首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas sp. HK-6 is able to utilize 2,4,6-trinitrotoluene (TNT) as a sole nitrogen source. The pnrB gene of the HK-6 strain was cloned using degenerate primers synthesized on the basis of the sequence information of the terminal amino acids of a previously purified native TNT nitroreductase. The nucleotide sequence of pnrB was 654 bp long, and its deduced polypeptide sequence was composed of 217 amino acid residues with a predicted molecular mass of 24 kDa. To facilitate the purification and characterization of this enzyme, an Escherichia expression plasmid harboring six histidine residues fused to a pnrB gene was constructed (His6-PnrB) and designated pPSC1. The His6-PnrB induced in E. coli BL21 was purified using a nickel affinity column to homogeneity. Its enzymatic activity was assayed by measuring absorbance changes at 340 nm due to NADH oxidation. The V max and K m values of the enzyme for TNT were 12.6 μmol/min/mg protein and 2.9 mM, respectively. In addition, the pnrB knockout mutant was constructed via a single-crossover homologous recombination with a partial pnrB DNA fragment that lacked both start and stop codons. Eight days was required for complete degradation of 0.5 mM TNT by the wild-type HK-6 strain, whereas the pnrB mutant degraded only 10% of the TNT in the same time period. Even after 20 days, only approximately 50% of the 0.5 mM TNT was degraded by the pnrB mutant. These results illustrate that pnrB may perform a crucial role in the TNT degradation pathway of the HK-6 strain.  相似文献   

2.
Pseudomonas sp. HK-6 is able to utilize RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) as its sole nitrogen source. The role of the xenB gene, encoding xenobiotic reductase B, was investigated using HK-6 xenB knockout mutants. The xenB mutant degraded RDX to a level that was 10-fold less than that obtained with the wild-type HK-6 strain. After 60 days of culture with 25 or 50 μM RDX, no residual RDX was detected in the supernatants of the wild-type aerobically grown cultures, whereas approximately 90 % of the RDX remained in the xenB mutant cultures. The xenB mutant bacteria exhibited a 102–104-fold decrease in survival rate compared to the wild-type. The expression of DnaK and GroEL proteins, two typical stress shock proteins (SSPs), in the xenB mutant increased after immediate exposure to RDX, yet dramatically decreased after 4 h of exposure. In addition, DnaK and GroEL were more highly expressed in the cultures with 25 μM RDX in the medium but showed low expression in the cultures with 50 or 75 μM RDX. The expression levels of the dnaK and groEL genes measured by RT-qPCR were also much lower in the xenB genetic background. Analyses of the proteomes of the HK-6 and xenB mutant cells grown under conditions of RDX stress showed increased induction of several proteins, such as Alg8, alginate biosynthesis sensor histidine kinase, and OprH in the xenB mutants when compared to wild-type. However, many proteins, including two SSPs (DnaK and GroEL) and proteins involved in metabolism, exhibited lower expression levels in the xenB mutant than in the wild-type HK-6 strain. The xenB knockout mutation leads to reduced RDX degradation ability, which renders the mutant more sensitive to RDX stress and results in a lower survival rate and an altered proteomic profile under RDX stress.  相似文献   

3.
The cellular responses of Pseudomonas sp. HK-6 to explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) have been extensively analyzed in this study. The stress shock proteins, which might contribute to enhancing the cellular resistance to the cytotoxic effect of RDX, were induced at different concentrations of RDX used as a substrate for cell culture of Pseudomonas sp. HK-6. The proteins were identified as 70-kDa DnaK and 60-kDa GroEL by SDS-PAGE and Western blot using the anti-DnaK and anti-GroEL monoclonal antibodies. The stress shock proteins induced by RDX were found to increase in proportion to the RDX concentration used for this work. Analysis of membrane fatty acids of strain HK-6 following exposure to RDX showed that the amounts of dominant lipids 16:1 7c/15:0 iso 2OH, 16:0 and 18:1 7c/9t/12t decreased substantially or were not detected in the cells exposed to RDX, while amounts of lipids 10:0 iso, 14:1 5c/5t and 16:10 methyl increased dramatically. Scanning electron microcopy analyses revealed the presence of perforations and irregular rod shapes with wrinkled surfaces for cells treated with 0.135 mM RDX for 12 h, suggesting that RDX has a substantial cytotoxic impact on cells of strain HK-6.  相似文献   

4.
Pseudomonas sp. HK-6 can utilize the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as the sole nitrogen source under aerobic conditions. It is known that HK-6 is capable of completely degrading 50 μM RDX within 50 days, while the rpoH mutant degrades less than 10% of that amount in the same period of time. The proteomes of the HK-6 and the rpoH mutant strains grown under RDX stress conditions were compared using 2-dimensional electrophoresis (2-DE). A total of 14 upregulated and down-regulated unambiguous protein spots were analyzed using MALDI-TOF MS. Several down-regulated proteins connected with energy metabolism, including NirB, RimO, and NahH, and a transport and binding protein (AapJ) were less expressed in the rpoH genetic background than in the wild-type, and certain proteins connected with the cell envelope, including OprQ and Alg8, were more highly expressed in the rpoH mutant than in the wild-type. It was shown that certain proteins such as GroEL were not expressed in rpoH cells. These results provide insight into survival and the role of the rpoH gene for RDX degradation under RDX stress conditions. In addition to the proteome analysis, the 16S rRNA of HK-6 was cloned and sequenced to draw a phylogenetic tree for precise species identification. The 16S rRNA sequence of HK-6 is closely related to that of Pseudomonas putida.  相似文献   

5.
Soil microfungi belonging to the genera Aspergillus, Coniothyrium, Paecilomyces, Penicillium and Trichoderma, as well as wood-and litter-decomposing basidiomycetes, were able to degrade the explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) co-metabolically, but were unable to utilize it as a sole carbon or nitrogen source. The most efficient RDX-degrading microfungi were characterized morphologically and by analysis of the ITS region of the ribosomal RNA gene cluster as Penicillium janczewskii and an unidentifiable Penicillium sp. with uniseriate phialides. Both species catalysed 80–100 % disappearance of RDX in a liquid defined medium. RDX degradation was inhibited by the presence of 30 mM NH4 + but not by 40 mM NO3 . In basidiomycetes but not Penicillium spp., RDX degradation was greatly reduced when biomass pregrown at 23 °C was incubated with RDX at 15 °C. Because of their production of copious conidial inoculum, simple growth requirements and ability to degrade RDX at reduced temperature, Penicillium spp. show promise for the bioremediation of RDX-contaminated groundwater.  相似文献   

6.
Past handling practices associated with the manufacturing and processing of the high explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) has resulted in extensive environmental contamination. In-situ biodegradation is a promising technology for remediating RDX contaminated sites but often relies on the addition of a cosubstrate. A sulfate-reducing bacterium isolated from an RDX-degrading enrichment culture was studied for its ability to grow on RDX as a sole source of carbon and nitrogen and for its ability to mineralize RDX in the absence of a cosubstrate. The results showed the isolate degraded 140 μM RDX in 63 days when grown on RDX as a carbon source. Biomass within the carbon limited culture increased 9-fold compared to the RDX unamended controls. When the isolate was incubated with RDX as sole source of nitrogen it degraded 160 μM RDX in 41 days and exhibited a 4-fold increase in biomass compared to RDX unamended controls. Radiolabeled studies under carbon limiting conditions with 14C-hexahydro-1,3,5-trinitro-1,3,5-triazine confirmed mineralization of the cyclic nitramine. After 60 days incubation 26% of the radiolabel was recovered as 14CO2, while in the control bottles less than 1% of the radiolabel was recovered as 14CO2. Additionally, ~2% of the radiolabeled carbon was found to be associated with the biomass. The 16S rDNA gene was sequenced and identified the isolate as a novel species of Desulfovibrio, having a 95.1% sequence similarity to Desulfovibrio desulfuricans. This is the first known anaerobic bacterium capable of mineralizing RDX when using it as a carbon and energy source for growth.  相似文献   

7.
In previous work, we studied the anaerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a methanogenic mixed culture that biodegrades RDX by using H2 as the sole electron donor. Strain HAAP-1 was isolated after enriching for the homoacetogens in a mineral medium containing RDX and an H2-CO2 (80:20) headspace. Strain HAAP-1 degraded 29.0 M RDX in <14 days and formed 13.0 mM acetate when grown in a mineral medium with an H2-CO2 headspace. Methylenedinitramine was observed as a transient intermediate, indicating ring cleavage had occurred. In live cultures containing an N2-CO2 headspace, RDX was not degraded, and no acetate was formed. The 16S rRNA gene sequence for strain HAAP-1, consisting of 1485 base pairs, had a 99.2% and 99.1% sequence similarity to Acetobacterium malicum and A. wieringae, respectively. This is the first report of RDX degradation by a homoacetogen growing autotrophically and extends the number of genera known to carry out this transformation.  相似文献   

8.
Study objectives were to describe and quantify growth responses (tolerance as shoot and root biomass accumulation) to soil-applied Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) treatments of eighteen terrestrial, herbaceous, angiospermous species and also; to determine how much of RDX, RDX transformation products, total N and RDX-derived N accumulated in the foliage. RDX altered growth of eighteen plant species or cultivars at levels of 100, 500, and 1,000 mg kg?1dry soil in a 75-d greenhouse study. Sixteen species or cultivars exhibited growth inhibition while two were stimulated in growth by RDX. A maximum amount of foliar RDX in a subset of three plant species was 36.0 mg per plant in Coronilla varia. Foliar concentrations of transformation products of RDX were low relative to RDX in the subset of three species. The proportion of RDX-N with respect to total N was constant, suggesting that foliar RDX transformation did not explain differences in tolerance. There was a δ 15N shift towards that of synthetic RDX in foliage of the three species at a level of 1,000 mg kg?1 RDX, proportional in magnitude to uptake of N from RDX and tolerance ranking.Reddened leaf margins for treated Sida spinosa indicate the potential of this species as a biosensor for RDX.  相似文献   

9.
A fermentative, non-spore forming, motile, rod-shaped bacterium, designated strain MJ1T, was isolated from an RDX contaminated aquifer at a live-fire training site in Northwest NJ, United States. On the basis of 16S rRNA gene sequencing and DNA base composition, strain MJ1T was assigned to the Firmicutes. The DNA G+C content was 42.8 mol%. Fermentative growth was supported by glucose and citrate in a defined basal medium. The bacterium is a strict anaerobe that grows between at pH 6.0 and pH 8.0 and 18 and 37 °C. The culture did not grow with hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as the electron acceptor or mineralize RDX under these conditions. However, MJ1T transformed RDX into MNX, methylenedinitramine, formaldehyde, formate, ammonium, nitrous oxide, and nitrate. The nearest phylogenetic relative with a validly published name was Desulfotomaculum guttoideum (95 % similarity). However, MJ1T was also related to Clostridium celerecrescens DSM 5628 (95 %), Clostridium indolis DSM 755 (94 %), and Clostridium sphenoides DSM 632 (94 %). DNA:DNA hybridization with these strains was between 6.7 and 58.7 percent. The dominant cellular fatty acids (greater than 5 % of the total, which was 99.0 % recovery) were 16:0 fatty acid methyl ester (FAME) (32.12 %), 18:1cis 11 dimethyl acetal (DMA) (16.47 %), 16:1cis 9 DMA (10.28 %), 16:1cis 9 FAME (8.10 %), and 18:1cis 9 DMA (5.36 %). On the basis of morphological, physiological, and phylogenetic data, Clostridium geopurificans is proposed as a new species in genus Clostridium, with strain MJ1T as the type strain.  相似文献   

10.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a cyclic nitroamine explosive that is a major component in many military high-explosive formulations. In this study, two aerobic bacteria that are capable of using RDX as the sole source of carbon and nitrogen to support their growth were isolated from surface soil. These bacterial strains were identified by their fatty acid profiles and 16S ribosomal gene sequences as Williamsia sp. KTR4 and Gordonia sp. KTR9. The physiology of each strain was characterized with respect to the rates of RDX degradation and [U-14C]RDX mineralization when RDX was supplied as a sole carbon and nitrogen source in the presence and absence of competing carbon and nitrogen sources. Strains KTR4 and KTR9 degraded 180 μM RDX within 72 h when RDX served as the only added carbon and nitrogen source while growing to total protein concentrations of 18.6 and 16.5 μg/ml, respectively. Mineralization of [U-14C]RDX to 14CO2 was 30% by strain KTR4 and 27% by KTR9 when RDX was the only added source of carbon and nitrogen. The addition of (NH4)2SO4 greatly inhibited KTR9's degradation of RDX but had little effect on that of KTR4. These are the first two pure bacterial cultures isolated that are able to use RDX as a sole carbon and nitrogen source. These two genera possess different physiologies with respect to RDX mineralization, and each can serve as a useful microbiological model for the study of RDX biodegradation with regard to physiology, biochemistry, and genetics.  相似文献   

11.
A pink-pigmented symbiotic bacterium was isolated from hybrid poplar tissues (Populus deltoides × nigra DN34). The bacterium was identified by 16S and 16S-23S intergenic spacer ribosomal DNA analysis as a Methylobacterium sp. (strain BJ001). The isolated bacterium was able to use methanol as the sole source of carbon and energy, which is a specific attribute of the genus Methylobacterium. The bacterium in pure culture was shown to degrade the toxic explosives 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazene (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine (HMX). [U-ring-14C]TNT (25 mg liter−1) was fully transformed in less than 10 days. Metabolites included the reduction derivatives amino-dinitrotoluenes and diamino-nitrotoluenes. No significant release of 14CO2 was recorded from [14C]TNT. In addition, the isolated methylotroph was shown to transform [U-14C]RDX (20 mg liter−1) and [U-14C]HMX (2.5 mg liter−1) in less than 40 days. After 55 days of incubation, 58.0% of initial [14C]RDX and 61.4% of initial [14C]HMX were mineralized into 14CO2. The radioactivity remaining in solution accounted for 12.8 and 12.7% of initial [14C]RDX and [14C]HMX, respectively. Metabolites detected from RDX transformation included a mononitroso RDX derivative and a polar compound tentatively identified as methylenedinitramine. Since members of the genus Methylobacterium are distributed in a wide diversity of natural environments and are very often associated with plants, Methylobacterium sp. strain BJ001 may be involved in natural attenuation or in situ biodegradation (including phytoremediation) of explosive-contaminated sites.  相似文献   

12.
Initial denitration of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Rhodococcus sp. strain DN22 produces CO2 and the dead-end product 4-nitro-2,4-diazabutanal (NDAB), OHCNHCH2NHNO2, in high yield. Here we describe experiments to determine the biodegradability of NDAB in liquid culture and soils containing Phanerochaete chrysosporium. A soil sample taken from an ammunition plant contained RDX (342 μmol kg−1), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 3,057 μmol kg−1), MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine; 155 μmol kg−1), and traces of NDAB (3.8 μmol kg−1). The detection of the last in real soil provided the first experimental evidence for the occurrence of natural attenuation that involved ring cleavage of RDX. When we incubated the soil with strain DN22, both RDX and MNX (but not HMX) degraded and produced NDAB (388 ± 22 μmol kg−1) in 5 days. Subsequent incubation of the soil with the fungus led to the removal of NDAB, with the liberation of nitrous oxide (N2O). In cultures with the fungus alone NDAB degraded to give a stoichiometric amount of N2O. To determine C stoichiometry, we first generated [14C]NDAB in situ by incubating [14C]RDX with strain DN22, followed by incubation with the fungus. The production of 14CO2 increased from 30 (DN22 only) to 76% (fungus). Experiments with pure enzymes revealed that manganese-dependent peroxidase rather than lignin peroxidase was responsible for NDAB degradation. The detection of NDAB in contaminated soil and its effective mineralization by the fungus P. chrysosporium may constitute the basis for the development of bioremediation technologies.  相似文献   

13.
The ability of ruminal microbes to degrade the explosive compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in ovine whole rumen fluid (WRF) and as 24 bacterial isolates was examined under anaerobic conditions. Compound degradation was monitored by high-performance liquid chromatography analysis, followed by liquid chromatography–tandem mass spectrometry identification of metabolites. Organisms in WRF microcosms degraded 180 μM RDX within 4 h. Nitroso-intermediates hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) were present as early as 0.25 h and were detected throughout the 24-h incubation period, representing one reductive pathway of ring cleavage. Following reduction to MNX, peaks consistent with m/z 193 and 174 were also produced, which were unstable and resulted in rapid ring cleavage to a common metabolite consistent with an m/z of 149. These represent two additional reductive pathways for RDX degradation in ovine WRF, which have not been previously reported. The 24 ruminal isolates degraded RDX with varying efficiencies (0–96 %) over 120 h. Of the most efficient degraders identified, Clostridium polysaccharolyticum and Desulfovibrio desulfuricans subsp. desulfuricans degraded RDX when medium was supplemented with both nitrogen and carbon, while Anaerovibrio lipolyticus, Prevotella ruminicola, and Streptococcus bovis IFO utilized RDX as a sole source of nitrogen. This study showed that organisms in whole rumen fluid, as well as several ruminal isolates, have the ability to degrade RDX in vitro and, for the first time, delineated the metabolic pathway for its biodegradation.  相似文献   

14.
Ground water beneath the U.S. Department of Energy (USDOE) Pantex Plant is contaminated with the high explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). The authors evaluated biodegradation as a remedial option by measuring RDX mineralization in Pantex aquifer microcosms spiked with 14C-labeled RDX (75 g soil, 15 ml of 5 mg RDX/L). Under anaerobic conditions and constant temperature (16°C), cumulative 14CO2 production ranged between 52% and 70% after 49 days, with nutrient-amended (C, N, P) microcosms yielding the greatest mineralization (70%). The authors also evaluated biodegradation as a secondary treatment for removing RDX degradates following oxidation by permanganate (KMnO4) or reduction by dithionite-reduced aquifer solids (i.e., redox barriers). Under this coupled abiotic/biotic scenario, we found that although unconsumed permanganate initially inhibited biodegradation, > 48% of the initial 14C-RDX was recovered as 14CO2 within 77 days. Following exposure to dithionite-reduced solids, RDX transformation products were also readily mineralized (> 47% in 98 days). When we seeded Pantex aquifer material into Ottawa Sand that had no prior exposure to RDX, mineralization increased 100%, indicating that the Pantex aquifer may have an adapted microbial community that could be exploited for remediation purposes. These results indicate that biodegradation effectively transformed and mineralized RDX in Pantex aquifer microcosms. Additionally, biodegradation may be an excellent secondary treatment for RDX degradates produced from in situ treatment with permanganate or redox barriers.  相似文献   

15.
16.
Undersea deposition of unexploded ordnance (UXO) constitutes a potential source of contamination of marine environments by hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). Using sediment from a coastal UXO field, Oahu Island, Hawaii, we isolated four novel aerobic RDX-degrading fungi HAW-OCF1, HAW-OCF2, HAW-OCF3 and HAW-OCF5, tentatively identified as members of Rhodotorula, Bullera, Acremonium and Penicillium, respectively. The four isolates mineralized 15–34% of RDX in 58 days as determined by liberated 14CO2. Subsequently we selected Acremonium to determine biotransformation pathway(s) of RDX in more details. When RDX (100 μM) was incubated with resting cells of Acremonium we detected methylenedinitramine (MEDINA), N2O and HCHO. Also we detected hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) together with trace amounts of hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX) and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX). Under the same conditions MNX produced N2O and HCHO together with trace amounts of DNX and TNX, but we were unable to detect MEDINA. TNX did not degrade with Acremonium. These experimental findings suggested that RDX degraded via at least two major initial routes; one route involved direct ring cleavage to MEDINA and another involved reduction to MNX prior to ring cleavage. Nitrite was only detected in trace amounts suggesting that degradation via initial denitration did take place but not significantly. Aerobic incubation of Acremonium in sediment contaminated with RDX led to enhanced removal of the nitramine.  相似文献   

17.
A unique metabolite with a molecular mass of 119 Da (C2H5N3O3) accumulated during biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Rhodococcus sp. strain DN22 (D. Fournier, A. Halasz, J. C. Spain, P. Fiurasek, and J. Hawari, Appl. Environ. Microbiol. 68:166-172, 2002). The structure of the molecule and the reactions that led to its synthesis were not known. In the present study, we produced and purified the unknown metabolite by biotransformation of RDX with Rhodococcus sp. strain DN22 and identified the molecule as 4-nitro-2,4-diazabutanal using nuclear magnetic resonance and elemental analyses. Furthermore, we tested the hypothesis that a cytochrome P450 enzyme was responsible for RDX biotransformation by strain DN22. A cytochrome P450 2B4 from rabbit liver catalyzed a very similar biotransformation of RDX to 4-nitro-2,4-diazabutanal. Both the cytochrome P450 2B4 and intact cells of Rhodococcus sp. strain DN22 catalyzed the release of two nitrite ions from each reacted RDX molecule. A comparative study of cytochrome P450 2B4 and Rhodococcus sp. strain DN22 revealed substantial similarities in the product distribution and inhibition by cytochrome P450 inhibitors. The experimental evidence led us to propose that cytochrome P450 2B4 can catalyze two single electron transfers to RDX, thereby causing double denitration, which leads to spontaneous hydrolytic ring cleavage and decomposition to produce 4-nitro-2,4-diazabutanal. Our results provide strong evidence that a cytochrome P450 enzyme is the key enzyme responsible for RDX biotransformation by Rhodococcus sp. strain DN22.  相似文献   

18.
The effects of sulfate on the population dynamics of an anaerobic hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-degrading consortium were studied using terminal restriction fragment length polymorphism (T-RFLP) analysis. One hundred percent of the initial RDX was degraded in the sulfate-amended culture within 3 days of incubation. In the sulfate-unamended cultures, 35% of the initial RDX remained after 3 days and 8% after 7 days of incubation. Based on the T-RFLP distribution of the community 16S rDNA genes, the microcosm consisted predominantly of two organisms, a Geobacter sp. (78%) and an Acetobacterium sp. (14%). However, in the presence of sulfate, both species decreased to less than 3% of the total population within 3 days and an unclassified Clostridiaceae became the dominant organism at 40% the total fragment distribution. This indicated the explosive-degrading consortium had greater diversity than initially perceived and rapidly adapted to a readily available electron acceptor, which in turn stimulated RDX degradation.  相似文献   

19.
The biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in liquid cultures with municipal anaerobic sludge showed that at least two degradation routes were involved in the disappearance of the cyclic nitramine. In one route, RDX was reduced to give the familiar nitroso derivatives hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX). In the second route, two novel metabolites, methylenedinitramine [(O2NNH)2CH2] and bis(hydroxymethyl)nitramine [(HOCH2)2NNO2], formed and were presumed to be ring cleavage products produced by enzymatic hydrolysis of the inner C—N bonds of RDX. None of the above metabolites accumulated in the system, and they disappeared to produce nitrous oxide (N2O) as a nitrogen-containing end product and formaldehyde (HCHO), methanol (MeOH), and formic acid (HCOOH) that in turn disappeared to produce CH4 and CO2 as carbon-containing end products.  相似文献   

20.
A fast hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-degrading [28.1 mol h–1 g (dry weight) cells–1; biomass, 0.16 g (dry weight) cells–1] and strictly anaerobic bacterial strain, HAW-1, was isolated and identified as Clostridium bifermentans using a 16S-rRNA-based method. Based on initial rates, strain HAW-1 transformed RDX to hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) with yields of 56, 7.3 and 0.2%, respectively. Complete removal of RDX and its nitroso metabolites produced (%, of total C or N) methanol (MeOH, 23%), formaldehyde (HCHO, 7.4%), carbon dioxide (CO2, 3.0%) and nitrous oxide (N2O, 29.5%) as end products. Under the same conditions, strain HAW-1 transformed MNX separately at a rate of 16.9 mol h–1 g (dry weight) cells–1 and produced DNX (25%) and TNX (0.4%) as transient products. Final MNX transformation products were (%, of total C or N) MeOH (21%), HCHO (2.9%), and N2O (17%). Likewise strain HAW-1 degraded TNX at a rate of 7.5 mol h–1 g (dry weight) cells–1 to MeOH and HCHO. Furthermore, removal of both RDX and MNX produced nitrite (NO2) as a transient product, but the nitrite release rate from MNX was quicker than from RDX. Thus, the predominant pathway for RDX degradation is based on initial reduction to MNX followed by denitration and decomposition. The continued sequential reduction to DNX and TNX is only a minor route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号