首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
Defects in cell signaling pathways play a central role in cancer cell growth, survival, invasion and metastasis. An important goal of proteomics is to characterize and develop "circuit maps" of these signaling pathways in normal and diseased cells. We have used reverse-phase protein array technology coupled with laser capture microdissection and phospho-specific antibodies to examine the activation status of several key molecular "gates" involved in cell survival and proliferation signaling in human ovarian tumor tissue. The levels of activated extracellular-regulated kinase (ERK1/2) varied considerably in tumors of the same histotype, but no significant differences between histotypes were observed. Advanced stage tumors had slightly higher levels of phosphorylated ERK1/2 compared to early stage tumors. The activation status of Akt and glycogen synthase kinase 3beta, key proteins and indicators of the state of the phosphatidylinositol 3-kinase/Akt pro-survival pathway also showed more variation within each histotype than between the histotypes studied. Our results demonstrate the utility of reverse phase protein microarrays for the multiplexed analysis of signal transduction from discreet cell populations of cells procured directly from human ovarian tumor specimens and suggest that patterns in signal pathway activation in ovarian tumors may be patient-specific rather than type or stage specific.  相似文献   

4.
Reverse phase protein arrays represent a new proteomics microarray technology with which to study the fluctuating state of the proteome in minute quantities of cells. The activation status of cell signaling pathways controls cellular fate and deregulation of these pathways underpins carcinogenesis. Changes in pathway activation that occur between early stage prostatic epithelial lesions, prostatic stroma and the extracellular matrix can be analyzed by obtaining pure populations of cell types by laser capture microdissection (LCM) and analyzing the relative states of several key phosphorylation points within the cellular circuitry. We have applied reverse phase protein array technology to analyze the status of key points in cell signaling involved in pro-survival, mitogenic, apoptotic and growth regulation pathways in the progression from normal prostate epithelium to invasive prostate cancer. Using multiplexed reverse phase protein arrays coupled with LCM, the states of signaling changes during disease progression from prostate cancer study sets were analyzed. Focused analysis of phospho-specific endpoints revealed changes in cellular signaling events through disease progression and between patients. We have used a new protein array technology to study specific molecular pathways believed to be important in cell survival and progression from normal epithelium to invasive carcinoma directly from human tissue specimens. With the advent of molecular targeted therapeutics, the identification, characterization and monitoring of the signaling events within actual human biopsies will be critical for patient-tailored therapy.  相似文献   

5.
Reliable sample preparation is of utmost importance for comparative proteome analysis, particularly when investigating minute amounts of clinical specimens, such as laser capture microdissected tumor tissue. In this study, we present an optimized nanoLC-MS workflow specifically for the analysis of laser capture microdissected breast cancer tissue. Analytical performance of different laser capture microdissection (LCM) functions available on the PALM system, time dependent trypsin digestion efficiency, effect of sample preparation and digestion time on peptide modification, semi-tryptic peptides and missed cleavages were evaluated. Our results show that microdissection from uncoated glass slides results in protein degradation; that protease and phosphatase inhibitors do not result in detectable improvement in number of peptides or semi-tryptic peptides; and that digestion time longer than four hours drastically reduces the number of missed cleavages, but also increases the number of unexpectedly modified peptides. Overalkylation was the most dominant side-reaction, which significantly increased overnight (P=0.05). The latter effect could almost completely be reverted by the use of a quenching agent (P=0.001). Taken together, our results show that it is of importance to carefully control sample handling steps so that reliable protein identification and quantitation can be performed within comparative proteomics studies using LCM. This article is part of a Special Issue entitled: Proteomics: The clinical link.  相似文献   

6.
7.
Genomic characterization is beginning to define a molecular taxonomy for breast cancer; however, the molecular basis of invasion and metastasis remains poorly understood. We report a pivotal role for the fibroblast growth factor-inducible 14 (Fn14) receptor in this process. We examined whether Fn14 and its ligand tumor necrosis factor-like weak inducer of apoptosis (TWEAK) were expressed in breast tumors and whether deregulation of Fn14 levels affected malignant behavior of breast cancer cell lines. Analysis of TWEAK and Fn14 in publicly available gene expression data indicated that high Fn14 expression levels significantly correlated with several poor prognostic indicators (P < 0.05). Fn14 expression was highest in the HER2-positive/estrogen receptor-negative (HER2(+)/ER(-)) intrinsic subtype (P = 0.0008). An association between Fn14 and HER2 expression in breast tumors was confirmed by immunohistochemistry. Fn14 levels were elevated in invasive, ER(-) breast cancer cell lines. Overexpression of Fn14 in weakly invasive MCF7 and T47D cells resulted in a marked induction of invasion and activation of nuclear factor-kappaB (NF-kappaB) signaling. Ectopic expression of Fn14tCT, a Fn14 deletion mutant that cannot activate NF-kappaB signaling, was not able to induce invasion. Moreover, ectopic expression of Fn14tCT in highly invasive MDA-MB-231 cells reduced their invasive capability. RNA interference-mediated inhibition of Fn14 expression in both MDA-MB-231 and MDA-MB-436 cells reduced invasion. Expression profiling of the Fn14-depleted cells revealed deregulation of NF-kappaB activity. Our findings support a role for Fn14-mediated NF-kappaB pathway activation in breast tumor invasion and metastasis.  相似文献   

8.
9.
Hedgehog-Gli (Hh-Gli) signaling pathway is one of the new molecular targets found upregulated in breast tumors. Estrogen receptor alpha (ERα) signaling has a key role in the development of hormone-dependent breast cancer. We aimed to investigate the effects of inhibiting both pathways simultaneously on breast cancer cell survival and the potential interactions between these two signaling pathways. ER-positive MCF-7 cells show decreased viability after treatment with cyclopamine, a Hh-Gli pathway inhibitor, as well as after tamoxifen (an ERα inhibitor) treatment. Simultaneous treatment with cyclopamine and tamoxifen on the other hand, causes short-term survival of cells, and increased migration. We found upregulated Hh-Gli signaling under these conditions and protein profiling revealed increased expression of proteins involved in cell proliferation and migration. Therefore, even though Hh-Gli signaling seems to be a good potential target for breast cancer therapy, caution must be advised, especially when combining therapies. In addition, we also show a potential direct interaction between the Shh protein and ERα in MCF-7 cells. Our data suggest that the Shh protein is able to activate ERα independently of the canonical Hh-Gli signaling pathway. Therefore, this may present an additional boost for ER-positive cells that express Shh, even in the absence of estrogen.  相似文献   

10.
Brain metastases are the most common fatal complication of systemic cancer, especially of lung (40-50%) and breast (20-30%) cancers. In this era of personalized therapy, there is a critical need to uncover the signaling architecture of brain metastases; however, little is known about what signaling pathways are activated in the context of the brain microenvironment. Using a unique study set of 42 brain metastases from patients with breast or nonsmall cell lung cancer (NSCLC), the phosphorylation/activation states of 128 key signaling proteins involved in cancer signaling were measured in laser capture microdissected tumor epithelium using reverse phase protein microarray (RPMA) technology. Distinct pathway activation subgroups from both breast and lung metastases were underpinned by, among others, ERBB2, AKT, mTOR, EGFR, SMAD, and ERK-p38 signaling. Breast cancer metastases showed significantly (p < 0.05) higher activation of the c-ERBB2/IGFR-AKT pathway network compared to NSCLC metastases, whereas NSCLC metastases to the brain exhibited higher relative levels of many members of the EGFR-ERK signaling network. Protein pathway activation mapping using RPMA revealed both the heterogeneity of signaling networks in brain metastases that would require a prior stratification to targeted therapies as well as the requirement of direct analysis of the metastatic lesion.  相似文献   

11.
微环境在胃癌发病过程中发挥重要作用。了解胃粘膜早期癌变的分子机制,对防治胃癌具有十分重要的意义。为了解胃粘膜非典型增生过程中,微环境中蛋白质的相互作用及调节机制,采用激光捕获显微切割(laser capture microdissection, LCM)技术,纯化正常胃粘膜组织(normal gastric mucosa tissue, NGM)和胃粘膜非典型增生(gastric mucosal atypical hyperplasia, GMAH)间质,通过同位素标记定量蛋白质组学技术分析,鉴定NGM和GMAH间质的差异表达蛋白质。利用生物信息学软件,分析NGM和GMAH间质差异表达蛋白质的相互作用及其联系。共鉴定出165个GMAH间质差异表达蛋白质,其中GMAH组织中表达上调者99个,下调者66个。它们涉及一些与肿瘤相关的信号通路,如p53信号通路、MAPK信号通路、细胞周期与凋亡等信号通路,且与细胞生长、增殖、凋亡和体液免疫应答等生物学过程有关。这些差异表达蛋白质,在STRING网络中呈现相互作用,两两间相互联系。 本文的研究提示,胃粘膜非典型增生微环境中存在S100A6和SOD3等蛋白质间的相互作用,它们通过影响p53信号通路、MAPK信号通路、细胞周期与凋亡等信号通路,在胃癌发病过程中发挥作用。  相似文献   

12.
13.
Due to pathologic, histologic, and biologic variation within prostate cancers, profiling the genetic changes associated with disease progression has been difficult. Although initial integration of data from profiling studies had been limited by platform variation, bioinformatic tools and analytic techniques have enabled integrative analysis of profiling studies and the identification of more robust and valid profiles. The identification of key transition points in the progression of prostate cancer relies on profiling precursor lesions and “pure” cell populations. Utilizing laser-capture microdissection to isolate 101 cell populations, a more specific genetic profile of progression from benign epithelium to metastatic disease was obtained. This laser-capture profile was analyzed in the context of the Molecular Concepts Map (MCM), a compendium of over 15,000 molecular concepts including other expression profiles of prostate cancer, to obtain an integrative molecular model of progression. The conceptual connections associated with progression confirm that prostate cancer biology is largely driven by pathways related to androgen signaling and epithelial cell biology; however, further analysis of concepts associated with progression suggests stromal factors are highly associated with progression of prostate cancer. The effect of stromal signatures on the progression model suggests the impact of stromal signature downregulation may reflect both a change in the epithelia:stroma ratio within higher grade tumors and also a microenvironment influence on prostate epithelia. Analyzing complex gene expression signatures in the context of molecular concepts improves integrative models and may improve detection, prognostication, or targeted therapy.  相似文献   

14.
Clear cell ovarian cancer is an epithelial ovarian cancer histotype that is less responsive to chemotherapy and carries poorer prognosis than serous and endometrioid histotypes. Despite this, patients with these tumors are treated in a similar fashion as all other ovarian cancers. Previous genomic analysis has suggested that clear cell cancers represent a unique tumor subtype. Here we generated the first whole genomic expression profiling using epithelial component of clear cell ovarian cancers and normal ovarian surface specimens isolated by laser capture microdissection. All the arrays were analyzed using BRB ArrayTools and PathwayStudio software to identify the signaling pathways. Identified pathways validated using serous, clear cell cancer cell lines and RNAi technology. In vivo validations carried out using an orthotopic mouse model and liposomal encapsulated siRNA. Patient-derived clear cell and serous ovarian tumors were grafted under the renal capsule of NOD-SCID mice to evaluate the therapeutic potential of the identified pathway. We identified major activated pathways in clear cells involving in hypoxic cell growth, angiogenesis, and glucose metabolism not seen in other histotypes. Knockdown of key genes in these pathways sensitized clear cell ovarian cancer cell lines to hypoxia/glucose deprivation. In vivo experiments using patient derived tumors demonstrate that clear cell tumors are exquisitely sensitive to antiangiogenesis therapy (i.e. sunitinib) compared with serous tumors. We generated a histotype specific, gene signature associated with clear cell ovarian cancer which identifies important activated pathways critical for their clinicopathologic characteristics. These results provide a rational basis for a radically different treatment for ovarian clear cell patients.  相似文献   

15.
16.
Neuron-glia interaction is involved in physiological function of neurons, however recent evidences have suggested glial cells as participants in neurotoxic and neurotrophic mechanisms of neurodegenerative/neuroregenerative processes. Histological techniques employing immunolabeling, historadiography and in situ hybridization have been useful to localize at cell levels molecules in normal and pathological situations. The intercellular accomplishment leading to neuronal injury in central nervous system disorders implies the performance of quantitative assays to better interpret the role of related molecules or signal pathways, however one limitation employing the whole tissue is the loss of cellular resolution. The laser capture microdissection was developed recently and allows the selection of specific cell types from their original environment after freezing and sectioning the tissue sampling, leading to the quantification of gene expression in individual cells, thus providing a unique opportunity to get new informations on cell signaling related to neurodegeneration. Here we reviewed the role of glial cell signaling on neurodegenerative disorders like ischemia, Parkinson and Alzheimer diseases, and also amyotrophic lateral sclerosis and what has been published with regards to single cell laser capture microdissection technique in the molecular biology investigation on these issues.  相似文献   

17.
To gain new insights into the mechanism of soybean (Glycine max) resistance to the soybean cyst nematode (Heterodera glycines), we compared gene expression profiles of developing syncytia in soybean near-isogenic lines differing at Rhg1 (for resistance to Heterodera glycines), a major quantitative trait locus for resistance, by coupling laser capture microdissection with microarray analysis. Gene expression profiling revealed that 1,447 genes were differentially expressed between the two lines. Of these, 241 (16.8%) were stress- and defense-related genes. Several stress-related genes were up-regulated in the resistant line, including those encoding homologs of enzymes that lead to increased levels of reactive oxygen species and proteins associated with the unfolded protein response. These results indicate that syncytia induced in the resistant line are undergoing severe oxidative stress and imbalanced endoplasmic reticulum homeostasis, both of which likely contribute to the resistance reaction. Defense-related genes up-regulated within syncytia of the resistant line included those predominantly involved in apoptotic cell death, the plant hypersensitive response, and salicylic acid-mediated defense signaling; many of these genes were either partially suppressed or not induced to the same level by a virulent soybean cyst nematode population for successful nematode reproduction and development on the resistant line. Our study demonstrates that a network of molecular events take place during Rhg1-mediated resistance, leading to a highly complex defense response against a root pathogen.  相似文献   

18.
MicroRNAs (miRNAs) contribute to cancer initiation and progression by silencing the expression of their target genes, causing either mRNA molecule degradation or translational inhibition. Intraductal epithelial proliferations of the breast are histologically and clinically classified into normal, atypical ductal hyperplasia (ADH), ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC). To better understand the progression of ductal breast cancer development, we attempt to identify deregulated miRNAs in this process using Formalin-Fixed, Paraffin-Embedded (FFPE) tissues from breast cancer patients. Following tissue microdissection, we obtained 8 normal, 4 ADH, 6 DCIS and 7 IDC samples, which were subject to RNA isolation and miRNA expression profiling analysis. We found that miR-21, miR-200b/c, miR-141, and miR-183 were consistently up-regulated in ADH, DCIS and IDC compared to normal, while miR-557 was uniquely down-regulated in DCIS. Interestingly, the most significant miRNA deregulations occurred during the transition from normal to ADH. However, the data did not reveal a step-wise miRNA alteration among discrete steps along tumor progression, which is in accordance with previous reports of mRNA profiling of different stages of breast cancer. Furthermore, the expression of MSH2 and SMAD7, two important molecules involving TGF-β pathway, was restored following miR-21 knockdown in both MCF-7 and Hs578T breast cancer cells. In this study, we have not only identified a number of potential candidate miRNAs for breast cancer, but also found that deregulation of miRNA expression during breast tumorigenesis might be an early event since it occurred significantly during normal to ADH transition. Consequently, we have demonstrated the feasibility of miRNA expression profiling analysis using archived FFPE tissues, typically with rich clinical information, as a means of miRNA biomarker discovery.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号