首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leukotriene A4 (LTA4) hydrolase catalyzes the final step in leukotriene B4 (LTB4) synthesis. In addition to its role in LTB4 synthesis, the enzyme possesses aminopeptidase activity. In this study, we sought to define the subcellular distribution of LTA4 hydrolase in alveolar epithelial cells, which lack 5-lipoxygenase and do not synthesize LTA4. Immunohistochemical staining localized LTA4 hydrolase in the nucleus of type II but not type I alveolar epithelial cells of normal mouse, human, and rat lungs. Nuclear localization of LTA4 hydrolase was also demonstrated in proliferating type II-like A549 cells. The apparent redistribution of LTA4 hydrolase from the nucleus to the cytoplasm during type II-to-type I cell differentiation in vivo was recapitulated in vitro. Surprisingly, this change in localization of LTA4 hydrolase did not affect the capacity of isolated cells to convert LTA4 to LTB4. However, proliferation of A549 cells was inhibited by the aminopeptidase inhibitor bestatin. Nuclear accumulation of LTA4 hydrolase was also conspicuous in epithelial cells during alveolar repair following bleomycin-induced acute lung injury in mice, as well as in hyperplastic type II cells associated with fibrotic lung tissues from patients with idiopathic pulmonary fibrosis. These results show for the first time that LTA4 hydrolase can be accumulated in the nucleus of type II alveolar epithelial cells and that redistribution of the enzyme to the cytoplasm occurs with differentiation to the type I phenotype. Furthermore, the aminopeptidase activity of LTA4 hydrolase within the nucleus may play a role in promoting epithelial cell growth.  相似文献   

2.
J F Evans  S Kargman 《FEBS letters》1992,297(1-2):139-142
The covalent coupling of [3H]LTA4 to human leukocyte LTA4 hydrolase is inhibited in a concentration-dependent fashion by pre-incubation with bestatin. This inhibition correlated with the concentration-dependent inhibition by bestatin of LTB4 and LTB5 synthesis by LTA4 hydrolase. Epibestatin, a diastereomer of bestatin, neither inhibited LTB4 or LTB5 production by LTA4 hydrolase nor prevented the covalent coupling of [3H]LTA4 to the enzyme. In contrast, captopril inhibited both LTB4 synthesis by LTA4 hydrolase and covalent coupling of [3H]LTA4 to the enzyme.  相似文献   

3.
Leukotriene A4 (LTA4) hydrolase catalyzes a rate-limiting final biosynthetic step of leukotriene B4 (LTB4), a potent lipid chemotactic agent and proinflammatory mediator. LTB4 has been implicated in the pathogenesis of various acute and chronic inflammatory diseases, and thus LTA4 hydrolase is regarded as an attractive therapeutic target for anti-inflammation. To facilitate identification and optimization of LTA4 hydrolase inhibitors, a specific and efficient assay to quantify LTB4 is essential. This article describes the development of a novel 384-well homogeneous time-resolved fluorescence assay for LTB4 (LTB4 HTRF assay) and its application to establish an HTRF-based LTA4 hydrolase assay for lead optimization. This LTB4 HTRF assay is based on competitive inhibition and was established by optimizing the reagent concentration, buffer composition, incubation time, and assay miniaturization. The optimized assay is sensitive, selective, and robust, with a Z' factor of 0.89 and a subnanomolar detection limit for LTB4. By coupling this LTB4 HTRF assay to the LTA4 hydrolase reaction, an HTRF-based LTA4 hydrolase assay was established and validated. Using a test set of 16 LTA4 hydrolase inhibitors, a good correlation was found between the IC50 values obtained using LTB4 HTRF with those determined using the LTB enzyme-linked immunoassay (R = 0.84). The HTRF-based LTA4 hydrolase assay was shown to be an efficient and suitable assay for determining compound potency and library screening to guide the development of potent inhibitors of LTA4 hydrolase.  相似文献   

4.
5.
The epoxide 5(S) trans-5,6 oxido, 7,9 trans-11,14,17 cis eicosatetraenoic acid (leukotriene A5) was chemically synthesized and demonstrated to be both a substrate and an inhibitor of partially purified rat and human LTA4 hydrolase. Both rat and human LTA4 hydrolase utilized leukotriene A5 less effectively as a substrate than leukotriene A4. Incubation of leukotriene A5 (10 microM) or leukotriene A4 (10 microM) with rat neutrophils demonstrated formation of 123 pmol LTB5/min/10(7) cells and 408 pmol LTB4/min/10(7) cells respectively. Purified rat neutrophil LTA4 hydrolase incubated with 100 microM leukotriene A5 produced 22 nmol LTB5/min/mg protein and when incubated with 100 microM leukotriene A4 produced 50 nmol LTB4/min/mg protein. Human neutrophil LTA4 hydrolase incubated with 100 microM leukotriene A5 produced 24 nmol LTB5/min/mg protein and when incubated with 100 microM leukotriene A4 produced 52 nmol LTB4/min/mg protein. Leukotriene A5 was an inhibitor of the formation of leukotriene B4 from leukotriene A4 by both the rat and human neutrophil LTA4 hydrolase. Excess leukotriene A5 prevented covalent coupling of [3H] leukotriene A4 to LTA4 hydrolase suggesting inhibition may involve covalent coupling of leukotriene A5 to the LTA4 hydrolase.  相似文献   

6.
Leukotrienes can be produced by cooperative interactions between cells in which, for example, arachidonate derived from one cell is oxidized to leukotriene A(4) (LTA(4)) by another and this can then be exported for conversion to LTB(4) or cysteinyl leukotrienes (cys-LTs) by yet another. Neutrophils do not contain LTC(4) synthase but are known to cooperate with endothelial cells or platelets (which do have this enzyme) to generate cys-LTs. Stimulation of human neutrophils perfusing isolated rabbit hearts resulted in production of cys-LTs, whereas these were not seen with perfused hearts alone or isolated neutrophils. In addition, the stimulated, neutrophil-perfused hearts generated much greater amounts of total LTA(4) products, suggesting that the hearts were supplying arachidonate to the neutrophils and, in addition, that this externally derived arachidonate was preferentially used for exported LTA(4) that could be metabolized to cys-LTs by the coronary endothelium. Stable isotope-labeled arachidonate and electrospray tandem mass spectrometry were used to differentially follow metabolism of exogenous and endogenous arachidonate. Isolated, adherent neutrophils at low concentrations (to minimize transcellular metabolism between them) were shown to generate higher proportions of nonenzymatic LTA(4) products from exogenous arachidonate (deuterium-labeled) than from endogenous (unlabeled) sources. The endogenous arachidonate, on the other hand, was preferentially used for conversion to LTB(4) by the LTA(4) hydrolase. This result was not because of saturation of the LTA(4) hydrolase, because it occurred at widely differing concentrations of exogenous arachidonate. Finally, in the presence of platelets (which contain LTC(4) synthase), the LTA(4) synthesized from exogenous deuterium-labeled arachidonate was converted to cys-LTs to a greater degree than that from endogenous sources. These experiments suggest that exogenous arachidonate is preferentially converted to LTA(4) for export (not intracellular conversion) and raises the likelihood that there are different intracellular pathways for arachidonate metabolism.  相似文献   

7.
Treatment of leukotriene A4 (LTA4) methyl ester with sodium hydroxide in aqueous methanol at 4 degrees C afforded LTA4, the presence of which was inferred from the UV spectrum of the compound, its rate of reaction with water, and the identity of the hydration products obtained. The half-life of LTA4 in water (pH 7.4, room temperature) was increased from 14 to 500 s by 1 mg/ml of bovine serum albumin. This stabilized (chiral) LTA4 was converted to LTB4 by an epoxide hydrolase activity in the 100,000 x g supernatant fraction from sonified rat basophilic leukemia cells. Neither the ester of LTA4 nor the biologically incorrect enantiomer of LTA4 was metabolized to LTB4 under these conditions.  相似文献   

8.
We prepared a highly specific polyclonal antibody against leukotriene (LT) A4 hydrolase using a recombinant human enzyme. Using this antibody, we quantified LTA4 hydrolase protein content in the cytosols of guinea pig tissues. The enzyme protein content correlated well with the enzyme activity with a correlation coefficient of 0.87. However, the enzyme activity per mg of the enzyme in the cytosols was low, particularly in the liver and adrenal gland, compared with the specific activity of the purified enzyme. These observations suggest the presence of inhibitory substances and/or inactive enzymes in the cytosols of these tissues. To determine the cellular localization of LTA4 hydrolase in tissues other than blood cells, we carried out immunohistochemical examinations of guinea pig tissues. We identified epithelial cells in the tracheobronchial system and gastrointestinal tract, smooth muscle cells in the bronchi and aorta, vascular endothelial cells, and the intestinal plexus as novel cellular sources of the enzyme in the parenchyme of the tissue. Thus, LTA4 hydrolase was widely distributed in various types of parenchymal cells in the tissues, and this observation warrants further investigations on the biological activities of LTB4 in these cells and tissues.  相似文献   

9.
Characterization of leukotriene A4 and B4 biosynthesis   总被引:4,自引:0,他引:4  
We have studied LTA4 and LTB4 synthesis in a cell-free system from RBL-1 cells. All the enzymes leading to the formation of LTB4 from arachidonic acid are localized in the soluble fraction (100,000 x g supernatant) of these cells. The formation of LTA4 and LTB4 is complete by 10 min. When we varied the arachidonic acid concentration from 1 to 300 microM, the synthesis of LTB4 leveled off at 30 microM and of LTA4 at 100 microM while 5-HETE had not reached a plateau at 300 microM. This enzyme system has the capacity to generate relatively large amounts of 5-HETE and LTA4 and only a relatively small amount of LTB4. Therefore, the rate limiting step is not the 5-lipoxygenase, the first step in the pathway, but the conversion of LTA4 to LTB4. This is in contrast to cyclooxygenase pathway where the first step is rate limiting. A second addition of arachidonic acid at submaximal concentration for LTA4 synthesis did not produce any additional LTA4 or LTB4. Further study of this phenomenon showed that the 5-lipoxygenase and LTA-synthase were inactivated with time by preincubation with arachidonic acid and that peroxy fatty acids seem to be the inactivating species.  相似文献   

10.
Bestatin, an inhibitor of aminopeptidases, was also a potent inhibitor of leukotriene (LT) A4 hydrolase. On isolated enzyme its effects were immediate and reversible with a Ki = 201 +/- 95 mM. With erythrocytes it inhibited LTB4 formation greater than 90% within 10 min; with neutrophils it inhibited LTB4 formation by only 10% during the same period, increasing to 40% in 2 h. Bestatin inhibited LTA4 hydrolase selectively; neither 5-lipoxygenase nor 15-lipoxygenase activity in neutrophil lysates was affected. Purified LTA4 hydrolase exhibited an intrinsic aminopeptidase activity, hydrolyzing L-lysine-p-nitroanilide and L-leucine-beta-naphthylamide with apparent Km = 156 microM and 70 microM and Vmax = 50 and 215 nmol/min/mg, respectively. Both LTA4 and bestatin suppressed the intrinsic aminopeptidase activity of LTA4 hydrolase with apparent Ki values of 5.3 microM and 172 nM, respectively. Other metallohydrolase inhibitors tested did not reduce LTA4 hydrolase/aminopeptidase activity, with one exception; captopril, an inhibitor of angiotensin-converting enzyme, was as effective as bestatin. The results demonstrate a functional resemblance between LTA4 hydrolase and certain metallohydrolases, consistent with a molecular resemblance at their putative Zn2(+)-binding sites. The availability of a reversible, chemically stable inhibitor of LTA4 hydrolase may facilitate investigations on the role of LTB4 in inflammation, particularly the process termed transcellular biosynthesis.  相似文献   

11.
Arachidonic acid metabolism by 5-lipoxygenase leads to production of the potent inflammatory mediators, leukotriene (LT) B4 and the cysteinyl LT. Relative synthesis of these subclasses of LT, each with different proinflammatory properties, depends on the expression and subsequent activity of LTA4 hydrolase and LTC4 synthase, respectively. LTA4 hydrolase differs from other proteins required for LT synthesis because it is expressed ubiquitously. Also, in vitro studies indicate that it possesses an aminopeptidase activity. Introduction of cysteinyl LT and LTB4 into animals has shown LTB4 is a potent chemoattractant, while the cysteinyl LT alter vascular permeability and smooth muscle tone. It has been impossible to determine the relative contributions of these two classes of LT to inflammatory responses in vivo or to define possible synergy resulting from the synthesis of both classes of mediators. To address this question, we have generated LTA4 hydrolase-deficient mice. These mice develop normally and are healthy. Using these animals, we show that LTA4 hydrolase is required for the production of LTB4 in an in vivo inflammatory response. We show that LTB4 is responsible for the characteristic influx of neutrophils accompanying topical arachidonic acid and that it contributes to the vascular changes seen in this model. In contrast, LTB4 influences only the cellular component of zymosan A-induced peritonitis. Furthermore, LTA4 hydrolase-deficient mice are resistant to platelet-activating factor, identifying LTB4 as one mediator of the physiological changes seen in systemic shock. We do not identify an in vivo role for the aminopeptidase activity of LTA4 hydrolase.  相似文献   

12.
Mammalian leukotriene A4 (LTA4) hydrolase is a bifunctional zinc metalloenzyme possessing an Arg/Ala aminopeptidase and an epoxide hydrolase activity, which converts LTA4 into the chemoattractant LTB4. We have previously cloned an LTA4 hydrolase from Saccharomyces cerevisiae with a primitive epoxide hydrolase activity and a Leu aminopeptidase activity, which is stimulated by LTA4. Here we used a modeled structure of S. cerevisiae LTA4 hydrolase, mutational analysis, and binding studies to show that Glu-316 and Arg-627 are critical for catalysis, allowing us to a propose a mechanism for the epoxide hydrolase activity. Guided by the structure, we engineered S. cerevisiae LTA4 hydrolase to attain catalytic properties resembling those of human LTA4 hydrolase. Thus, six consecutive point mutations gradually introduced a novel Arg aminopeptidase activity and caused the specific Ala and Pro aminopeptidase activities to increase 24 and 63 times, respectively. In contrast to the wild type enzyme, the hexuple mutant was inhibited by LTA4 for all tested substrates and to the same extent as for the human enzyme. In addition, these mutations improved binding of LTA4 and increased the relative formation of LTB4, whereas the turnover of this substrate was only weakly affected. Our results suggest that during evolution, the active site of an ancestral eukaryotic zinc aminopeptidase has been reshaped to accommodate lipid substrates while using already existing catalytic residues for a novel, gradually evolving, epoxide hydrolase activity. Moreover, the unique ability to catalyze LTB4 synthesis appears to be the result of multiple and subtle structural rearrangements at the catalytic center rather than a limited set of specific amino acid substitutions.  相似文献   

13.
The phorbol ester, phorbol 12-myristate 13-acetate enhanced leukotriene B4 production stimulated by formyl-methionyl-leucyl-phenylalanine and arachidonic acid and reduced the production of the all-trans isomers of LTB4 by human neutrophils. Production of 5-hydroxyeicosatetraenoic acid was unaffected. These observations are consistent with a stimulatory effect of phorbol ester on LTA hydrolase, the enzyme which catalyses the conversion of LTA4 to LTB4. We demonstrate that a protein of the same molecular weight as LTA hydrolase is phosphorylated upon stimulation of neutrophils with PMA. These data suggest that the activity of LTA hydrolase may be regulated by protein kinase C-dependent phosphorylation.  相似文献   

14.
We previously obtained evidence for intrinsic aminopeptidase activity for leukotriene (LT)A4 hydrolase, an enzyme characterized to specifically catalyse the hydrolysis of LTA4 to LTB4, a chemotactic compound. From a sequence homology search between LTA4 hydrolase and several aminopeptidases, it became clear that they share a putative active site for known aminopeptidases and a zinc binding domain. Thus, Glu-297 of LTA4 hydrolase is a candidate for the active site of its aminopeptidase activity, while His-296, His-300 and Glu-319 appear to constitute a zinc binding site. To determine whether or not this putative active site is also essential to LTA4 hydrolase activity, site-directed mutagenesis experiments were carried out. Glu-297 was mutated into 4 different amino acids. The mutant E297Q (Glu changed to Gln) conserved LTA4 hydrolase activity but showed little aminopeptidase activity. Other mutants at Glu-297 (E297A, E297D and E297K) showed markedly reduced amounts of both activities. It is thus proposed that either a glutamic or glutamine moiety at 297 is required for full LTA4 hydrolase activity, while the free carboxylic acid of glutamic acid is essential for aminopeptidase.  相似文献   

15.
Leukotriene A4 epoxide hydrolase from dog lung, a soluble enzyme catalyzing the hydrolysis of leukotriene A4 (LTA4) to leukotriene B4 (LTB4) was partially purified by anion exchange HPLC. The enzymatic reaction obeys Michaelis- Menten kinetics. The apparent Km ranged between 15 and 25 microM and the enzyme exhibited an optimum activity at pH 7.8. An improved assay for the epoxide hydrolase has been developed using bovine serum albumin and EDTA to increase the conversion of LTA4 to LTB4. This method was used to produce 700 mg of LTB4 from LTA4 methyl ester. The partial by purified enzyme was found to be uncompetitively inhibited by divalent cations. Ca+2, Mn+2, Fe+2, Zn+2 and Cu+2 were found to have inhibitor constants (Ki) of 89 mM, 3.4 mM, 1.1 mM, 0.57 mM, and 28 microM respectively Eicosapentaenoic acid was shown to be a competitive inhibitor of this enzyme with a Ki of 200 microM. From these inhibition studies, it can be theorized that the epoxide hydrolase has at least one hydrophobic and one hydrophilic binding site.  相似文献   

16.
We isolated a cDNA encoding rat leukotriene A4 (LTA4) hydrolase from mesangial cells by the polymerase chain reaction according to the human amino acid sequence. The deduced amino acid sequence shows that rat LTA4 hydrolase is a 609 amino acid protein with an Mr 69 kDa. Comparison of human LTA4 hydrolase revealed 93% homology, and include zinc-binding motifs of aminopeptidases. COS-7 cells transfected with the cDNA revealed substantial LTA4 hydrolase activity, and their activities were abolished by preincubation with captopril, representing the first reported cDNA expression of recombinant enzyme in mammalian cells. RNA blot analysis indicated that LTA4 hydrolase was expressed in glomerular endothelial, epithelial and mesangial cells.  相似文献   

17.
Involvement of leukotriene B4 in arthritis models   总被引:1,自引:0,他引:1  
We investigated the role of leukotriene B4 (LTB4) in murine arthritis models using a leukotriene A4 (LTA4) hydrolase inhibitor, SA6541. SA6541 inhibited the severity of collagen-induced arthritis and muramyl dipeptide (MDP)-induced hyperproliferation of synovial cells in vivo. SA6541 also inhibited LTA4-induced hyperproliferation of synovial stromal cells in vitro. These results suggest that LTB4 may play an important role in arthritis models.  相似文献   

18.
The synthesis and metabolism of leukotrienes (LTs) by endothelial cells was investigated using reverse-phase high-performance liquid chromatography. Cells were incubated with [14C]arachidonic acid. LTA4 or [3H]LTA4 and stimulated with ionophore A23187. The cells did not synthesize leukotrienes from [14C]arachidonic acid. LTA4 and [3H]LTA4 were converted to LTC4, LTD4, LTE4 and 5,12-diHETE. Endothelial cells metabolized [3H]LTC4 to [3H]LTD4 and [3H]LTE4. The metabolism of [3H]LTC4 was inhibited by L-serine-borate complex, phenobarbital and acivicin in a concentration-related manner, with maximal inhibition occurring at a concentration of 0.1 M, 0.01 M and 0.01 M, respectively. LTC4, LTB4 and LTD4 stimulated the synthesis of prostacyclin, measured by radioimmunoassays as 6-keto-PGF1 alpha. The stimulation by LTC4 was greater than that by LTD4 or LTB4. LTE4, 14,15-LTC4 and 14,15-LTD4 failed to stimulate the synthesis of prostacyclin. LTD4 and LTB4 also stimulated the release of PGE2, whereas LTC4 did not. Serine-borate and phenobarbital inhibited LTC4-stimulated synthesis of prostacyclin in a concentration-related manner. They also inhibited the release of prostacyclin by histamine, A23187 and arachidonic acid. Acivicin had no effect on the release of prostacyclin by LTC4, histamine or A23187. Furthermore, FPL-55712, an LT receptor antagonist, inhibited LTC4-stimulated prostacyclin synthesis but had no effect on histamine-stimulated release of prostacyclin or PGE2. Indomethacin inhibited both LTC4- and histamine-stimulated release. The results show that (a) endothelial cells metabolize LTA4, LTC4 and LTD4 but do not synthesize LTs from arachidonic acid; (b) LTC4 act directly at the leukotriene receptor to stimulation prostacyclin synthesis; (c) the presence of the glutathione moiety at the C-6 position of the eicosatetraenoic acid skeleton is necessary for leukotriene stimulation of prostacyclin release; and (d) the metabolism of LTC4 to LTD4 and LTE4 does not appear to alter the ability of LTC4 to stimulate the synthesis of PGI2.  相似文献   

19.
Leukotriene A(4) (LTA(4)) hydrolase is essential for the conversion of LTA(4) to LTB(4), an inflammatory lipid mediator. We investigated whether LTA(4) hydrolase was regulated in the heart by angiotensin II (ang II) infusion. Continuous ang II infusion via an osmotic minipump for up to 7 days upregulated mRNA and protein levels of LTA(4) hydrolase ( approximately 3.5-fold of control) in the heart in a pressor-dependent manner. Immunohistochemistry demonstrated intense LTA(4) hydrolase staining in the myofibroblast as well as migrated monocytes/macrophages. These data suggest that the cardiac LTA(4) hydrolase-LTB(4) system plays a positive role in the promotion of cardiac inflammation in hypertension.  相似文献   

20.
Recently, we characterized the export of leukotriene (LT) C4 from human eosinophils as a carrier-mediated process (Lam, B. K., Owen, W. F., Jr., Austen, K. F., and Soberman, R. J. (1989) J. Biol. Chem. 264, 12885-12889). To determine whether a similar mechanism regulates the release of leukotriene B4 (LTB4), human polymorphonuclear leukocytes (PMN) were preloaded with LTB4 by incubation with 25 microM leukotriene A4 (LTA4) at 0 degrees C for 60 min. PMN converted LTA4 to LTB4 in a time-dependent manner as determined by resolution of products by reverse-phase high performance liquid chromatography and quantitation by integrated optical density. When PMN preloaded with LTB4 were resuspended in buffer at 37 degrees C for 0-90 s, there occurred a time-dependent release of LTB4 but little formation or release of 20-hydroxy-LTB4 and 20-carboxy-LTB4. When PMN were preloaded with increasing amounts of intracellular LTB4 by incubation with 3.1-50.0 microM LTA4 and were then resuspended in buffer at 37 degrees C for 20 s, there occurred a concentration-dependent and saturable release of LTB4 with a Km of 798 pmol/10(7) cells and a Vmax of 383 pmol/10(7) cells/20 s. The release of LTB4 was temperature-sensitive with a Q10 of 3.0 and an energy of activation of 19.9 kcal/mol. The rate of LTB4 release at 37 degrees C is about 50 times the rate of 20-carboxy-LTB4 release. PMN preloaded with LTB4 and resuspended at 0 degree C for 1-60 min in the presence of 30 microM LTA5 progressively converted LTA5 to LTB5. The rate of LTB4 release at 0 degree C was inhibited over the entire time period, peaking at about 50% at 30 min. These results indicate that the release of LTB4 from PMN is a carrier-mediated process that is distinct from its biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号