首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most reported examples of change in vertebrate mitochondrial (mt) gene order could be explained by a tandem duplication followed by random loss of redundant genes (tandem duplication-random loss [TDRL] model). Under this model of evolution, independent loss of genes arising from a single duplication in an ancestral species are predicted, and remnant pseudogenes expected, intermediate states that may remain in rearranged genomes. However, evidence for this is rare and largely scattered across vertebrate lineages. Here, we report new derived mt gene orders in the vertebrate "WANCY" region of four closely related caecilian amphibians. The novel arrangements found in this genomic region (one of them is convergent with the derived arrangement of marsupials), presence of pseudogenes, and positions of intergenic spacers fully satisfy predictions from the TDRL model. Our results, together with comparative data for the available vertebrate complete mt genomes, provide further evidence that the WANCY genomic region is a hotspot for gene order rearrangements and support the view that TDRL is the dominant mechanism of gene order rearrangement in vertebrate mt genomes. Convergent gene rearrangements are not unlikely in hotspots of gene order rearrangement by TDRL.  相似文献   

2.
In the novel replication mechanism of closed circular mouse L-cell mitochondrial DNA synthesis one strand of the duplex (the heavy-strand) is initiated at a defined origin and proceeds unidirectionally. Synthesis of the complementary light-strand is initiated at a different origin, located approximately two-thirds genome length from the heavy-strand origin, and also proceeds unidirectionally. The initiation of light-strand synthesis does not occur until synthesis of the heavy-strand has extended past the light-strand origin region. One intriguing consequence of this asynchrony is that the heavy-strand origin functions in a DNA duplex, while the light-strand origin functions as a single-stranded template. In order to obtain the precise location of the light-strand origin we have isolated replicative molecules in which light-strand synthesis has begun and subjected them to digestion by a combination of the single-strand specific nuclease S1 and various restriction cndonucleases. By comparison of the sizes of the duplex fragments thus generated with those produced by cleavage of non-replicating molecules cleaved with the same enzymes we have located the 5′-end of daughter light-strands at a position 55 to 90 nucleotides from a HpaI cleavage site 0.67 genome length from the heavy-strand origin. The nucleotide sequence of a 318-base region surrounding this site, determined by chemical sequencing techniques, possesses the symmetry required for the formation of three hairpin loops. The most striking of these has a stem consisting of 12 consecutive basepairs and a 13-base loop. In the heavy-strand template, this loop contains 11 consecutive thymidine nucleotides. This light-strand origin region has been found to possess a remarkable degree of homology with several other prokaryotic and eukaryotic origin-related sequences, particularly those of the øX174 A region and the simian virus 40 EcoRII G fragment.It has previously been shown that mouse mitochondrial DNA contains alkali-labile sites, which are presumably due to the presence of ribonucleotides incorporated into the DNA. A cluster of sites, representing eight adjacent ribonucleotides, has been located in mature light strands at or near the origin of light-strand synthesis. The retention of ribonucleotides at this specific location may reflect inefficient removal of an RNA primer at the light-strand origin.  相似文献   

3.
4.
5.
Acheilognathus signifer (Cypriniformes, Cyprinidae) is an endemic, endangered fresh water fish species in the Korean peninsula. In this study, the mitochondrial genome of A. signifer was completely sequenced, which is 16,566 bp in length. The characteristics of the complete mitochondrial genome were described in detail.  相似文献   

6.
Peng QL  Nie LW  Pu YG 《Gene》2006,380(1):14-20
The mitochondrial genome of the Chinese big-headed turtle, Platysternon megacephalum, was obtained using polymerase chain reaction (PCR). The entire mtDNA sequence, the longest mitochondrial genome in turtles reported so far, is 19161 bp. This mitochondrial genome exhibits a novel gene order, which greatly differs from that of any other vertebrates. It is characterized by four distinctive features: 1) the translocation of a gene cluster including three tRNA genes (tRNAHis, tRNASer, tRNALeu(CUN)) and ND5 gene, 2) two tRNAThr pseudogenes, 3) a duplication of pseudo tRNAThr/tRNAPro/D-loop region and 4) 3 non-coding spacers. These unique identities represent a new mitogenomic gene order in vertebrates. The TDRL model was proposed to account for the generation of the gene order in P. megacephalum.  相似文献   

7.
8.
Evolution of mitochondrial gene orders in echinoderms   总被引:1,自引:0,他引:1  
A comprehensive analysis of the mitochondrial gene orders of all previously published and two novel Antedon mediterranea (Crinoidea) and Ophiura albida (Ophiuroidea) complete echinoderm mitochondrial genomes shows that all major types of rearrangement operations are necessary to explain the evolution of mitochondrial genomes. In addition to protein coding genes we include all tRNA genes as well as the control region in our analysis. Surprisingly, 7 of the 16 genomes published in the GenBank database contain misannotations, mostly unannotated tRNAs and/or mistakes in the orientation of tRNAs, which we have corrected here. Although the gene orders of mt genomes appear very different, only 8 events are necessary to explain the evolutionary history of echinoderms with the exception of the ophiuroids. Only two of these rearrangements are inversions, while we identify three tandem-duplication-random-loss events and three transpositions.  相似文献   

9.
T W Wong  D A Clayton 《Cell》1985,42(3):951-958
Synthesis of human light-strand mitochondrial DNA was accomplished in vitro using DNA primase, DNA polymerase, and other accessory proteins isolated from human mitochondria. Replication begins with the synthesis of primer RNA on a T-rich sequence in the origin stem-loop structure of the template DNA and absolutely requires ATP. A transition from RNA synthesis to DNA synthesis occurs near the base of the stem-loop structure and a potential recognition site for signaling that transition has been identified. The start sites of the in vitro products were mapped at the nucleotide level and were found to be in excellent agreement with those of in vivo nascent light-strand DNA. Isolated human mitochondrial enzymes recognize and utilize the bovine, but not the mouse, origin of light-strand replication.  相似文献   

10.
In this study, we determined the complete nucleotide sequence of the mitochondrial genome of the Japanese pond frog Rana nigromaculata. The length of the sequence of the frog was 17,804 bp, though this was not absolute due to length variation caused by differing numbers of repetitive units in the control regions of individual frogs. The gene content, base composition, and codon usage of the Japanese pond frog conformed to those of typical vertebrate patterns. However, the comparison of gene organization between three amphibian species (Rana, Xenopus and caecilian) provided evidence that the gene arrangement of Rana differs by four tRNA gene positions from that of Xenopus or caecilian, a common gene arrangement in vertebrates. These gene rearrangements are presumed to have occurred by the tandem duplication of a gene region followed by multiple deletions of redundant genes. It is probable that the rearrangements start and end at tRNA genes involved in the initial production of a tandemly duplicated gene region. Putative secondary structures for the 22 tRNAs and the origin of the L-strand replication (OL) are described. Evolutionary relationships were estimated from the concatenated sequences of the 12 proteins encoded in the H-strand of mtDNA among 37 vertebrate species. A quartet-puzzling tree showed that three amphibian species form a monophyletic clade and that the caecilian is a sister group of the monophyletic Anura.  相似文献   

11.
Two rounds of whole genome duplication in the ancestral vertebrate   总被引:5,自引:0,他引:5  
Dehal P  Boore JL 《PLoS biology》2005,3(10):e314
The hypothesis that the relatively large and complex vertebrate genome was created by two ancient, whole genome duplications has been hotly debated, but remains unresolved. We reconstructed the evolutionary relationships of all gene families from the complete gene sets of a tunicate, fish, mouse, and human, and then determined when each gene duplicated relative to the evolutionary tree of the organisms. We confirmed the results of earlier studies that there remains little signal of these events in numbers of duplicated genes, gene tree topology, or the number of genes per multigene family. However, when we plotted the genomic map positions of only the subset of paralogous genes that were duplicated prior to the fish–tetrapod split, their global physical organization provides unmistakable evidence of two distinct genome duplication events early in vertebrate evolution indicated by clear patterns of four-way paralogous regions covering a large part of the human genome. Our results highlight the potential for these large-scale genomic events to have driven the evolutionary success of the vertebrate lineage.  相似文献   

12.
Cheng Y  Shi G  Xu T  Li H  Sun Y  Wang R 《Mitochondrial DNA》2012,23(2):126-128
In this study, the complete mitochondrial genome of the red drum Sciaenops ocellatus was determined first. The genome was 16,500?bp in length and contained 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and 2 main non-coding regions (the control region and the origin of the light-strand replication); the gene composition and order of which were similar to most other vertebrates. The overall base composition of the heavy strand was T 25.5%, C 30.7%, A 27.5%, and G 16.3%, with a slight AT bias of 53%. Within the control region, the discrete and conserved sequence blocks were identified. Motif 5'-ACCGG-3' rather than 5'-GCCGG-3' was detected in the origin of light-strand replication (O(L)) of red drum, which is rare in the mitogenomes of Sciaenidae species. These results would play an important role in elucidating sequence-function relationships of the O(L).  相似文献   

13.
The 16,775 base-pair mitochondrial genome of the white Leghorn chicken has been cloned and sequenced. The avian genome encodes the same set of genes (13 proteins, 2 rRNAs and 22 tRNAs) as do other vertebrate mitochondrial DNAs and is organized in a very similar economical fashion. There are very few intergenic nucleotides and several instances of overlaps between protein or tRNA genes. The protein genes are highly similar to their mammalian and amphibian counterparts and are translated according to the same variant genetic code. Despite these highly conserved features, the chicken mitochondrial genome displays two distinctive characteristics. First, it exhibits a novel gene order, the contiguous tRNA(Glu) and ND6 genes are located immediately adjacent to the displacement loop region of the molecule, just ahead of the contiguous tRNA(Pro), tRNA(Thr) and cytochrome b genes, which border the displacement loop region in other vertebrate mitochondrial genomes. This unusual gene order is conserved among the galliform birds. Second, a light-strand replication origin, equivalent to the conserved sequence found between the tRNA(Cys) and tRNA(Asn) genes in all vertebrate mitochondrial genomes sequenced thus far, is absent in the chicken genome. These observations indicate that galliform mitochondrial genomes departed from their mammalian and amphibian counterparts during the course of evolution of vertebrate species. These unexpected characteristics represent useful markers for investigating phylogenetic relationships at a higher taxonomic level.  相似文献   

14.
The genus Brassica has many species that are important for oil, vegetable and other food products. Three mitochondrial genome types (mitotype) originated from its common ancestor. In this paper, a Bnigra mitochondrial main circle genome with 232,407 bp was generated through de novo assembly. Synteny analysis showed that the mitochondrial genomes of B. rapa and B. oleracea had a better syntenic relationship than B. nigra. Principal components analysis and development of a phylogenetic tree indicated maternal ancestors of three allotetraploid species in Us triangle of Brassica. Diversified mitotypes were found in allotetraploid Bnapus, in which napus‐type Bnapus was derived from Boleracea, while polima‐type Bnapus was inherited from Brapa. In addition, the mitochondrial genome of napus‐type Bnapus was closer to botrytis‐type than capitata‐type B. oleracea. The sub‐stoichiometric shifting of several mitochondrial genes suggested that mitochondrial genome rearrangement underwent evolutionary selection during domestication and/or plant breeding. Our findings clarify the role of diploid species in the maternal origin of allotetraploid species in Brassica and suggest the possibility of breeding selection of the mitochondrial genome.  相似文献   

15.
16.
Recent investigations have provided information on the origin of replication of the mitochondrial genome of yeast and an explanation for the phenomenon of the suppressivity.  相似文献   

17.
《Genomics》2020,112(2):1804-1812
The complete mitochondrial genomes (mitogenomes) can indicate phylogenetic relationships among organisms, as well as useful information about the process of molecular evolution and gene rearrangement mechanisms. However, knowledge on the complete mitogenome of Coenobitidae (Decapoda: Anomura) is quite scarce. Here, we describe in detail the complete mitogenome of Coenobita brevimanus, which is 16,393 bp in length, and contains 13 protein-coding genes, two ribosomal RNA, 22 transfer RNA genes, as well as a putative control region. The genome composition shows a moderate A + T bias (65.0%), and exhibited a negative AT-skew (−0.148) and a positive GC-skew (0.183). Five gene clusters (or genes) involving eleven tRNAs and two PCGs were found to have rearranged with respect to the pancrustacean ground pattern gene order. Duplication-random loss and recombination models were determined as most likely to explain the observed large-scale gene rearrangements. Phylogenetic analysis placed all Coenobitidae species into one clade. The polyphyly of Paguroidea was well supported, whereas the non-monophyly of Galatheoidea was inconsistence with previous findings on Anomura. Taken together, our results help to better understand gene rearrangement process and the evolutionary status of C. brevimanus and lay a foundation for further phylogenetic studies of Anomura.  相似文献   

18.
19.
The family Trigonalyidae is considered to be one of the most basal lineages in the suborder Apocrita of Hymenoptera. Here, we determine the first complete mitochondrial genome of the Trigonalyidae, from the species Taeniogonalos taihorina (Bischoff, 1914). This mitochondrial genome is 15,927 bp long, with a high A + T-content of 84.60%. It contains all of the 37 typical animal mitochondrial genes and an A + T-rich region. The orders and directions of all genes are different from those of previously reported hymenopteran mitochondrial genomes. Eight tRNA genes, three protein-coding genes and the A + T-rich region were rearranged, with the dominant gene rearrangement events being translocation and local inversion. The arrangements of three tRNA clusters, trnYtrnMtrnItrnQ, trnWtrnL2trnC, and trnHtrnAtrnRtrnNtrnStrnEtrnF, and the position of the cox1 gene, are novel to the Hymenoptera, even the insects. Six long intergenic spacers are present in the genome. The secondary structures of the RNA genes are normal, except for trnS2, in which the D-stem pairing is absent.  相似文献   

20.
In this study, we show that human cytomegalovirus DNA synthesis is inhibited in infected confluent human embryonic lung cells treated with the DNA-intercalative topoisomerase II inhibitor 4-9'-(acridinylamino)methanesulfon-m-anisidide (m-AMSA). Similar inhibitory effects were observed with VM-26, a nonintercalative topoisomerase II inhibitor. This antiviral effect is not attributable to cytotoxic effects per se. Furthermore, m-AMSA appears to have a notably irreversible inhibitory effect on human cytomegalovirus DNA replication. No inhibition of viral DNA synthesis was observed with o-AMSA, a DNA-intercalative isomer of m-AMSA that does not inhibit topoisomerase II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号