共查询到20条相似文献,搜索用时 0 毫秒
1.
p120-catenin (p120) is required for cadherin stability and is thought to have a central role in modulating cell-cell adhesion. Several lines of evidence suggest that S/T phosphorylation may regulate p120 activity, but the upstream kinases involved have not been established, nor has a discreet measurable function been assigned to an individual site. To approach these issues, we have generated p120 phospho-specific monoclonal antibodies to several individual phosphorylation sites and are using them to pinpoint upstream kinases and signaling pathways that control p120 activity. Protein Kinase C (PKC) has been implicated as a signaling intermediate in several cadherin-associated cellular activities. Signaling events that activate PKC induce rapid phosphorylation at p120 Serine 879 (S879), suggesting that p120 activity is regulated, in part, by one or more PKC isoforms. Here, we find that physiologic activation of a G-protein coupled receptor (i.e., endothelin receptor), as well as several Receptor Tyrosine Kinases, induce rapid and robust p120 phosphorylation at S879, suggesting that these pathways crosstalk to cadherin complexes via p120. Using Va2 cells and PDGF stimulation, we show for the first time that PDGFR-mediated phosphorylation at this site is dependent on PKCalpha, a conventional PKC isoform implicated previously in disruption of adherens junctions. 相似文献
2.
Park JH Kim WS Kim JY Park MH Nam JH Yun CW Kwon YG Jo I 《Free radical biology & medicine》2011,51(12):2217-2226
The effects of DNA damage on NO production have not been completely elucidated. Using ultraviolet (UV) irradiation as a DNA-damaging agent, we studied its effect on NO production in bovine aortic endothelial cells (BAEC). UV irradiation acutely increased NO production, the phosphorylation of endothelial NO synthase (eNOS) at serine 1179, and eNOS activity. No alterations in eNOS expression nor phosphorylation at eNOS Thr497 or eNOS Ser116 were found. SB218078, a checkpoint kinase 1 (Chk1) inhibitor, inhibited UV-irradiation-stimulated eNOS-Ser1179 phosphorylation and NO production. Similarly, ectopic expression of small interference RNA for Chk1 or a dominant-negative Chk1 repressed the UV-irradiation stimulatory effect, whereas wild-type Chk1 increased basal eNOS-Ser1179 phosphorylation. Purified Chk1 directly phosphorylated eNOS Ser1179 in vitro. Confocal microscopy and coimmunoprecipitation studies revealed a colocalization of eNOS and Chk1. In basal BAEC, heat shock protein 90 (Hsp90) predominantly interacted with Chk1. This interaction, which decreased significantly in response to UV irradiation, was accompanied by increased interaction of Hsp90 with eNOS. The Hsp90 inhibitor geldanamycin attenuated UV-irradiation-stimulated eNOS-Ser1179 phosphorylation by dissociating Hsp90 from eNOS. UV irradiation and geldanamycin did not alter the interaction between eNOS and Chk1. Overall, this is the first study demonstrating that Chk1 directly phosphorylates eNOS Ser1179 in response to UV irradiation, which is dependent on Hsp90 interaction. 相似文献
3.
Dynamin 1 is thought to mediate synaptic transmission through interactions with multiple endocytic accessory proteins in a phosphorylation-dependent manner. Previously, we have shown that DYRK1A, a chromosome 21-encoded kinase implicated in the mental retardation of Down syndrome, phosphorylates primarily serine 857 (S857) in the proline-rich domain, found only in 1xa, one of the alternative C-terminal splicing isoforms of dynamin 1. Dynamin 1xa and 1xb isoforms are able to assemble into heterologous complexes and are coregulated by DYRK1A phosphorylation in binding to amphiphysin in vitro. To help in assessing the physiological significance of S857 phosphorylation, we developed a semiquantitative method for measuring the cellular level of phospho-S857 (pS857). Dynamin 1xa is highly phosphorylated at S857 in resting hippocampal neurons and in a hippocampal cell line, with >60% of all endogenous protein phosphorylated at this residue. In the hippocampus, the level of pS857 is dynamically controlled by synaptic stimulations with the involvement of Ca(2+)/calcineurin and AMPA/kainate receptors. Immunofluorescence staining shows that pS857 is found in the soma and throughout the entire length of apical dendrites in resting pyramidal neurons. Neuronal stimulation in the Schaffer collateral pathway promotes pS857 dephosphorylation in distal areas of apical dendrites, the region forming synapses with the impinging axons of Schaffer collateral. In summary, our results support the conclusion that S857 phosphorylation is a physiological event and its level is modulated by neuronal activity in nerve terminals. 相似文献
4.
Interleukin-8 induces the endothelial cell migration through the activation of phosphoinositide 3-kinase-Rac1/RhoA pathway 总被引:1,自引:0,他引:1
Lai Y Shen Y Liu XH Zhang Y Zeng Y Liu YF 《International journal of biological sciences》2011,7(6):782-791
Endothelial cell migration is essential for tumor angiogenesis, and interleukin-8 (IL-8) has been shown to play an important role in tumor growth, angiogenesis, and metastasis. This study aimed to investigate the molecular mechanism of IL-8 induced endothelial cell migration. Our results indicated that IL-8 induced a rapid rearrangement of the actin cytoskeleton in EA.Hy926 cells, generating extensions resembling membrane ruffling and stress fibers. These processes required parallel upregulation of the small GTPases Rac1 and RhoA. Moreover, we demonstrated that IL-8 activated PI3K following the same kinetics observed from IL-8 induction of cytoskeletal rearrangement, suggesting the participation of PI3K in these processes. Taken together, our study demonstrates that PI3K-Rac1/RhoA signaling pathway plays a vital role in IL-8 induced endothelial cell migration, and provides new insight into the molecular mechanisms by which IL-8 contributes to tumor angiogenesis and metastasis. 相似文献
5.
Seldon MP Silva G Pejanovic N Larsen R Gregoire IP Filipe J Anrather J Soares MP 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(11):7840-7851
6.
7.
Identification of regulatory sites of phosphorylation of the bovine endothelial nitric-oxide synthase at serine 617 and serine 635 总被引:3,自引:0,他引:3
Michell BJ Harris MB Chen ZP Ju H Venema VJ Blackstone MA Huang W Venema RC Kemp BE 《The Journal of biological chemistry》2002,277(44):42344-42351
Endothelial nitric-oxide synthase (eNOS) is regulated by signaling pathways involving multiple sites of phosphorylation. The coordinated phosphorylation of eNOS at Ser(1179) and dephosphorylation at Thr(497) activates the enzyme, whereas inhibition results when Thr(497) is phosphorylated and Ser(1179) is dephosphorylated. We have identified two further phosphorylation sites, at Ser(617) and Ser(635), by phosphopeptide mapping and matrix-assisted laser desorption ionization time of flight mass spectrometry. Purified protein kinase A (PKA) phosphorylates both sites in purified eNOS, whereas purified Akt phosphorylates only Ser(617). In bovine aortic endothelial cells, bradykinin (BK), ATP, and vascular endothelial growth factor stimulate phosphorylation of both sites. BK-stimulated phosphorylation of Ser(617) is Ca(2+)-dependent and is partially inhibited by LY294002 and wortmannin, phosphatidylinositol 3-kinase inhibitors, suggesting signaling via Akt. BK-stimulated phosphorylation of Ser(635) is Ca(2+)-independent and is completely abolished by the PKA inhibitor, KT5720, suggesting signaling via PKA. Activation of PKA with isobutylmethylxanthine also causes Ser(635), but not Ser(617), phosphorylation. Mimicking phosphorylation at Ser(635) by Ser to Asp mutation results in a greater than 2-fold increase in activity of the purified protein, whereas mimicking phosphorylation at Ser(617) does not alter maximal activity but significantly increases Ca(2+)-calmodulin sensitivity. These data show that phosphorylation of both Ser(617) and Ser(635) regulates eNOS activity and contributes to the agonist-stimulated eNOS activation process. 相似文献
8.
When MCF-7 cells were incubated with 10 or 20 microM CdCl(2), p53 protein level increased after 18 h. Among serines in p53 protein immunoprecipitated from cells treated with CdCl(2), only Ser 15 was phosphorylated. No clear phosphorylation was found on Ser 6, 9, 20, 37, and 392. Accumulation of p53 protein phosphorylated at Ser 15 was also found after 18 h exposure. While phosphorylation of extracellular signal-regulated protein kinase, c-Jun NH2-terminal kinase and p38 was found in cells treated with CdCl(2), treatment with U0126, LL-Z1640-2, or SB203580 did not suppress Ser 15 phosphorylation. On the other hand, treatment with wortmannin or caffeine suppressed CdCl(2)-induced Ser 15 phosphorylation and accumulation of p53 protein. The present results showed that cadmium induces phosphorylation of p53 at Ser 15 in MCF-7 cells depending on phosphatidylinositol 3-kinase related kinases, but not on mitogen-activated protein kinases. 相似文献
9.
Odunayo O. Mugisho Laverne D. Robilliard Louise F. B. Nicholson E. Scott Graham Simon J. O'Carroll 《Cell biology international》2020,44(1):343-351
Neuroinflammatory disorders such as Alzheimer's and Parkinson's diseases are characterised by chronic inflammation and loss of vascular integrity. Bradykinin 1 receptor (B1R) activation has been implicated in many neuroinflammatory diseases, but the contribution of B1R to inflammation and vascular breakdown is yet to be determined. As a result, the present study evaluated the effect of B1R stimulation using Des‐Arg‐9‐BK on the cytokine profile and junctional properties of human cerebral microvascular endothelial cells (hCMVECs). Results showed that stimulation of B1R receptors increased secretion of pro‐inflammatory cytokines, interleukin‐6 (IL‐6), IL‐8, intracellular adhesion molecule‐1 (ICAM‐1), vascular cell adhesion molecule‐1 (VCAM‐1) and monocyte chemoattractant protein‐1 (MCP‐1), but decreased the expression of vascular endothelial growth factor (VEGF), a cytokine and growth factor required for maintenance of the vasculature. B1R stimulation also resulted in the loss of occludin expression at tight junctions with no change in VE‐cadherin expression. There was also a significant increase in permeability to Evans blue albumin, suggesting an increase of vascular permeability. Taken together, these results suggest that B1R activation that occurs in neuroinflammatory diseases may contribute to both the inflammation and loss of blood‐brain barrier integrity that is characteristic of these diseases. 相似文献
10.
Lim MJ Choi KJ Ding Y Kim JH Kim BS Kim YH Lee J Choe W Kang I Ha J Yoon KS Kim SS 《Molecular endocrinology (Baltimore, Md.)》2007,21(9):2282-2293
Although the RhoA/Rho kinase (RhoA/ROK) pathway has been extensively investigated, its roles and downstream signaling pathways are still not well understood in myogenic processes. Therefore, we examined the effects of RhoA/ROK on myogenic processes and their signaling molecules using H9c2 and C2C12 cells. Increases in RhoA/ROK activities and serine phosphorylation levels of insulin receptor substrate (IRS)-1 (Ser307 and Ser636/639) and IRS-2 were found in proliferating myoblasts, whereas IRS-1/2 tyrosine phosphorylation and phosphatidylinositol (PI) 3-kinase activity increased during the differentiation process. ROK strongly bound to IRS-1/2 in proliferation medium but dissociated from them in differentiation medium (DM). ROK inactivation by a ROK inhibitor, Y27632, or a dominant-negative ROK, decreased IRS-1/2 serine phosphorylation with increases in IRS-1/2 tyrosine phosphorylation and PI 3-kinase activity, which led to muscle differentiation even in proliferation medium. Inhibition of ROK also enhanced differentiation in DM. ROK activation by a constitutive active ROK blocked muscle differentiation with the increased IRS-1/2 serine phosphorylation, followed by decreases in IRS-1/2 tyrosine phosphorylation and PI 3-kinase activity in DM. Interestingly, fibroblast growth factor-2 added to DM also blocked muscle differentiation through RhoA/ROK activation. Fibroblast growth factor-2 blockage of muscle differentiation was reversed by Y27632. Collectively, these results suggest that the RhoA/ROK pathway blocks muscle differentiation by phosphorylating IRS proteins at serine residues, resulting in the decreased IRS-1/2 tyrosine phosphorylation and PI 3-kinase activity. The absence of the inhibitory effects of RhoA/ROK in DM due to low concentrations of myogenic inhibitory growth factors seems to allow IRS-1/2 tyrosine phosphorylation, which stimulates muscle differentiation via transducing normal myogenic signaling. 相似文献
11.
12.
Norwood N Moore TM Dean DA Bhattacharjee R Li M Stevens T 《American journal of physiology. Lung cellular and molecular physiology》2000,279(5):L815-L824
We hypothesized that myosin light chain kinase (MLCK) links calcium release to activation of store-operated calcium entry, which is important for control of the endothelial cell barrier. Acute inhibition of MLCK caused calcium release from inositol trisphosphate-sensitive calcium stores and prevented subsequent activation of store-operated calcium entry by thapsigargin, suggesting that MLCK serves as an important mechanism linking store depletion to activation of membrane calcium channels. Moreover, in voltage-clamped single rat pulmonary artery endothelial cells, thapsigargin activated an inward calcium current that was abolished by MLCK inhibition. F-actin disruption activated a calcium current, and F-actin stabilization eliminated the thapsigargin-induced current. Thapsigargin increased endothelial cell permeability in the presence, but not in the absence, of extracellular calcium, indicating the importance of calcium entry in decreasing barrier function. Although MLCK inhibition prevented thapsigargin from stimulating calcium entry, it did not prevent thapsigargin from increasing permeability. Rather, inhibition of MLCK activity increased permeability that was especially prominent in low extracellular calcium. In conclusion, MLCK links store depletion to activation of a store-operated calcium entry channel. However, inhibition of calcium entry by MLCK is not sufficient to prevent thapsigargin from increasing endothelial cell permeability. 相似文献
13.
Inhibition of protein geranylgeranylation and RhoA/RhoA kinase pathway induces apoptosis in human endothelial cells 总被引:6,自引:0,他引:6
Li X Liu L Tupper JC Bannerman DD Winn RK Sebti SM Hamilton AD Harlan JM 《The Journal of biological chemistry》2002,277(18):15309-15316
Geranylgeranylation of RhoA small G-protein is essential for its localization to cell membranes and for its biological functions. Many RhoA effects are mediated by its downstream effector RhoA kinase. The role of protein geranylgeranylation and the RhoA pathway in the regulation of endothelial cell survival has not been elucidated. The hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitor lovastatin depletes cellular pools of geranylgeranyl pyrophosphate and farnesol pyrophosphate and thereby inhibits both geranylgeranylation and farnesylation. Human umbilical vein endothelial cells (HUVECs) were exposed to lovastatin (3 microm-30 microm) for 48 h, and cell death was quantitatively determined by cytoplasmic histone-associated DNA fragments as well as caspase-3 activity. The assays showed that lovastatin caused a dose-dependent endothelial cell death. The addition of geranylgeraniol, which restores geranylgeranylation, rescued HUVEC from apoptosis. The geranylgeranyltransferase inhibitor GGTI-298, but not the farnesyltransferase inhibitor FTI-277, induced apoptosis in HUVEC. Cell death was also induced by a blockade of RhoA function by exoenzyme C3. In addition, treatment of HUVEC with the RhoA kinase inhibitors Y-27632 and HA-1077 caused dose-dependent cell death. Y-27632 did not inhibit other well known survival pathways, such as NF-kappa B, ERK, and phosphatidylinositol 3-kinase/Akt. However, there was an increase in p53 protein level concomitant with Y-27632-induced cell death. Unlike the apoptosis induced by TNF-alpha, which occurs only with inhibition of new protein synthesis, apoptosis induced by inhibitors of HMG-CoA reductase, geranylgeranyltransferase, or RhoA kinase was blocked by cycloheximide. Our data indicate that inhibition of protein geranylgeranylation and RhoA pathways induce apoptosis in HUVEC and that induction of p53 or other proapoptotic proteins is required for this process. 相似文献
14.
Huang F Subbaiah PV Holian O Zhang J Johnson A Gertzberg N Lum H 《American journal of physiology. Lung cellular and molecular physiology》2005,289(2):L176-L185
Lysophosphatidylcholine (LPC) is a bioactive proinflammatory lipid that can be generated by pathological activities. We investigated the hypothesis that LPC signals increase in endothelial permeability. Stimulation of human dermal microvascular endothelial cells and bovine pulmonary microvascular endothelial cells with LPC (10-50 microM) induced decreases (within minutes) in transendothelial electrical resistance and increase of endothelial permeability. LPC activated (within 5 min) membrane-associated PKC phosphotransferase activity in the absence of translocation. Affinity-binding analysis indicated that LPC induced increases (also by 5 min) of GTP-bound RhoA, but not Rac1 or Cdc42. By 60 min, both signaling pathways decreased toward baseline. Inhibition of RhoA with C3 transferase inhibited approximately 50% of LPC-induced resistance decrease. Pretreatment with PKC inhibitor G?-6983 (concentrations selective for classic PKC), PMA-induced depletion of PKCalpha, and transfection of antisense PKCalpha oligonucleotide each prevented 40-50% of the LPC-induced resistance decrease. Furthermore, these three PKC inhibition strategies inhibited 60-80% of the LPC-induced GTP-bound RhoA. These results show that LPC directly impairs the endothelial barrier function that was dependent, at least in part, on cross talk of PKCalpha and RhoA signals. The evidence indicates that elevated LPC levels can contribute to the activation of a proinflammatory endothelial phenotype. 相似文献
15.
Mehta D Ahmmed GU Paria BC Holinstat M Voyno-Yasenetskaya T Tiruppathi C Minshall RD Malik AB 《The Journal of biological chemistry》2003,278(35):33492-33500
We tested the hypothesis that RhoA, a monomeric GTP-binding protein, induces association of inositol trisphosphate receptor (IP3R) with transient receptor potential channel (TRPC1), and thereby activates store depletion-induced Ca2+ entry in endothelial cells. We showed that RhoA upon activation with thrombin associated with both IP3R and TRPC1. Thrombin also induced translocation of a complex consisting of Rho, IP3R, and TRPC1 to the plasma membrane. IP3R and TRPC1 translocation and association required Rho activation because the response was not seen in C3 transferase (C3)-treated cells. Rho function inhibition using Rho dominant-negative mutant or C3 dampened Ca2+ entry regardless of whether Ca2+ stores were emptied by thrombin, thapsigargin, or inositol trisphosphate. Rho-induced association of IP3R with TRPC1 was dependent on actin filament polymerization because latrunculin (which inhibits actin polymerization) prevented both the association and Ca2+ entry. We also showed that thrombin produced a sustained Rho-dependent increase in cytosolic Ca2+ concentration [Ca2+]i in endothelial cells overexpressing TRPC1. We further showed that Rho-activated Ca2+ entry via TRPC1 is important in the mechanism of the thrombin-induced increase in endothelial permeability. In summary, Rho activation signals interaction of IP3R with TRPC1 at the plasma membrane of endothelial cells, and triggers Ca2+ entry following store depletion and the resultant increase in endothelial permeability. 相似文献
16.
17.
18.
We investigated the ability of GM1 to induce phosphorylation of the tyrosine kinase receptor for neurotrophins, Trk, in rat brain, and activation of possible down-stream signaling cascades. GM1 increased phosphorylated Trk (pTrk) in slices of striatum, hippocampus and frontal cortex in a concentration- and time-dependent manner, and enhanced the activity of Trk kinase resulting in receptor autophosphorylation. The ability of GM1 to induce pTrk was shared by other gangliosides, and was blocked by the selective Trk kinase inhibitors K252a and AG879. GM1 induced phosphorylation of TrkA > TrkC > TrkB in a region-specific distribution. Adding GM1 to brain slices activated extracellular-regulated protein kinases (Erks) in all three brain regions studied. In striatum, GM1 elicited activation of Erk2 > Erk1 in a time-and concentration-dependent manner. The GM1 effect on Erk2 was mimicked by other gangliosides, and was blocked by the Trk kinase inhibitors K252a and AG879. Pertussis toxin, as well as Src protein tyrosine kinase and protein kinase C inhibitors, did not prevent the GM1-induced activation of Erk2, apparently excluding the participation of Gi and Gq/11 protein-coupled receptors. Intracerebroventricular administration of GM1 induced a transient phosphorylation of TrkA and Erk1/2 in the striatum and hippocampus complementing the in situ studies. These observations support a role for GM1 in modulating Trk and Erk phosphorylation and activity in brain. 相似文献
19.
20.
Hartman ME Villela-Bach M Chen J Freund GG 《Biochemical and biophysical research communications》2001,280(3):776-781
We have previously shown that interferon-alpha (IFN alpha)-dependent tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) is impaired by serine phosphorylation of IRS-1 due to the reduced ability of serine phosphorylated IRS-1 to serve as a substrate for Janus kinase 1 (JAK1). Here we report that FKBP12-rapamycin-associated protein (FRAP) is a physiologic IRS-1 kinase that blocks IFN alpha signaling by serine phosphorylating IRS-1. We found that both FRAP and insulin-activated p70 S6 kinase (p70(s6k)) serine phosphorylated IRS-1 between residues 511 and 772 (IRS-1(511-772)). Importantly, only FRAP-dependent IRS-1(511-772) serine phosphorylation inhibited by 50% subsequent JAK1-dependent tyrosine phosphorylation of IRS-1. Furthermore, treatment of U266 cells with the FRAP inhibitor rapamycin increased IFN alpha-dependent tyrosine phosphorylation by twofold while reducing constitutive IRS-1 serine phosphorylation within S/T-P motifs by 80%. Taken together, these data indicate that FRAP, but not p70(s6k), is a likely physiologic IRS-1 serine kinase that negatively regulates JAK1-dependent IRS-1 tyrosine phosphorylation and suggests that FRAP may modulate IRS-dependent cytokine signaling. 相似文献