首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Induction of IL-12 and IL-23 is essential for protective immunity against Cryptococcusneoformans. The contribution of dendritic cells vs. macrophages to IL-12/23 production in response to C. neoformans infection is unclear. Activation of conventional bone marrow-derived dendritic cells (BMDC), plasmacytoid BMDC, and bone marrow-derived macrophages (BMMPhi) was assessed by analyzing cytokine responses and the expression of MHC-II, CD86, and CD80 in each cell type. Cryptococcus neoformans induced the release of IL-12/23p40 by BMDC, but not by BMMPhi, in a TLR2- and TLR4-independent but MyD88-dependent manner. Conventional BMDC rather than plasmacytoid BMDC up-regulated MHC-II and CD86, while BMMPhi down-regulated MHC-II and CD86 in response to C. neoformans. The up-regulation of MHC-II and CD86 on BMDC required MyD88. Our data point to conventional DC as critical IL-12/23-producing antigen-presenting cells during cryptococcosis.  相似文献   

2.
Toll-like receptor (TLR) 3 and 4 mediate the expression of many genes, including NF-kappaB- and interferon-regulatory factor (IRF)-3/interferon (IFN)-inducible genes, in macrophages and dendritic cells (DCs) in response to their ligand stimuli, polyI:C and lipopolysaccharide (LPS). Toll-IL-1 receptor homology domain (TIR)-containing adapter molecule 1 (TICAM-1) facilitates expression of IFN-inducible genes via TLR3. Although MyD88 and Mal/TIRAP adapters function downstream of TLR4, they barely induce IFN-beta. In addition, DC maturation as well as IFN-beta induction are largely independent of MyD88 and Mal/TIRAP. TICAM-1 is the functional adapter for both TLR3 and TLR4 that induces type 1 IFN and MyD88-independent DC maturation. In LPS-mediated TLR4 activation, a complex of TICAM-1 and an additional TLR4-binding adapter serves as the adapter. We named this TLR4-TICAM-1-bridging adapter TICAM-2. Our results reveal the details of MyD88-independent pathways which separately recruit the distinct adapters downstream of TLR3 and TLR4 and variations of the TLR output are in part regulated by the two additional adapters in DCs.  相似文献   

3.
Infection with RNA viruses presents a typical pattern of virus products, double-stranded RNA (dsRNA), and induces the maturation of antigen-presenting dendritic cell (mDC). There are several dsRNA sensors that are differentially distributed on the cell membrane and in the cytoplasm and are variably expressed depending on the cell type. Among these sensors, TLR3 links to the adaptor TICAM-1 (TRIF), which is characterized by its unique multipronged signaling cascades for cytokine/chemokine production, apoptosis and autophagy in both immune and tumor cells. In the context of mDC maturation, various cellular events are further induced in response to dsRNA; these include cross-priming followed by CD8+ CTL induction, NK activation and proliferation of CD4+ T cells including Th1, Th2, Treg and Th17 cells. In this review, we focus on the potential role of dsRNA in modulating the inflammatory milieu around mDCs and tumor-associated antigens to drive specific cellular effectors against the tumor.  相似文献   

4.

Background

Respiratory syncytial virus (RSV) is the leading cause of respiratory infections in children, elderly, and immunocompromised individuals. Severe infection is associated with short- and long-term morbidity including pneumonia, recurrent wheezing, and abnormal pulmonary function, and several lines of evidence indicate that impaired adaptive immune responses during infection are critical in the pathophysiology of RSV-mediated disease. Myeloid Dendritic cells (mDCs) play a pivotal role in shaping antiviral immune responses in the respiratory tract; however, few studies have examined the interactions between RSV and individual mDC subsets. In this study, we examined the effect of RSV on the functional response of primary mDC subsets (BDCA-1+ and BDCA-3+) isolated from peripheral blood.

Methods

BDCA-1+ and BDCA-3+ mDCs were isolated from the peripheral blood of healthy adults using FACS sorting. Donor-matched BDCA-1+ and BDCA-3+ mDCs were infected with RSV at a multiplicity of infection (MOI) of 5 for 40 hours. After infection, cells were analyzed for the expression of costimulatory molecules (CD86, CD80, and PD-L1), cytokine production, and the ability to stimulate allogenic CD4+ T cell proliferation.

Results

Both BDCA-1+ and BDCA-3+ mDCs were susceptible to infection with RSV and demonstrated enhanced expression of CD86, and the inhibitory costimulatory molecules CD80 and PD-L1. Compared to BDCA-3+ mDCs, RSV-infected BDCA-1+ mDC produced a profile of cytokines and chemokines predominantly associated with pro-inflammatory responses (IL-1β, IL-6, IL-12, MIP-1α, and TNF-α), and both BDCA-1+ and BDCA-3+ mDCs were found to produce IL-10. Compared to uninfected mDCs, RSV-infected BDCA-1+ and BDCA-3+ mDCs demonstrated a reduced capacity to stimulate T cell proliferation.

Conclusions

RSV infection induces a distinct pattern of costimulatory molecule expression and cytokine production by BDCA-1+ and BDCA-3+ mDCs, and impairs their ability to stimulate T cell proliferation.The differential expression of CD86 and pro-inflammatory cytokines by highly purified mDC subsets in response to RSV provides further evidence that BDCA-1+ and BDCA-3+ mDCs have distinct roles in coordinating the host immune response during RSV infection. Findings of differential expression of PD-L1 and IL-10 by infected mDCs, suggests possible mechanisms by which RSV is able to impair adaptive immune responses.  相似文献   

5.
MyD88, a Toll/interleukin-1 receptor homology (TIR) domain-containing adaptor protein, mediates signals from the Toll-like receptors (TLR) or IL-1/IL-18 receptors to downstream kinases. In MyD88-dependent TLR4 signaling, the function of MyD88 is enhanced by another TIR domain-containing adaptor, Mal/TIRAP, which brings MyD88 to the plasma membrane and promotes its interaction with the cytosolic region of TLR4. Hence, Mal is recognized as the "sorting adaptor" for MyD88. In this study, a direct interaction between MyD88-TIR and another membrane-sorting adaptor, TRAM/TICAM-2, was demonstrated in vitro. Cell-based assays including RNA interference experiments and TRAM deficient mice revealed that the interplay between MyD88 and TRAM in cells is important in mediating IL-18 signal transduction. Live cell imaging further demonstrated the co-localized accumulation of MyD88 and TRAM in the membrane regions in HEK293 cells. These findings suggest that TRAM serves as the sorting adaptor for MyD88 in IL-18 signaling, which then facilitates the signal transduction. The binding sites for TRAM are located in the TIR domain of MyD88 and actually overlap with the binding sites for Mal. MyD88, the multifunctional signaling adaptor that works together with most of the TLR members and with the IL-1/IL-18 receptors, can interact with two distinct sorting adaptors, TRAM and Mal, in a conserved manner in a distinct context.  相似文献   

6.
Brucella abortus is a facultative intracellular bacterium that infects humans and domestic animals. The enhanced susceptibility to virulent B. abortus observed in MyD88 knockout (KO) mice led us to investigate the mechanisms involved in MyD88-dependent immune responses. First, we defined the role of MyD88 in dendritic cell (DC) maturation. In vitro as well as in vivo, B. abortus-exposed MyD88 KO DCs displayed a significant impairment on maturation as observed by expression of CD40, CD86, and MHC class II on CD11c+ cells. In addition, IL-12 and TNF-alpha production was totally abrogated in MyD88 KO DCs and macrophages. Furthermore, B. abortus-induced IL-12 production was found to be dependent on TLR2 in DC, but independent on TLR2 and TLR4 in macrophages. Additionally, we investigated the role of exogenous IL-12 and TNF-alpha administration on MyD88 KO control of B. abortus infection. Importantly, IL-12, but not TNF-alpha, was able to partially rescue host susceptibility in MyD88 KO-infected animals. Furthermore, we demonstrated the role played by TLR9 during virulent B. abortus infection. TLR9 KO-infected mice showed 1 log Brucella CFU higher than wild-type mice. Macrophages and DC from TLR9 KO mice showed reduced IL-12 and unaltered TNF-alpha production when these cells were stimulated with Brucella. Together, these results suggest that susceptibility of MyD88 KO mice to B. abortus is due to impaired DC maturation and lack of IL-12 synthesis. Additionally, DC activation during Brucella infection plays an important regulatory role by stimulating and programming T cells to produce IFN-gamma.  相似文献   

7.
Lipopolysaccharide (LPS) is an agonist for Toll-like receptor (TLR) 4 and expresses many genes including NF-kappaB- and interferon regulatory factor (IRF)-3/IFN-inducible genes in macrophages and dendritic cells (DCs). TICAM-1/TRIF was identified as an adapter that facilitates activation of IRF-3 followed by expression of interferon (IFN)-beta genes in TLR3 signaling, but TICAM-1 does not directly bind TLR4. Although MyD88 and Mal/TIRAP adapters functions downstream of TLR4, DC maturation and IFN-beta induction are independent of MyD88 and Mal/TIRAP. In this investigation, we report the identification of a novel adapter, TICAM-2, that physically bridges TLR4 and TICAM-1 and functionally transmits LPS-TLR4 signaling to TICAM-1, which in turn activates IRF-3. In its structural features, TICAM-2 resembled Mal/TIRAP, an adapter that links TLR2/4 and MyD88. However, TICAM-2 per se exhibited minimal ability to activate NF-kappaB and the IFN-beta promoter. Hence, in LPS signaling TLR4 recruits two types of adapters, TIRAP and TICAM-2, to its cytoplasmic domain that are indirectly connected to two effective adapters, MyD88 and TICAM-1, respectively. We conclude that for LPS-TLR4-mediated activation of IFN-beta, the adapter complex of TICAM-2 and TICAM-1 plays a crucial role. This results in the construction of MyD88-dependent and -independent pathways separately downstream of the two distinct adapters.  相似文献   

8.
探讨转染人FasL基因的成熟树突状细胞(DC)对异体T淋巴细胞增殖和凋亡的影响,为实现临床器官移植免疫耐受提供初步实验依据.从健康成年人外周静脉血中获得成熟树突状细胞.将人FasL基因成功转染成熟树突状细胞,检测其表面分子的表达和自身凋亡情况,并对其抗原递呈功能进行分析.从异体健康成人外周血中获取T淋巴细胞,将转染成功的树突状细胞与T淋巴细胞混合培养,检测其对T淋巴细胞增殖和凋亡的影响.结果表明:人FasL基因转染没有明显影响成熟树突状细胞表面分子CD40、CD80、CD86和HLA-DR的表达;没有诱导树突状细胞自身发生凋亡;没有影响DC的抗原递呈功能.转染FasL基因后的树突状细胞使异体T淋巴细胞刺激指数明显下降,凋亡增加.因此认为,人FasL基因转染对成熟树突状细胞的表面分子表达、自身凋亡、抗原递呈等生物学性状无影响;转染FasL基因的树突状细胞使异体T淋巴细胞的增殖能力减弱,并能明显诱导T淋巴细胞凋亡.  相似文献   

9.
CD180 is homologous to TLR4 and regulates TLR4 signaling, yet its function is unclear. We report that injection of anti-CD180 mAb into mice induced rapid Ig production of all classes and subclasses, with the exception of IgA and IgG2b, with up to 50-fold increases in serum IgG1 and IgG3. IgG production after anti-CD180 injection was not due to reactivation of memory B cells and was retained in T cell-deficient (TCR knockout [KO]), CD40 KO, IL-4 KO, and MyD88 KO mice. Anti-CD180 rapidly increased both transitional and mature B cells, with especially robust increases in transitional B cell number, marginal zone B cell proliferation, and CD86, but not CD80, expression. In contrast, anti-CD40 induced primarily follicular B cell and myeloid expansion, with increases in expression of CD80 and CD95 but not CD86. The expansion of splenic B cells was due, in part, to proliferation and occurred in wild-type and TCR KO mice, whereas T cell expansion occurred in wild-type, but not in B cell-deficient, mice, indicating a direct role for B cells in CD180 stimulation in vivo. Combination of anti-CD180 with various MyD88-dependent TLR ligands biased B cell fate because coinjection diminished Ig production, but purified B cells exhibited synergistic proliferation. Anti-CD180 had no effect on cytokine production from B cells, but it increased IL-6, IL-10, and TNF-α production in combination with LPS or CpG. Thus, CD180 stimulation induces intrinsic B cell proliferation and differentiation, causing rapid increases in IgG, and integrates MyD88-dependent TLR signals to regulate proliferation, cytokine production, and differentiation.  相似文献   

10.
Dendritic cells (DCs) respond to microbial infections by undergoing phenotypic maturation and by producing multiple cytokines. In the present study, we analyzed the ability of influenza A and Sendai viruses to induce DC maturation and activate tumor necrosis factor alpha (TNF-alpha), alpha/beta interferon (IFN-alpha/beta), and IFN-like interleukin-28A/B (IFN-lambda2/3) and IL-29 (IFN-lambda1) gene expression in human monocyte-derived myeloid DCs (mDC). The ability of influenza A virus to induce mDC maturation or enhance the expression of TNF-alpha, IFN-alpha/beta, interleukin-28 (IL-28), and IL-29 genes was limited, whereas Sendai virus efficiently induced mDC maturation and enhanced cytokine gene expression. Influenza A virus-induced expression of TNF-alpha, IFN-alpha, IFN-beta, IL-28, and IL-29 genes was, however, dramatically enhanced when cells were pretreated with IFN-alpha. IFN-alpha priming led to increased expression of Toll-like receptor 3 (TLR3), TLR7, TLR8, MyD88, TRIF, and IFN regulatory factor 7 (IRF7) genes and enhanced influenza-induced phosphorylation and DNA binding of IRF3. Influenza A virus also enhanced the binding of NF-kappaB to the respective NF-kappaB elements of the promoters of IFN-beta and IL-29 genes. In mDC IL-29 induced MxA protein expression and possessed antiviral activity against influenza A virus, although this activity was lower than that of IFN-alpha or IFN-beta. Our results show that in human mDCs viruses can readily induce the expression of IL-28 and IL-29 genes whose gene products are likely to contribute to the host antiviral response.  相似文献   

11.
Natural killer (NK) cells are lymphocyte effectors that are activated to control certain microbial infections and tumors. Many NK-activating and regulating receptors are involved in regulating NK cell function. In addition, activation of naïve NK cells is fundamentally triggered by cytokines or myeloid dendritic cells (mDC) in various modes. In this study, we synthesized 16 S-[2,3-bis(palmitoyl)propyl]cysteine (Pam2Cys) lipopeptides with sequences designed from lipoproteins of Staphylococcus aureus, and assessed their functional properties using mouse (C57BL/6) bone marrow-derived DC (BMDC) and NK cells. NK cell activation was evaluated by three criteria: IFN-γ production, up-regulation of NK activation markers and cytokines, and NK target (B16D8 cell) cytotoxicity. The diacylated lipopeptides acted as TLR2 ligands, inducing up-regulation of CD25/CD69/CD86, IL-6, and IL-12p40, which represent maturation of BMDC. Strikingly, the Pam2Cys lipopeptides induced mouse NK cell activation based on these criteria. Cell-cell contact by Pam2Cys peptide-stimulated BMDC and NK cells rather than soluble mediators released by stimulated BMDC induced activation of NK cells. For most lipopeptides, the BMDC TLR2/MyD88 pathway was responsible for driving NK activation, while some slightly induced direct activation of NK cells via the TLR2/MyD88 pathway in NK cells. The potential for NK activation was critically regulated by the peptide primary sequence. Hydrophobic or proline-containing sequences proximal to the N-terminal lipid moiety interfered with the ability of lipopeptides to induce BMDC-mediated NK activation. This mode of NK activation is distinctly different from that induced by polyI:C, which is closely associated with type I IFN-inducing pathways of BMDC. These results imply that the MyD88 pathway of BMDC governs an alternative NK-activating pathway in which the peptide sequence of TLR2-agonistic lipopeptides critically affects the potential for NK activation.  相似文献   

12.
MyD88, the common adapter involved in TLR, IL-1, and IL-18 receptor signaling, is essential for the control of acute Mycobacterium tuberculosis (MTB) infection. Although TLR2, TLR4, and TLR9 have been implicated in the response to mycobacteria, gene disruption for these TLRs impairs only the long-term control of MTB infection. Here, we addressed the respective role of IL-1 and IL-18 receptor pathways in the MyD88-dependent control of acute MTB infection. Mice deficient for IL-1R1, IL-18R, or Toll-IL-1R domain-containing adaptor protein (TIRAP) were compared with MyD88-deficient mice in an acute model of aerogenic MTB infection. Although primary MyD88-deficient macrophages and dendritic cells were defective in cytokine production in response to mycobacterial stimulation, IL-1R1-deficient macrophages exhibited only a reduced IL-12p40 secretion with unaffected TNF, IL-6, and NO production and up-regulation of costimulatory molecules CD40 and CD86. Aerogenic MTB infection of IL-1R1-deficient mice was lethal within 4 wk with 2-log higher bacterial load in the lung and necrotic pneumonia but efficient pulmonary CD4 and CD8 T cell responses, as seen in MyD88-deficient mice. Mice deficient for IL-18R or TIRAP controlled acute MTB infection. These data demonstrate that absence of IL-1R signal leads to a dramatic defect of early control of MTB infection similar to that seen in the absence of MyD88, whereas IL-18R and TIRAP are dispensable, and that IL-1, together with IL-1-induced innate response, might account for most of MyD88-dependent host response to control acute MTB infection.  相似文献   

13.
Macrophage-activating lipopeptide 2 (MALP-2), a mycoplasmal diacylated lipopeptide with palmitic acid moiety (Pam2), activates Toll-like receptor (TLR) 2 to induce inflammatory cytokines. TLR2 is known to mature myeloid dendritic cells (mDC) to drive mDC contact-mediated natural killer (NK) cell activation. Here we tested if MALP-2 activates NK cells through stimulation of TLR2 on mDC. Although synthetic MALP-2 with 6 or 14 amino acids (a.a.) stretch (designated as s and f) matured mDC to induce IL-6, IL-12p40 and TNF-α to a similar extent, they far less activated NK cells than Pam2CSK4, a positive control of 6 a.a.-containing diacyl lipopeptide. MALP-2s and f were TLR2/6 agonists and activate the MyD88 pathway similar to Pam2CSK4, but MALP-2s having the CGNNDE sequence acted on mDC TLR2 to barely induce external NK activation. Even the s form, with slightly high induction of IL-6 compared to the f form, barely induced in vivo growth retardation of NK-sensitive implant tumor. Pam2CSK4 and MALP-2 have the common lipid moiety but different peptides, which are crucial for NK cell activation. The results infer that MALP-2 is applicable to a cytokine inducer but not to an adjuvant for antitumor NK immunotherapy.  相似文献   

14.
Abnormal T cell responses to commensal bacteria are involved in the pathogenesis of inflammatory bowel disease. MyD88 is an essential signal transducer for TLRs in response to the microflora. We hypothesized that TLR signaling via MyD88 was important for effector T cell responses in the intestine. TLR expression on murine T cells was examined by flow cytometry. CD4(+)CD45Rb(high) T cells and/or CD4(+)CD45Rb(low)CD25(+) regulatory T cells were isolated and adoptively transferred to RAG1(-/-) mice. Colitis was assessed by changes in body weight and histology score. Cytokine production was assessed by ELISA. In vitro proliferation of T cells was assessed by [(3)H]thymidine assay. In vivo proliferation of T cells was assessed by BrdU and CFSE labeling. CD4(+)CD45Rb(high) T cells expressed TLR2, TLR4, TLR9, and TLR3, and TLR ligands could act as costimulatory molecules. MyD88(-/-) CD4(+) T cells showed decreased proliferation compared with WT CD4(+) T cells both in vivo and in vitro. CD4(+)CD45Rb(high) T cells from MyD88(-/-) mice did not induce wasting disease when transferred into RAG1(-/-) recipients. Lamina propria CD4(+) T cell expression of IL-2 and IL-17 and colonic expression of IL-6 and IL-23 were significantly lower in mice receiving MyD88(-/-) cells than mice receiving WT cells. In vitro, MyD88(-/-) T cells were blunted in their ability to secrete IL-17 but not IFN-gamma. Absence of MyD88 in CD4(+)CD45Rb(high) cells results in defective T cell function, especially Th17 differentiation. These results suggest a role for TLR signaling by T cells in the development of inflammatory bowel disease.  相似文献   

15.
16.
We have explored the pathological role of the MyD88 signaling pathway via Toll-like receptors (TLRs) that mediate the recognition of pathogen-associated molecular patterns (PAMPs) in a murine model of autoimmune hepatitis induced by administering Concanavalin A (ConA). We first found that various TLRs and MyD88 molecules were expressed in liver of Con A-treated and untreated wild-type (WT) mice including liver macrophages. Flowcytometric analysis revealed that liver CD11b+CD11c and CD11b+CD11c+ antigen-presenting cells express TLR2, although NK and NKT cells did not. When WT and MyD88−/− mice were intravenously administered with Con A, the severity of hepatitis was significantly lower in Con A-injected MyD88−/− mice than in WT mice in terms of the histopathology, the levels of serum transaminase and pro-inflammatory cytokines (TNF-α, IFN-γ, and IL-6), and upregulation of CD80/CD86 and TNF-α on/in liver macrophages. The results provide evidence of a possible contribution of the TLRs-MyD88 signaling pathway in activating TLR-expressing liver macrophages in the autoimmune hepatitis model, and thus indicate that the strategy of blockade of pathological pathogens via the intestinal lumen may be feasible for the treatment of the disease.  相似文献   

17.
Alpha/beta interferons (IFN-alpha/beta) are key mediators of innate immunity and important modulators of adaptive immunity. The mechanisms by which IFN-alpha/beta are induced are becoming increasingly well understood. Recent studies showed that Toll-like receptors 7 and 8 expressed by plasmacytoid dendritic cells (pDCs) mediate the endosomal recognition of incoming viral RNA genomes, a process which requires myeloid differentiation factor 88 (MyD88). Here we investigate the requirements for virus-induced IFN-alpha/beta production in cultures of bone marrow-derived murine myeloid DCs (mDCs). Using recombinant Semliki Forest virus blocked at different steps in the viral life cycle, we show that replication-defective virus induced IFN-alpha/beta in mDCs while fusion-defective virus did not induce IFN-alpha/beta. The response to replication-defective virus was largely intact in MyD88-/- mDC cultures but was severely reduced in mDC cultures from mice lacking IFN regulatory factor 3. Our observations suggest that mDCs respond to incoming virus via a pathway that differs from the fusion-independent, MyD88-mediated endosomal pathway described for the induction of IFN-alpha/beta in pDCs. We propose that events during or downstream of viral fusion, but prior to replication, can activate IFN-alpha/beta in mDCs. Thus, mDCs may contribute to the antiviral response activated by the immune system at early time points after infection.  相似文献   

18.
Langerhans cells (LC) are a subset of skin-resident dendritic cells (DC) that reside in the epidermis as immature DC, where they acquire Ag. A key step in the life cycle of LC is their activation into mature DC in response to various stimuli, including epicutaneous sensitization with hapten and skin infection with Candida albicans. Mature LC migrate to the skin-draining LN, where they present Ag to CD4 T cells and modulate the adaptive immune response. LC migration is thought to require the direct action of IL-1β and IL-18 on LC. In addition, TLR ligands are present in C. albicans, and hapten sensitization produces endogenous TLR ligands. Both could contribute to LC activation. We generated Langerin-Cre MyD88(fl) mice in which LC are insensitive to IL-1 family members and most TLR ligands. LC migration in the steady state, after hapten sensitization and postinfection with C. albicans, was unaffected. Contact hypersensitivity in Langerin-Cre MyD88(fl) mice was similarly unaffected. Interestingly, in response to C. albicans infection, these mice displayed reduced proliferation of Ag-specific CD4 T cells and defective Th17 subset differentiation. Surface expression of costimulatory molecules was intact on LC, but expression of IL-1β, IL-6, and IL-23 was reduced. Thus, sensitivity to MyD88-dependent signals is not required for LC migration, but is required for the full activation and function of LC in the setting of fungal infection.  相似文献   

19.
CD1c+ myeloid dendritic cells (mDCs) in the peripheral blood of 30 SHIV-SF162p4 and SIVmac251 sequentially infected Chinese rhesus macaques were examined by flow cytometry to obtain further insight into mDC alterations in HIV/AIDS. The CD1c+ cells were found to be mononuclear leukocytes rather than granulocytes, and most of them expressed CD20. CD1c+mDCs (CD1c+CD20−) consisted of two morphological subsets: the granular and the large CD1c+mDCs. The expression of HLA-DR, CD86, and CD11b, but no CCR7, CD83 and CD123, together with their endocytotic capacity indicated that they were immature mDCs. Their frequency at weeks 10 and 12 post-infection was significantly higher than that of un-infected ones; the large CD1c+mDC level was significantly different between time points and almost absent from un-infected rhesus monkeys; significant correlations between CD1c+mDCs and plasma viral load levels were also observed. These data indicated a possible role for CD1c+mDCs in the pathophysiological process of SIV/HIV infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号