. In this study, we have reconstituted calbindin D28k from two fragments containing three EF-hands each (residues 1-132 and 133-261, respectively), and from other combinations of small and large fragments. Complex formation is studied by ion-exchange and size-exclusion chromatography, electrophoresis, surface plasmon resonance, as well as circular dichroism (CD), fluorescence, and NMR spectroscopy. Similar chromatographic behavior to the native protein is observed for reconstituted complexes formed by mixing different sets of complementary fragments, produced by introducing a cut between EF-hands 1, 2, 3, or 4. The C-terminal half (residues 133-261) appears to have a lower intrinsic stability compared to the N-terminal half (residues 1-132). In the presence of Ca2+, NMR spectroscopy reveals a high degree of structural similarity between the intact protein and the protein reconstituted from the 1-132 and 133-261 fragments. The affinity between these two fragments is 2 x 10(7) M(-1), with association and dissociation rate constants of 2.7 x 10(4) M(-1) s(-1) and 1.4 x 10(-3) s(-1), respectively. The complex formed in the presence of Ca2+ is remarkably stable towards unfolding by urea and heat. Both the complex and intact protein display cold and heat denaturation, although residual alpha-helical structure is seen in the urea denatured state at high temperature. In the absence of Ca2+, the fragments do not recombine to yield a complex resembling the intact apo protein. Thus, calbindin D28k is an example of a protein that can only be reconstituted in the presence of bound ligand. The alpha-helical CD signal is increased by 26% after addition of Ca2+ to each half of the protein. This suggests that Ca2+-induced folding of the fragments is important for successful reconstitution of calbindin D28k.  相似文献   

6.
The molecular basis for the co-operativity in binding of calcium ions by bovine calbindin D9k has been addressed by carrying out a comparative analysis of the solution conformation and dynamics of the apo, half saturated and fully saturated species using two-dimensional 1H nuclear magnetic resonance spectroscopy. Since the half saturated calcium form of the protein is not significantly populated under equilibrium conditions due to the co-operativity in binding of calcium ions, the half saturated cadmium form of the protein has been substituted for the calcium form. To verify that cadmium forms of calbindin D9k represent viable models for the calcium-bound species, the fully saturated cadmium form has been prepared and compared to the calcium-saturated protein. Virtually complete 1H resonance assignments have been obtained for both the (Cd2+)1 and the (Cd2+)2 states. Secondary structure elements and the global folding pattern were determined from nuclear Overhauser effects, backbone spin-spin coupling constants and slowly exchanging amide protons. Comparisons of the half saturated protein with the apo and calcium-saturated forms of calbindin D9k show that all three structures are highly similar. However, a change in the structural and dynamic properties of the protein does occur upon binding of the first ion; the half saturated form is found to be more similar to the calcium-saturated form than to the apo form. These results have important implications concerning the molecular basis for the co-operativity, and suggest that entropic effects associated with the protein dynamics play an important role.  相似文献   

7.
Calbindin D28k is an intracellular Ca(2+)-binding protein containing six subdomains of EF-hand type. The number and identity of the globular domains within this protein have been elucidated using six synthetic peptide fragments, each corresponding to one EF-hand subdomain. All six peptides were mixed in equimolar amounts in the presence of 10 mM Ca2+ to allow for the reconstitution of domains. The mixture was compared to native calbindin D28k and to the sum of the properties of the individual peptides using circular dichroism (CD), fluorescence, and 1H NMR spectroscopy, as well as gel filtration and ion-exchange chromatography. It was anticipated that if the peptides associate to form native-like domains, the properties would be similar to those of the intact protein, whereas if they did not interact, they would be the same as the properties of the isolated peptides. The results show that the peptides in the mixture interact with one another. For example, the CD and fluorescence spectra for the mixture are very similar to those of the intact calbindin D28k, suggesting that the mixed EF-hand fragments associate to form a native-like structure. To determine the number of domains and the subdomain composition of each domain in calbindin D28k, a variety of peptide combinations containing two to five EF-hand fragments were studied. The spectral and chromatographic properties of all the mixtures containing less than six peptides were closer to the sum of the properties of the relevant individual peptides than to the mixture of the six peptides. The results strongly suggest that all six EF-hands are packed into one globular domain. The association of the peptide fragments is observed to drive the folding of the individual subdomains. For example, one of the fragments, EF2, which is largely unstructured in isolation even in the presence of high concentrations of Ca2+, is considerably more structured in the presence of the other peptides, as judged by CD difference spectroscopy. The CD data also suggest that the packing between the individual subdomains is specific.  相似文献   

8.
In a structure of recombinant bovine calbindin D9k, determined crystallographically to 1.6 A resolution, a proline in mixed, approximately equally populated, cis and trans conformation is observed. Isomers of this kind have not been reported in structure determinations of calbindin D9k to 2.3 A resolution or in any other crystallographically determined protein structure. The cis-trans isomerization occurs at the peptide bond between Gly42 and Pro43, which is in agreement with results from two-dimensional 1H nuclear magnetic resonance spectroscopy experiments on solutions of calbindin D9k. Alternative backbone stretches have been modeled and refined by stereochemical restrained least-squares refinement for the segment Lys41 to Pro43. The final R-value was 0.188. The structural perturbations accompanying the cis-trans isomerization are found to be very localized. The largest positional differences are observed at residue Gly42, in which the alternative positions of the oxygen atom are 3.6 A apart.  相似文献   

9.
The 1H nuclear magnetic resonance (NMR) spectrum of Ca2+-saturated porcine calbindin D9k (78 amino acids, Mr 8800) has been assigned. Greater than 98% of the 1H resonances, including spin systems for each amino acid residue, have been identified by using an approach that integrates data from a wide range of two-dimensional scalar correlated NMR experiments [Chazin, Rance, & Wright (1988) J. Mol. Biol. 202, 603-626]. Due to the limited quantity of sample and conformational heterogeneity of the protein, two-dimensional nuclear Overhauser effect (NOE) experiments also played an essential role in the identification of spin systems. On the basis of the pattern of scalar connectivities, 43 of the 78 spin systems could be directly assigned to the appropriate residue type. This provided an ample basis for obtaining the sequence-specific resonance assignments. The elements of secondary structure are identified from sequential and medium-range NOEs, values of 3JNH alpha, and the location of slowly exchanging backbone amide protons. Four well-defined helices and a mini beta-sheet between the two calcium binding loops are present in solution. These elements of secondary structure and a few key long-range NOEs provided sufficient information to define the global fold of the protein in solution. Generally good agreement is found between the crystal structure of the minor A form of bovine calbindin D9k and the solution structure of intact porcine calbindin D9k. The only significant difference is a short one-turn helix in the loop between helices II and III in the bovine crystal structure, which is clearly absent in the porcine solution structure.  相似文献   

10.
The homodimeric S100 protein calcyclin has been studied in the apo state by two-dimensional 1H NMR spectroscopy. Using a combination of scalar correlation and NOE experiments, sequence-specific 1H NMR assignments were obtained for all but one backbone and > 90% of the side-chain resonances. To our knowledge, the 2 x 90 residue (20 kDa) calcyclin dimer is the largest protein system for which such complete assignments have been made by purely homonuclear methods. Sequential and medium-range NOEs and slowly exchanging backbone amide protons identified directly the four helices and the short antiparallel beta-type interaction between the two binding loops that comprise each subunit of the dimer. Further analysis of NOEs enabled the unambiguous assignment of 556 intrasubunit distance constraints, 24 intrasubunit hydrogen bonding constraints, and 2 x 26 intersubunit distance constraints. The conformation of the monomer subunit was refined by distance geometry and restrained molecular dynamics calculations using the intrasubunit constraints only. Calculation of the dimer structure starting from this conformational ensemble has been reported elsewhere. The extent of structural homology among the apo calcyclin subunit, the monomer subunit of apo S100 beta, and monomeric apo calbindin D9k has been examined in detail by comparing 1H NMR chemical shifts and secondary structures. This analysis was extended to a comprehensive comparison of the three-dimensional structures of the calcyclin monomer subunit and calbindin D9k, which revealed greater similarity in the packing of their hydrophobic cores than was anticipated previously. Together, these results support the hypothesis that all members of the S100 family have similar core structures and similar modes of dimerization. Analysis of the amphiphilicity of Helix IV is used to explain why calbindin D9k is monomeric, but full-length S100 proteins form homodimers.  相似文献   

11.
The EF-hand calcium-binding protein, calbindin D9k, exists in solution in the calcium-loaded state, as a 1:3 equilibrium mixture of two isoforms, the result of cis-trans isomerism at the Gly42-Pro43 peptide bond [Chazin et al. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 2195-2198]. Nuclear magnetic resonance (NMR) studies of the minor (cis-Pro43) isoform and the Pro43----Gly mutant are reported here. The rate of cis----trans isomerization at the Pro43 peptide bond in the wild-type protein was determined by line-shape analysis at elevated temperatures, using a sample in which all amino acids, except Ser and Val, were deuterated. The cis----trans rate is calculated to be 0.2 s-1 at 25 degrees C, corresponding to a free energy of activation, delta G, of 77 kJ/mol. The complete sequence-specific 1H NMR assignments of the cis-Pro43 isoform and the Pro43----Gly mutant in the calcium-loaded state have been obtained by using standard methods combined with comparisons to the previously assigned major (trans-Pro43) isoform. This has permitted detailed comparative analysis of 1H NMR chemical shifts, backbone scalar coupling constants, and nuclear Overhauser effects. The minor isoform has a global fold that is identical with that of the major isoform. Structural changes imposed by cis-trans isomerization at Pro43 are highly localized to the linker loop (containing Pro43) that joins the two EF hands. The Pro43----Gly mutant has a global fold that is identical with the wild-type protein, but does not exhibit conformational heterogeneity. Only very limited structural differences are observed between mutant and wild-type protein, and these are also highly localized to the linker loop. The ion-binding properties of the mutant, as determined by 43Ca and 113Cd NMR, are found to be very similar to the wild-type protein. These results provide crucial evidence that justifies the calculation of high-resolution three-dimensional structures of the Pro43Gly mutant, rather than of the conformationally heterogeneous wild-type protein.  相似文献   

12.
The calcium-binding protein calbindin D9k has previously been shown to exist in two folded forms only differing in the proline cis-trans isomerism of the Gly-42-Pro-43 amide bond. This bond is located in a flexible loop connecting the two EF-hand Ca2+ sites. Calbindin D9k therefore constitutes a unique test case for investigating if the recently discovered enzyme peptidyl-prolyl cis-trans isomerase (PPIase) can affect the cis-trans exchange rate in a folded protein. The 1H NMR saturation transfer technique has been used to measure the rate of interconversion between the cis and trans forms of calbindin in the presence of PPIase (PPIase:calbindin concentration ratio 1:10) at 35 degrees C. No rate enhancement could be detected.  相似文献   

13.
MAb1, a human IgG1 monoclonal antibody produced in a NS0 cell line, exhibits charge heterogeneity because of the presence of variants formed by processes such as N-terminal glutamate cyclization, C-terminal lysine truncation, deamidation, aspartate isomerization and sialylation in the carbohydrate moiety. Four major charge variants of MAb1 were isolated and the conformations of these charge variants were studied using hydrogen/deuterium exchange mass spectrometry, including the H/D exchange time course (HX-MS) and the stability of unpurified proteins from rates of H/D exchange (SUPREX) techniques. HX-MS was used to evaluate the conformation and solution dynamics of MAb1 charge variants by measuring their deuterium buildup over time at the peptide level. The SUPREX technique evaluated the unfolding profile and relative stability of the charge variants by measuring the exchange properties of globally protected amide protons in the presence of a chemical denaturant. The H/D exchange profiles from both techniques were compared among the four charge variants of MAb1. The two techniques together offered extensive understanding about the local and subglobal/global unfolding of the charge variants of MAb1. Our results demonstrated that all four charge variants of MAb1 were not significantly different in conformation, solution dynamics and chemical denaturant-induced unfolding profile and stability, which aids in understanding the biofunctions of the molecules. The analytical strategy used for conformational characterization may also be applicable to comparability studies done for antibody therapeutics.  相似文献   

14.
Calbindin D(28K) is an EF-hand containing protein that plays a vital role in neurological function. We now show that calcium-loaded calbindin D(28K) interacts with Ran-binding protein M, a protein known to play a role in microtubule function. Using NMR methods, we show that a peptide, LASIKNR, derived from Ran-binding protein M, interacts with several regions of the calcium-loaded protein including the amino terminus and two other regions that exhibit conformational exchange on the NMR timescale. We suggest that the interaction between calbindin D(28K) and Ran-binding protein M may be important in calbindin D(28K) function.  相似文献   

15.
The cellular functions of several S100 proteins involve specific interactions with phospholipids and the cell membrane. The interactions between calbindin D(9k) (S100D) and the detergent dodecyl phosphocholine (DPC) were studied using NMR spectroscopy. In the absence of Ca(2+), the protein associates with DPC micelles. The micelle-associated state has intact helical secondary structures but no apparent tertiary fold. At neutral pH, Ca(2+)-loaded calbindin D(9k) does not associate with DPC micelles. However, a specific interaction is observed with individual DPC molecules at a site close to the linker between the two EF-hands. Binding to this site occurs only when Ca(2+) is bound to the protein. A reduction in pH in the absence of Ca(2+) increases the stability of the micelle-associated state. This along with the corresponding reduction in Ca(2+) affinity causes a transition to the micelle-associated state also in the presence of Ca(2+) when the pH is lowered. Site-specific analysis of the data indicates that calbindin D(9k) has a core of three tightly packed helices (A, B, and D), with a dynamic fourth helix (C) more loosely associated. Evidence is presented that the Ca(2+)-binding characteristics of the two EF-hands are distinctly different in a micelle environment. The role of calbindin D(9k) in the cell is discussed, along with the broader implications for the function of the S100 protein family.  相似文献   

16.
The two Ca(2+)-binding sites in calbindin D9k, a protein belonging to the calmodulin superfamily of intracellular proteins, have slightly different structure. The C-terminal site (amino acids 54-65) is a normal EF-hand as in the other proteins of the calmodulin superfamily, while the N-terminal site (amino acids 14-27) contains two additional amino acids, one of which is a proline. We have constructed and studied five mutants of calbindin D9k modified in the N-terminal site. In normal EF-hand structures the first amino acid to coordinate calcium is invariantly an Asp. For this reason Ala15, is exchanged by an Asp in all mutants and the mutants also contain various other changes in this site. The mutants have been characterized by 43Ca, 113Cd and 1H NMR and by the determination of the calcium binding constants using absorption chelators. In two of the mutants (one where Ala14 is deleted, Ala15 is replaced by Asp and Pro20 is replaced by Gly, the other where, in addition, Asn21 is deleted), we find that the structure has changed considerably compared to the wild-type calbindin. The NMR results indicate that the calcium coordination has changed to mainly side-chain carboxyls, from being octahedrally coordinated by mainly back-bone carbonyls, and/or that the coordination number has decreased. The N-terminal site has thus been turned into a normal EF-hand, in which the calcium ion is coordinated by side-chain carboxyls. Furthermore, the calcium binding constants of these two mutant proteins are almost as high as in the wild-type calbindin D9k. That is, the extensive alterations in the N-terminal site have not disrupted the calcium binding ability of the proteins.  相似文献   

17.
The complexity of Ca2+ cell signaling is dependent on a plethoria of Ca2+-binding proteins that respond to signals in different ranges of Ca2+ concentrations. Since the function of these proteins is directly coupled to their Ca2+-binding properties, there is a need for accurately determined equilibrium Ca2+-binding constants. In this work we outline the experimental techniques available to determine Ca2+-binding constants in proteins, derive the models used to describe the binding, and present CaLigator, software for least-square fitting directly to the measured quantity. The use of the software is illustrated for Ca2+-binding data obtained for two deamidated forms of calbindin D(9k), either an isospartate-56 (beta form) or a normal Asp-56 (alpha form). Here, the Ca2+-binding properties of the two isoforms have been studied using the chelator method. The alpha form shows similar Ca2+-binding properties to the wild type while the beta form has lost both cooperativety and affinity.  相似文献   

18.
Calbindin D9k is a small, well-studied calcium-binding protein consisting of two helix-loop-helix motifs called EF-hands. The P43MG2 mutant is one of a series of mutants designed to sequentially lengthen the largely unstructured tether region between the two EF-hands (F36-S44). A lower calcium affinity for P43MG was expected on the basis of simple entropic arguments. However, this is not the case and P43MG (-97 kJ.mol-1) has a stronger calcium affinity than P43M (-93 kJ.mol-1), P43G (-95 kJ.mol-1) and even wild-type protein (-96 kJ.mol-1). An NMR study was initiated to probe the structural basis for these calcium-binding results. The 1H NMR assignments and 3JHNH alpha values of the calcium-free and calcium-bound form of P43MG calbindin D9k mutant are compared with those of P43G. These comparisons reveal that little structure is formed in the tether regions of P43MG(apo), P43G(apo) and P43G(Ca) but a helical turn (S38-K41) appears to stabilize this part of the protein structure for P43MG(Ca). Several characteristic NOEs obtained from 2D and 3D NMR experiments support this novel helix. A similar, short helix exists in the crystal structure of calcium-bound wild-type calbindin D9k-but this is the first observation in solution for wild-type calbindin D9k or any of its mutants.  相似文献   

19.
Water molecules are found to complete the Ca2+ coordination sphere when a protein fails to provide enough ligating oxygens. Hydrogen bonding of these water molecules to the protein backbone or side chains may contribute favorably to the Ca2+ affinity, as suggested in an earlier study of two calbindin D(9k) mutants [E60D and E60Q; Linse et al. (1994) Biochemistry 33, 12478-12486]. To investigate the generality of this conclusion, another side chain, Gln 22, which hydrogen bonds to a Ca2+-coordinating water molecule in calbindin D(9k), was mutated. Two calbindin D(9k) mutants, (Q22E+P43M) and (Q22N+P43M), were constructed to examine the interaction between Gln 22 and the water molecule in the C-terminal calcium binding site II. Shortening of the side chain, as in (Q22N+P43M), reduces the affinity of binding two calcium ions by a factor of 18 at low ionic strength, whereas introduction of a negative charge, as in (Q22E+P43M), leads to a 12-fold reduction. In 0.15 M KCl, a 7-fold reduction in affinity was observed for both mutants. The cooperativity of Ca2+ binding increases for (Q22E+P43M), while it decreases for (Q22N+P43M). The rates of Ca2+ dissociation are 5.5-fold higher for the double mutants than for P43M at low ionic strength. For both mutants, reduced strength of hydrogen bonding to calcium-coordinating water molecules is a likely explanation for the observed effects on Ca2+ affinity and dissociation. In the apo forms, the (Q22E+P43M) mutant has lower stability toward urea denaturation than (Q22N+P43M) and P43M. 2D (1)H NMR and crystallographic experiments suggest that the structure of (Q22E+P43M) and (Q22N+P43M) is unchanged relative to P43M, except for local perturbations in the loop regions.  相似文献   

20.
Calbindin D(28k) (calbindin) is a cytoplasmic protein expressed in the central nervous system, which is implied in Ca(2+) homeostasis and enzyme regulation. A combination of biochemical methods and mass spectrometry has been used to identify post-translational modifications of human calbindin. The protein was studied at 37 degrees C or 50 degrees C in the presence or absence of Ca(2+). One deamidation site was identified at position 203 (Asn) under all conditions. Kinetic experiments show that deamidation of Asn 203 occurs at a rate of 0.023 h(-1) at 50 degrees C for Ca(2+)-free calbindin. Deamidation is slower for the Ca(2+)-saturated protein. The deamidation process leads to two Asp iso-forms, regular Asp and iso-Asp. The form with regular Asp 203 binds four Ca(2+) ions with high affinity and positive cooperativity, i.e., in a very similar manner to non-deamidated protein. The form with beta-aspartic acid (or iso-Asp 203) has reduced affinity for two or three sites leading to sequential Ca(2+) binding, i.e., the Ca(2+)-binding properties are significantly perturbed. The status of the cysteine residues was also assessed. Under nonreducing conditions, cysteines 94 and 100 were found both in reduced and oxidized form, in the latter case in an intramolecular disulfide bond. In contrast, cysteines 187, 219, and 257 were not involved in any disulfide bonds. Both the reduced and oxidized forms of the protein bind four Ca(2+) ions with high affinity in a parallel manner and with positive cooperativity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号