首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The positions of the inter- and intra-chain disulfide bonds of human plasma α2HS-glycoprotein were determined. α2HS-glycoprotein was digested with acid proteinase and then with thermolysin. The disulfide bonds containing peptides were separated by reversed-phase HPLC and detected by SBD-F (7-fluorobenzo-2-oxa-1,3-diasole-4-sulfonic acid ammonium salt) method. One inter-disulfide bond containing peptide and five intra-disulfide bond containing peptides (A-chain) were purified and identified as Cys-18 (B-chain)-Cys-14 (A-chain), Cys-71-Cys-82, Cys-96-Cys-114, Cys-128-Cys-131, Cys-190-Cys-201 and Cys-212-Cys-229, respectively. The location of the intra-disulfide bonds revealed that the A-chain of α2HS-glycoprotein is composed of three domains. Two domains were shown to possess intramolecular homology judging from the total chain length of the domains, size of the loops formed by the SS bonds, the location of two disulfide loops near the C-terminal end of domains A and B, the distance between two SS bonds of each domain, the amino acid sequence homology between these two domains (22.6%), number of amino acid residues between the second SS loops and the end of domains A and B, and the positions of the ordered structures.  相似文献   

2.
The locations of the six disulphide bonds and the single free cysteine residue in a variant surface glycoprotein, VSG 117, from the African trypanosome Trypanosoma brucei have been determined to be Cys-14--Cys-140, Cys-121--Cys-182, Cys-389--Cys-404, Cys-398--417, Cys-447--Cys-461 and Cys-455--Cys-468. Cys-244 bears the single thiol group, which is unreactive towards 2-nitro-5-thiocyanobenzoate in the native molecule and is probably buried. Biosynthetically incorporated [35S]cysteine aided the location of the disulphide bonds. Two proteinase-resistant glycosylated domains, each containing two disulphide bonds, were identified in the C-terminal region of the glycoprotein. Details of purification of [35S]cysteine-containing peptides, and Tables of amino acid analyses, are presented in Supplementary Publication SUP 50119 (32 pages), which has been deposited with the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1981) 193,5.  相似文献   

3.
SP-40,40, a human plasma protein, is a modulator of the membrane attack complex formation of the complement system as well as a subcomponent of high-density lipoproteins. In the present study, the positions of the disulfide bonds in SP-40,40 were determined. SP-40,40 was purified from human seminal plasma by affinity chromatography using an anti-SP-40,40 monoclonal antibody and reversed-phase, high-performance liquid chromatography (HPLC). The protein was digested with trypsin and the fragments were separated by reversed-phase HPLC. The peptides containing disulfide bonds were fluorophotometrically detected with 4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (ABD-F). The peptides containing more than two disulfide bonds were further digested with Staphylococcus aureus V8 protease and lysylendopeptidase, and the fragments were isolated by HPLC. The amino acid compositions and the amino acid sequences of the peptides containing only a disulfide bond were determined. Disulfide bonds thus determined were between Cys58(alpha)-Cys107(beta), Cys68(alpha)-Cys99(beta), Cys75(alpha)-Cys94(beta), and Cys86(alpha)-Cys80(beta). Since there was no free sulfhydryl groups in the SP-40,40 molecule, Cys78(alpha) and Cys91(beta) should also be linked by a disulfide bond. It is notable that all of the disulfide bonds in SP-40,40 are not only formed by inter-chain pairing, but also appear to form an antiparallel ladder-like structure between the two chains. The unique structure could be related to the functions of SP-40,40.  相似文献   

4.
The location of 16 of the 18 disulfide bonds in human plasma prekallikrein was determined by amino acid sequence analysis of cystinyl peptides produced by chemical and enzymatic digestions. A unique structure, named the apple domain, was established for each of the four tandem repeats in the amino-terminal portion of the molecule. The apple domains (90 or 91 amino acids) contain 3 highly conserved disulfide bonds linking the first and sixth, second and fifth, and third and fourth half-cystine residues present in each repeat. The fourth tandem repeat contains an extra disulfide bond that forms a second small loop within the apple domain. The carboxyl-terminal portion of plasma prekallikrein containing the catalytic region of the molecule was found to have disulfide bonds located in positions similar to those of other serine proteases.  相似文献   

5.
The hexameric complex of globular domains of type IV collagen was isolated after collagenase digestion of human placenta and the different monomers and dimers present were chromatographically separated. The ratio of alpha 1(IV)NC1 to alpha 2(IV)NC1 was 2:1. About 50% of the NC1 domains were connected to dimers. Predominantly alpha 1-alpha 1 dimers were found. Only 12% were alpha 2-alpha 2 dimers and no alpha 1-alpha 2 dimers could be detected. The majority (88%) of the intermolecular bonds was found to be disulfide bridges. The remainder could not be cleaved by reduction. To elucidate the arrangement of the disulfide bonds, the unreduced alpha 1(IV)NC1 monomers were treated with cyanogen bromide, the disulfide-bridged peptides isolated and characterized by Edman degradation. Each of the two homologous subdomains within a monomer is stabilized by an identical set of three disulfide bonds. In subdomain I, cysteines at positions 20 and 53 are connected with the C-terminal cysteine pair 108 and 111. Thus formed, the disulfide knot stabilizes two interconnected loops of 32 and 54 residues, respectively. A smaller loop of five residues occurs due to a disulfide bond between the cysteines 65 and 71. A similar disulfide arrangement is indicated for subdomain II which is separated from subdomain I by a segment of 20 amino acid residues. The same arrangement of disulfide bonds has been strongly suggested for the alpha 2(IV)NC1 monomer by the isolation and characterization of its disulfide-bridged tryptic fragments. Similar investigations on the dimeric alpha 1(IV)NC1 domain established the arrangement of the intermolecular disulfide bonds. They are formed by a complete disulfide exchange between corresponding disulfide knots of two monomeric NC1 domains.  相似文献   

6.
R P Miller  R A Farley 《Biochemistry》1990,29(6):1524-1532
Previous studies of titratable (Na+ + K+)-ATPase sulfhydryl groups have indicated the presence of one disulfide bond per mole of holoenzyme. This single disulfide cross-link was assigned to the beta subunit on the basis of the difference between the number of titrated "free" sulfhydryl groups and the total number of titrated sulfhydryl groups for each subunit [Esmann, M. (1982) Biochim. Biophys. Acta 688, 251; Kawamura, M., & Nagano, K. (1984) Biochim. Biophys. Acta 694, 27]. In the present study, beta-subunit tryptic peptides containing disulfide cross-links were identified and purified by HPLC. Two new peptides were generated from each disulfide-bonded peptide by reduction with dithiothreitol, and the amino acid compositions of these reduced peptides were determined. The data demonstrate that there are three disulfide bonds in the native beta subunit: 125Cys-148Cys, 158Cys-174Cys, and 212Cys-275Cys. The number of disulfide bonds in the beta subunit was also estimated by titration of sulfhydryl groups with [14C]iodoacetamide. Six sulfhydryl groups were identified: two sulfhydryl groups were titrated without prior reduction, and four were identified only after reduction of the protein with dithiothreitol. These data, suggesting that the beta subunit contains two disulfide bonds, are inconsistent with the peptide isolation experiments, which directly identified three disulfide bonds in the beta subunit. This inconsistency was resolved by demonstrating that approximately 20% of each disulfide bond in the beta subunit was reduced prior to the start of the experiment, resulting in an underestimation of the number of disulfide-bonded sulfhydryl groups in the beta subunit from the titration experiments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Tick anticoagulant peptide (TAP) is a potent and selective inhibitor of blood coagulation factor Xa (Waxman, L., Smith, D.E., Arcuri, K.E., and Vlasuk, G.P. (1990) Science 248, 593-596). The 60-amino acid sequence of TAP shows limited homology to Kunitz-type inhibitors, including cysteines at positions 5, 15, 33, 39, 55, and 59. For detailed biochemical and pharmacological studies, a recombinant version of TAP (rTAP) has been produced in yeast. To determine the arrangement of the disulfide bonds, rTAP was cleaved with trypsin and chymotrypsin and the purified peptides sequenced using a gas-phase sequenator. The positions of the disulfide bonds were assigned by identifying the cycle(s) at which di-phenylthiohydan-toin-cystine was released. The specific disulfide bridges, Cys-5 to Cys-59, Cys-15 to Cys-39, and Cys-33 to Cys-55, are analogous to those in the prototype Kunitz-type inhibitor, bovine pancreatic trypsin inhibitor (BPTI). While treatment of BPTI with dithiothreitol rapidly and specifically reduced one disulfide bond, the reduction of disulfide bonds in rTAP proceeded at a slower rate and appeared to be nonspecific, reaching a maximum of two disulfides reduced. Reduced rTAP derivatized with either iodoacetic acid or iodoacetamide lost 59% of its inhibitory activity. In contrast, BPTI alkylated with iodoacetic acid inhibited trypsin half as well as the iodoacetamide derivative. Although the arrangement of disulfides in the two inhibitors is the same, their susceptibility to reduction is markedly different.  相似文献   

8.
The amino acid sequence of one of the major lysosomal membrane glycoproteins, lysosome-associated membrane protein 1 (lamp-1), was deduced from its cDNA sequence (Fukuda, M., Viitala, J., Matteson, J., and Carlsson, S. R. (1988) J. Biol. Chem. 263, 18920-18928). This amino acid sequence suggests that lamp-1 contains a hinge-like structure and could form disulfide bridges that are observed in the immunoglobulin superfamily. To test this possibility, we have determined the positions of the disulfide bridges by isolating and sequencing cystine-containing peptides which contain disulfide bridges. The results indicate that disulfide arrangement of lamp-1 is different from that of immunoglobulins. Each molecule contains, in total, four loops formed by disulfide bonds, and each loop contains 36-39 amino acid residues. However, none of the disulfide bonds connects two domains that are separated by a hinge-like structure. The results indicate that the hinge region has no ordered structure, and the relative positions of the two domains can be altered in space. Examination of the ultrastructure of lamp-1 by electron microscopy showed that the hinge-like structure actually functions as a hinge. These results indicate that the lamp-1 molecule represents a novel family of glycoproteins with unique structural properties.  相似文献   

9.
The disulfide bond assignments of human alanyl tissue factor pathway inhibitor purified fromEscherichia coli have been determined. This inhibitor of the extrinsic blood coagulation pathway possesses three Kunitz-type inhibitor domains, each containing three disulfide bonds. The disulfide bond pairings in domains 1 and 3 were determined by amino acid sequencing and mass spectrometry of peptides derived from a thermolysin digest. However, thermolysin digestion did not cleave any peptide bonds within domain 2. The disulfide bond pairings in domain 2 were determined by isolating it from the thermolysin treatment and subsequently cleaving it with pepsin and trypsin into peptides which yielded the three disulfide bond pairings in this domain. These results demonstrate that the disulfide pairings in each of the three domains of human tissue factor pathway inhibitor purified fromEscherichia coli are homologous to each other and also to those in bovine pancreatic trypsin inhibitor.  相似文献   

10.
The disulfide bond assignments of human alanyl tissue factor pathway inhibitor purified fromEscherichia coli have been determined. This inhibitor of the extrinsic blood coagulation pathway possesses three Kunitz-type inhibitor domains, each containing three disulfide bonds. The disulfide bond pairings in domains 1 and 3 were determined by amino acid sequencing and mass spectrometry of peptides derived from a thermolysin digest. However, thermolysin digestion did not cleave any peptide bonds within domain 2. The disulfide bond pairings in domain 2 were determined by isolating it from the thermolysin treatment and subsequently cleaving it with pepsin and trypsin into peptides which yielded the three disulfide bond pairings in this domain. These results demonstrate that the disulfide pairings in each of the three domains of human tissue factor pathway inhibitor purified fromEscherichia coli are homologous to each other and also to those in bovine pancreatic trypsin inhibitor.  相似文献   

11.
The full sequence of the Thy-1 membrane glycoprotein of rat brain is reported. The sequence was determined from tryptic and V-8 proteinase peptides and consisted of 111 amino acids. The amino terminus was blocked and consisted of a pyroglutamic acid residue. The molecule contained two disulphide bonds, namely Cys-9--Cys-111 and Cys-19--Cys-85. Three N-linked amino sugars were located at Asn-23, Asn-74 and Asn-98. In each case the sequence on the C-terminal side of the attachment point was Asn-Xaa-Thr as would be expected for N-linkage. The C-terminal peptides were unusual, in that they were either obtained in a highly aggregated form, or could only be purified after binding to Brij 96 micelles. Thus they appeared to have hydrophobic properties, yet did not contain any extended sequence of hydrophobic amino acids. Other unusual features of the C-terminal peptides were the presence of unidentified ninhydrin-positive material and of glucosamine and galactosamine. The C-terminal residue has not been directly identified but Cys-111 is the last conventional amino acid. It is suggested that the hydrophobic properties of the C-terminal peptides may be due to the linkage of lipid. The sequence of the Thy-1 glycoprotein showed homologies with immunoglobulin domains. This relationship is examined in detail in the paper following [Cohen et al. (1981) Biochem. J. 193, 000--000].  相似文献   

12.
The NADPH-dependent enzymic reduction of disulfide bonds in human choriogonadotropin and its two subunits, alpha and beta, was examined with thioredoxin and thioredoxin reductase from Escherichia coli. With 12 muM thioredoxin and 0.1 muM thioredoxin reductase at pH 7 all disulfide bonds in the alpha subunit could be reduced in 15 min. The reduction of disulfide bonds was recorded by a simple spectrophotometric assay at 340 nm, which allowed quantitation of the reduction rate and the number of disulfide bonds reduced. Partial reduction of the alpha subunit with thioredoxin followed by S-carboxymethylation with iodol[2-3H]acetic acid and analysis of tryptic peptides indicated that all S-S bonds in the alpha subunit were surface oriented and equally reactive. The usefulness of thioredoxin reduction of disulfide bonds as a chemical probe of protein structure was shown by the much slower reaction of disulfide bonds in the intact hormone as compared to its two biologically inactive subunits.  相似文献   

13.
Antibodies provide an excellent system to study the folding and assembly of all beta-sheet proteins and to elucidate the hierarchy of intra/inter chain disulfide bonds formation during the folding process of multimeric and multidomain proteins. Here, the folding process of the Fc fragment of the heavy chain of the antibody MAK33 was investigated. The Fc fragment consists of the C(H)3 and C(H)2 domains of the immunoglobulin heavy chain, both containing a single S-S bond. The folding process was investigated both in the absence and presence of the folding catalyst protein-disulfide isomerase (PDI), monitoring the evolution of intermediates by electrospray mass spectrometry. Moreover, the disulfide bonds present at different times in the folding mixture were identified by mass mapping to determine the hierarchy of disulfide bond formation. The analysis of the uncatalyzed folding showed that the species containing one intramolecular disulfide predominated throughout the entire process, whereas the fully oxidized Fc fragment never accumulated in significant amounts. This result suggests the presence of a kinetic trap during the Fc folding, preventing the one-disulfide-containing species (1S2H) to reach the fully oxidized protein (2S). The assignment of disulfide bonds revealed that 1S2H is a homogeneous species characterized by the presence of a single disulfide bond (Cys-130-Cys-188) belonging to the C(H)3 domain. When the folding experiments were carried out in the presence of PDI, the completely oxidized species accumulated and predominated at later stages of the process. This species contained the two native S-S bonds of the Fc protein. Our results indicate that the two domains of the Fc fragment fold independently, with a precise hierarchy of disulfide formation in which the disulfide bond, especially, of the C(H)2 domain requires catalysis by PDI.  相似文献   

14.
Human chorionic gonadotropin (hCG) consists of two noncovalently joined alpha and beta subunits similar to the other glycoprotein hormones. To study the function of the individual disulfide bonds in subunit assembly and secretion, site-directed mutagenesis was used to convert the 12 cysteine (Cys) residues in the beta subunit of hCG to either alanine or serine. Both cysteines of proposed disulfide pairs were also mutated. These mutant hCG beta genes were transfected alone or together with the wild-type alpha gene into Chinese hamster ovary cells. Only 3-10% assembly could be achieved with derivatives containing single Cys mutations at positions 26, 110, 72, and 90, whereas no assembly was detected with the other 8 mutants. However, double mutations of pairs 26-110 or 23-72 showed increased dimer formation (11 and 36%, respectively). The secretion rate of individual mutants varied significantly. Whereas the Cys-23 and 72 mutants were secreted normally (t1/2 = 140-190 min), the Cys-26 mutant was secreted faster (t1/2 = 70 min), and the other 9 mutants were secreted slower (t1/2 = 280-440 min); mutations of both Cys at 26 and 110 caused much faster secretion (t1/2 = 34 min). Although the secretion rate of these mutants differed, they were quantitatively recovered in the medium except for mutant Cys-88, Cys-23-72, and Cys-34-88 (40, 55, and 10% secreted, respectively). Thus, interruption of any disulfide bond in the hCG beta subunit alters the structure sufficiently to block dimer formation and in some cases slow secretion, although the stability for most of the mutant hCG beta subunits is not greatly affected. The data indicate that interruption of any hCG beta disulfide bond generates different structural forms that are unable to assemble with the alpha subunit, and that the structural requirements for stability and assembly are different.  相似文献   

15.
Location of disulfide bonds within the sequence of human serum cholinesterase   总被引:10,自引:0,他引:10  
Human serum cholinesterase was digested with pepsin under conditions which left disulfide bonds intact. Peptides were isolated by high pressure liquid chromatography, and those containing disulfide bonds were identified by a color assay. Peptides were characterized by amino acid sequencing and composition analysis. Human serum cholinesterase contains 8 half-cystines in each subunit of 574 amino acids. Six of these form three internal disulfide bridges: between Cys65-Cys92, Cys252-Cys263, and Cys400-Cys519. A disulfide bond with Cys65 rather than Cys66 was inferred by homology with Torpedo acetylcholinesterase. Cys571 forms a disulfide bridge with Cys571 of an identical subunit. This interchain disulfide bridge is four amino acids from the carboxyl terminus. A peptide containing the interchain disulfide is readily cleaved from cholinesterase by trypsin (Lockridge, O., and La Du, B. N. (1982) J. Biol. Chem. 257, 12012-12018), suggesting that the carboxyl terminus is near the surface of the globular tetrameric protein. The disulfide bridges in human cholinesterase have exactly the same location as in Torpedo californica acetylcholinesterase. There is one potential free sulfhydryl in human cholinesterase at Cys66, but this sulfhydryl could not be alkylated. Comparison of human cholinesterase, and Torpedo and Drosophila acetylcholinesterases to the serine proteases suggests that the cholinesterases constitute a separate family of serine esterases, distinct from the trypsin family and from subtilisin.  相似文献   

16.
Disulfide bond exchange among cysteine residues in epidermal growth factor (EGF)-like domains of beta3 was suggested to be involved in activation of alphaIIbbeta3. To investigate the role of specific beta3 cysteines in alphaIIbbeta3 expression and activation, we expressed in baby hamster kidney cells normal alphaIIb with normal beta3 or beta3 with single or double cysteine substitutions of nine disulfide bonds in EGF-3, EGF-4, and beta-tail domains and assessed alphaIIbbeta3 surface expression and activation state by flow cytometry using P2 or PAC-1 antibodies, respectively. Most mutants displayed reduced surface expression of alphaIIbbeta3. Disruptions of disulfide bonds in EGF-3 yielded constitutively active alphaIIbbeta3, implying that these bonds stabilize the inactive alphaIIbbeta3 conformer. Mutants of the Cys-567-Cys-581 bond in EGF-4 were inactive even after exposure to alphaIIbbeta3-activating antibodies, indicating that this bond is necessary for activating alphaIIbbeta3. Disrupting Cys-560-Cys-583 in the EGF-3/EGF-4 or Cys-608-Cys-655 in beta-tail domain resulted in alphaIIbbeta3 activation only when Cys-560 or Cys-655 of each pair was mutated but not when their partners (Cys-583, Cys-608) or both cysteines were mutated, suggesting that free sulfhydryls of Cys-583 and Cys-608 participate in alphaIIbbeta3 activation by a disulfide bond exchange-dependent mechanism. The free sulfhydryl blocker dithiobisnitrobenzoic acid inhibited 70% of anti-LIBS6 antibody-induced activation of wild-type alphaIIbbeta3 and had a smaller effect on mutants, implicating disulfide bond exchange-dependent and -independent mechanisms in alphaIIbbeta3 activation. These data suggest that different disulfide bonds in beta3 EGF and beta-tail domains play variable structural and regulatory roles in alphaIIbbeta3.  相似文献   

17.
J T Patton  J Hua    E A Mansell 《Journal of virology》1993,67(8):4848-4855
Because the rotavirus spike protein VP4 contains conserved Cys residues at positions 216, 318, 380, and 774 and, for many animal rotaviruses, also at position 203, we sought to determine whether disulfide bonds were structural elements of VP4. Electrophoretic analysis of untreated and trypsin-treated rhesus rotavirus (RRV) and simain rotavirus SA11 in the presence and absence of the reducing agent dithioerythritol revealed that VP4 and its cleavage fragments VP5* and VP8* possessed intrachain disulfide bonds. Given that the VP8* fragments of RRV and SA11 contain only two Cys residues, those at positions 203 and 216, these data indicated that these two residues were covalently linked. Electrophoretic examination of truncated species of VP4 and VP4 containing Cys-->Ser mutations synthesized in reticulocyte lysates provided additional evidence that Cys-203 and Cys-216 in VP8* of RRV were linked by a disulfide bridge. VP5* expressed in vitro was able to form a disulfide bond analogous to that in the VP5* fragment of trypsin-treated RRV. Analysis of a Cys-774-->Ser mutant of VP5* showed that, while it was able to form a disulfide bond, a Cys-318-->Ser mutant of VP5* was not. These results indicated that the VP4 component of all rotaviruses, except B223, contains a disulfide bond that links Cys-318 and Cys-380 in the VP5* region of the protein. This bond is located between the trypsin cleavage site and the putative fusion domain of VP4. Because human rotaviruses lack Cys-203 and, hence, unlike many animal rotaviruses cannot possess a disulfide bond in VP8*, it is apparent that VP4 is structurally variable in nature, with human rotaviruses generally containing one disulfide linkage and animal rotaviruses generally containing two such linkages. Considered with the results of anti-VP4 antibody mapping studies, the data suggest that the disulfide bond in VP5* exists within the 2G4 epitope and may be located at the distal end of the VP4 spike on rotavirus particles.  相似文献   

18.
Disulfide bonds of herpes simplex virus type 2 glycoprotein gB.   总被引:1,自引:1,他引:0       下载免费PDF全文
Glycoprotein B (gB) is the most highly conserved envelope glycoprotein of herpesviruses. The gB protein is required for virus infectivity and cell penetration. Recombinant forms of gB being used for the development of subunit vaccines are able to induce virus-neutralizing antibodies and protective efficacy in animal models. To gain structural information about the protein, we have determined the location of the disulfide bonds of a 696-amino-acid residue truncated, recombinant form of herpes simplex virus type 2 glycoprotein gB (HSV gB2t) produced by expression in Chinese hamster ovary cells. The purified protein, which contains virtually the entire extracellular domain of herpes simplex virus type 2 gB, was digested with trypsin under nonreducing conditions, and peptides were isolated by reversed-phase high-performance liquid chromatography (HPLC). The peptides were characterized by using mass spectrometry and amino acid sequence analysis. The conditions of cleavage (4 M urea, pH 7) induced partial carbamylation of the N termini of the peptides, and each disulfide peptide was found with two or three different HPLC retention times (peptides with and without carbamylation of either one or both N termini). The 10 cysteines of the molecule were found to be involved in disulfide bridges. These bonds were located between Cys-89 (C1) and Cys-548 (C8), Cys-106 (C2) and Cys-504 (C7), Cys-180 (C3) and Cys-244 (C4), Cys-337 (C5) and Cys-385 (C6), and Cys-571 (C9) and Cys-608 (C10). These disulfide bonds are anticipated to be similar in the corresponding gBs from other herpesviruses because the 10 cysteines listed above are always conserved in the corresponding protein sequences.  相似文献   

19.
The mature fusion (F) glycoprotein of the paramyxovirus family consists of two disulfide-linked subunits, the N-terminal F2 and the C-terminal F1 subunits, and contains 10 cysteine residues which are highly conserved at specific positions. The high level of conservation strongly suggests that they are indeed disulfide linked and play important roles in the folding and functioning of the molecule. However, it has not even been clarified which cysteine residues link the F2 and F1 subunits. This report describes our assignment of the disulfide bridges in purified Sendai virus F glycoprotein by fragmentation of the polypeptide and isolation of cystine-containing peptides and determination of their N-terminal sequences. The data demonstrate that all of the 10 cysteine residues participate in disulfide bridges and that Cys-70, the only cysteine in F2, and Cys-199, the most upstream cysteine in F1, form the interchain bond. Of the remaining eight cysteine residues clustered near the transmembrane domain of F1, the specific bridges identified are Cys-338 to Cys-347 and Cys-362 to Cys-370. Although no exact pairings between the subsequent four residues were defined, it seems likely that the most downstream, Cys-424, is linked to Cys-394, Cys-399, or Cys-401. Thus, we conclude that the cysteine-rich domain indeed contributes to the formation of a bunched structure containing at least two tandem cystine loops.  相似文献   

20.
F Li  S Liang 《Peptides》1999,20(9):1027-1034
The positions of the disulfide bonds of Selenocosmia huwena lectin-I (SHL-I) from the venom of the Chinese bird spider S. huwena have been determined. The existence of three disulfide bonds in the native SHL-I was proved by matrix-assisted laser desorption ionization time-of-flight mass spectroscopic analysis. To map the disulfide bonds, native SHL-I was proteolytically digested. The resulting peptides were separated by reverse phase high-performance liquid chromatography. Matrix-assisted laser desorption ionization time-of-flight mass spectroscopic analysis indicated the presence of one disulfide bond Cys7-Cys19. The partially reduced peptides by using Tris-(2-carboxyethyl)-phosphine at pH 3.0 were purified by reverse phase high-performance liquid chromatography. Four M Guanidine-HCl was found to increase the yields of partially reduced peptides prominently. The free thiols were carboxamidomethlate by iodoacetamide. The specific location of another disulfide bond Cys2-Cys14 was proved by comparing N-terminal sequencing analysis of the partially reduced and alkylated SHL-I with that of the intact peptide. Finally, the three disulfide linkage of SHL-I could be assigned as Cys2-Cys14, Cys7-Cys19, Cys13-Cys26.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号