首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glial cells were classically considered as supportive cells that do not contribute to information processing in the nervous system. However, considerable amount of evidence obtained by several groups during the last few years has demonstrated the existence of a bidirectional communication between astrocytes and neurons, which prompted a re-examination of the role of glial cells in the physiology of the nervous system. This review will discuss recent advances in the neuron-to-astrocyte communication, focusing on the recently reported properties of the synaptically evoked astrocyte Ca2+ signal that indicate that astrocytes show integrative properties for synaptic information processing. Indeed, we have recently shown that hippocampal astrocytes discriminate between the activity of different synapses, and respond selectively to different axon pathways. Furthermore, the astrocyte Ca2+ signal is modulated by the simultaneous activity of different synaptic inputs. This Ca2+ signal modulation depends on cellular intrinsic properties of the astrocytes, is bidirectionally regulated by the level of synaptic activity, and controls the spatial extension of the intracellular Ca2+ signal. Consequently, we propose that astrocytes can be considered as cellular elements involved in information processing by the nervous system.  相似文献   

2.
At the layer of first visual synapses, information from photoreceptors is processed and transmitted towards the brain. In fly compound eye, output from photoreceptors (R1-R6) that share the same visual field is pooled and transmitted via histaminergic synapses to two classes of interneuron, large monopolar cells (LMCs) and amacrine cells (ACs). The interneurons also feed back to photoreceptor terminals via numerous ligand-gated synapses, yet the significance of these connections has remained a mystery. We investigated the role of feedback synapses by comparing intracellular responses of photoreceptors and LMCs in wild-type Drosophila and in synaptic mutants, to light and current pulses and to naturalistic light stimuli. The recordings were further subjected to rigorous statistical and information-theoretical analysis. We show that the feedback synapses form a negative feedback loop that controls the speed and amplitude of photoreceptor responses and hence the quality of the transmitted signals. These results highlight the benefits of feedback synapses for neural information processing, and suggest that similar coding strategies could be used in other nervous systems.  相似文献   

3.
Ribbon synapses of the retina   总被引:1,自引:0,他引:1  
Vision is a highly complex task that involves several steps of parallel information processing in various areas of the central nervous system. Complex processing of visual signals occurs as early as at the retina, the first stage in the visual system. Various aspects of visual information are transmitted in parallel from the photoreceptors (the input neurons of the retina) through their interconnecting bipolar cells to the ganglion cells (the output neurons). Photoreceptors and bipolar cells transfer information via the release of the neurotransmitter glutamate at a specialized synapse, the ribbon synapse. Although known from early days of electron microscopy, the precise functioning of ribbon synapses has yet to be explained. In this review, we highlight recent advances towards understanding the molecular composition and function of this enigmatic synapse.This study was supported by a grant from the Deutsche Forschungsgemeinschaft (BR 1643/4-1) to J.H.B.  相似文献   

4.
Astroglial perisynaptic sheath covers the majority of synapses in the central nervous system. This glial coverage evolved as a part of the synaptic structure in which elements directly responsible for neurotransmission (exocytotic machinery and appropriate receptors) concentrate in neuronal membranes, whereas multiple molecules imperative for homeostatic maintenance of the synapse (transporters for neurotransmitters, ions, amino acids, etc.) are shifted to glial membranes that have substantially larger surface area. The astrocytic perisynaptic processes act as an ‘astroglial cradle’ essential for synaptogenesis, maturation, isolation and maintenance of synapses, representing the fundamental mechanism contributing to synaptic connectivity, synaptic plasticity and information processing in the nervous system.  相似文献   

5.
6.
A key feature of signal processing in the mammalian retina is parallel processing, where the segregation of visual information, e.g., brightness, darkness, and color, starts at the first synapse in the retina, the photoreceptor synapse. These various aspects are transmitted in parallel from the input neurons of the retina, the photoreceptor cells, through the interconnecting bipolar cells, to the output neurons, the ganglion cells. The photoreceptors and bipolar cells release a single excitatory neurotransmitter, glutamate, at their synapses. This parsimony is contrasted by the expression of a plethora of glutamate receptors, receptor subunits, and isoforms. The detailed knowledge of the synaptic distribution of glutamate receptors thus is of major importance in understanding the mechanisms of retinal signal processing. This review intends to highlight recent studies on the distribution of glutamate receptors at the photoreceptor synapses of the mammalian retina.  相似文献   

7.
Synchronized gamma frequency oscillations in neural networks are thought to be important to sensory information processing, and their effects have been intensively studied. Here we describe a mechanism by which the nervous system can readily control gamma oscillation effects, depending selectively on visual stimuli. Using a model neural network simulation, we found that sensory response in the primary visual cortex is significantly modulated by the resonance between “spontaneous” and “stimulus-driven” oscillations. This gamma resonance can be precisely controlled by the synaptic plasticity of thalamocortical connections, and cortical response is regulated differentially according to the resonance condition. The mechanism produces a selective synchronization between the afferent and downstream neural population. Our simulation results explain experimental observations such as stimulus-dependent synchronization between the thalamus and the cortex at different oscillation frequencies. The model generally shows how sensory information can be selectively routed depending on its frequency components.  相似文献   

8.
Gap junctions     
Electrical coupling through gap junctions constitutes a mode of signal transmission between neurons (electrical synaptic transmission). Originally discovered in invertebrates and in lower vertebrates, electrical synapses have recently been reported in immature and adult mammalian nervous systems. This has renewed the interest in understanding the role of electrical synapses in neural circuit function and signal processing. The present review focuses on the role of gap junctions in shaping the dynamics of neural networks by forming electrical synapses between neurons. Electrical synapses have been shown to be important elements in coincidence detection mechanisms and they can produce complex input-output functions when arranged in combination with chemical synapses. We postulate that these synapses may also be important in redefining neuronal compartments, associating anatomically distinct cellular structures into functional units. The original view of electrical synapses as static connecting elements in neural circuits has been revised and a considerable amount of evidence suggests that electrical synapses substantially affect the dynamics of neural circuits.  相似文献   

9.
The PSD-95 family of membrane- associated guanylate kinases (MAGUKs) are thought to act as molecular scaffolds that regulate the assembly and function of the multiprotein signaling complex found at the postsynaptic density of excitatory synapses. Genetic analysis of PSD-95 family members in the mammalian nervous system has so far been difficult, but the zebrafish is emerging as an ideal vertebrate system for studying the role of particular genes in the developing and mature nervous system. Here we describe the cloning of the zebrafish orthologs of PSD-95, PSD-93, and two isoforms of SAP-97. Using in situ hybridization analysis we show that these zebrafish MAGUKs have overlapping but distinct patterns of expression in the developing nervous system and craniofacial skeleton. Using a pan-MAGUK antibody we show that MAGUK proteins localize to neurons within the developing hindbrain, cerebellum, visual and olfactory systems, and to skin epithelial cells. In the olfactory and visual systems MAGUK proteins are expressed strongly in synaptic regions, and the onset of expression in these areas coincides with periods of synapse formation. These data are consistent with the idea that PSD-95 family members are involved in synapse assembly and function, and provide a platform for future functional studies in vivo in a highly tractable model organism.  相似文献   

10.
Gamma frequency oscillations are thought to provide a temporal structure for information processing in the brain. They contribute to cognitive functions, such as memory formation and sensory processing, and are disturbed in some psychiatric disorders. Fast-spiking, parvalbumin-expressing, soma-inhibiting interneurons have a key role in the generation of these oscillations. Experimental analysis in the hippocampus and the neocortex reveals that synapses among these interneurons are highly specialized. Computational analysis further suggests that synaptic specialization turns interneuron networks into robust gamma frequency oscillators.  相似文献   

11.
Information theory is applied to data from microelectrode recordings of the cat's afferent visual system in a manner more general than hitherto usual. It is shown that it is not necessary to know the particular neuronal code for information calculations by taking the signal itself as the symbols. Uncontrollable errors thus can be avoided. It is further shown that by this approach the dynamical behaviour of the system is fully considered for information transfer. Quantities are defined to exhibit the time course of transmitted information.  相似文献   

12.
In the central nervous system, space is at a premium. This is especially true in the retina, where synapses, cells, and circuitry have evolved to maximize signal-processing capacity within a thin, optically transparent tissue. For example, at some retinal synapses, single presynaptic active zones contact multiple postsynaptic targets; some individual neurons perform completely different tasks depending on visual conditions, while others execute hundreds of circuit computations in parallel; and the retinal network adapts, at various levels, to the ever-changing visual world. Each of these features reflects efficient use of limited cellular resources to optimally encode visual information.  相似文献   

13.
Glial calcium signaling and neuron-glia communication   总被引:8,自引:0,他引:8  
Perea G  Araque A 《Cell calcium》2005,38(3-4):375-382
The existence of bidirectional signaling between astrocytes and neurons has revealed an important active role of astrocytes in the physiology of the nervous system. As a consequence, there is a new concept of the synaptic physiology-"the tripartite synapse", where astrocytes exchange information with the pre- and postsynaptic elements and participate as dynamic regulatory elements in neurotransmission. The control of the Ca2+ excitability in astrocytes is a key element in this loop of information exchange. The ability of astrocytes to respond to neuronal activity and discriminate between the activity of different synapses, the modulation of the astrocytic cellular excitability by the synaptic activity, and the expression of cellular intrinsic properties indicate that astrocytes are endowed with cellular computational characteristics that process synaptic information. Therefore, we propose that astrocytes can be considered as cellular elements involved in the information processing by the nervous system.  相似文献   

14.
Neurotransmitters are signal substances that have traditionally been regarded as mere mediators of signal states between cells in the nervous system. Whereas the mechanisms of this "classic" neurotransmitter regulation are well understood, only recently has new evidence come to light elucidating the modulatory role of neurotransmitters in immune function, and in the regulation of migration of leukocytes and tumor cells. The migration of leukocytes is, among other things, of primary importance for an anti-tumor immune response, whereas the migration of tumor cells is a prerequisite for invasion and the development of metastases. We here clarify and consolidate the latest tumor biological findings on the role of these neurotransmitters, which bind to serpentine receptors, and which are involved in leukocyte migration, tumor growth, invasion and metastasis. This review thus accentuates the complex, interactive involvement of neurotransmitters in the regulation of migration of both leukocytes and tumor cells.  相似文献   

15.
Jean-Philippe Pin 《PSN》2005,3(3):132-142
The rapid transmission of information in the central nervous system is mostly mediated by glutamate synapses. The control of this system quickly appeared as a way to modulate, and perhaps normalize, a number of brain dysfunctions. However, the central role of glutamate receptors involved in this transmission, the ionotropic AMPA and NMDA receptors, appeared as an obstacle to the development of drugs devoid of side effects. The discovery of a second family of glutamate receptors, more than fifteen years ago, offered new possibilities to act on the glutamate system. These receptors, the metabotropic glutamate (mGlu) receptors which are coupled to G-proteins, modulate excitatory synaptic transmission. Eight mGlu receptors have been identified and localized either on the post-synaptic element, where they can regulate the AMPA and NMDA receptor activity, or on the presynaptic element, where they control the release of glutamate or other neurotransmitters. Recent data highlights the therapeutic potential of drugs acting at these receptors for the treatment of a variety of pathologies including anxiety, schizophrenia and Parkinson’s disease.  相似文献   

16.
In recent years evidence has accumulated that astrocytes express functional receptors for a variety of neurotransmitters/neuromodulators. By means of electrophysiological and combined autoradiographic and immunohistochemical methods we have demonstrated the colocalization of cholinergic, adrenergic and peptidergic receptors on astrocytes in explant cultures from various regions of rat central nervous system. A great number of biochemical and electrophysiological studies from other laboratories have shown that most of the neurotransmitters exert their effects on second messenger systems and on Ca2+-activated K+-channels. Furthermore, certain neurotransmitters are involved in the regulation of energy metabolism by stimulating enzymatic breakdown of glycogen in astrocytes. It was suggested that there is a cross-talk between the various neurotransmitter receptors on the glial membrane and that these receptors act in a synergistic or antagonistic way. The coexistence of cholinergic and peptidergic receptors on astrocytes is of great interest since both neurotransmitter systems are involved in cognitive functions and are impaired in patients with Alzheimer's dementia. The question is therefore raised whether not only neurones but also astrocytes might be involved in neurodegenerative disorders such as Alzheimer's disease.  相似文献   

17.
F T Hong 《Bio Systems》1992,27(4):189-194
This paper compares information/signal processing in synthetic and biological molecules. The role of conformation-based (shape-based) mechanisms and electrostatic interactions in molecular recognition is discussed. In biological electron transfer, the 'electron shuttle'-mediated mechanism is contrasted with the mechanism based on pre-formed 'electron wires'. While biological information processing is thought to be more distributed (less discrete), an example of molecular switch is presented: visual transduction. We further speculate that visual transduction may be implemented in the form of a switch based on electrostatic interactions. The concept of intelligent materials is discussed with the well-known Bohr effect of hemoglobin oxygenation. Based on these examples, we argue that there are no fundamental differences between synthetic and biological molecules in their mode of information processing. In the pursuit of novel paradigms of molecular information processing, we also perceive no conflicts in developing molecular devices that emulate the switching function of conventional microelectronic devices.  相似文献   

18.
S Cho  H von Gersdorff 《Cell calcium》2012,52(3-4):208-216
Ca(2+) influx through voltage-gated Ca(2+) channels triggers the release of neurotransmitters at presynaptic terminals. Some sensory receptor cells in the peripheral auditory and visual systems have specialized synapses that express an electron-dense organelle called a synaptic ribbon. Like conventional synapses, ribbon synapses exhibit SNARE-mediated exocytosis, clathrin-mediated endocytosis, and short-term plasticity. However, unlike non-ribbon synapses, voltage-gated L-type Ca(2+) channel opening at ribbon synapses triggers a form of multiquantal release that can be highly synchronous. Furthermore, ribbon synapses appear to be specialized for fast and high throughput exocytosis controlled by graded membrane potential changes. Here we will discuss some of the basic aspects of synaptic transmission at different types of ribbon synapses, and we will emphasize recent evidence that auditory and retinal ribbon synapses have marked differences. This will lead us to suggest that ribbon synapses are specialized for particular operating ranges and frequencies of stimulation. We propose that different types of ribbon synapses transfer diverse rates of sensory information by expressing a particular repertoire of critical components, and by placing them at precise and strategic locations, so that a continuous supply of primed vesicles and Ca(2+) influx leads to fast, accurate, and ongoing exocytosis.  相似文献   

19.
The search for myotropic peptide molecules in the brain, corpora cardiaca, corpora allata suboesophageal ganglion complex of Locusta migratoria using a heterologous bioassay (the isolated hindgut of the cockroach, Leucophaea maderae) has been very rewarding. It has lead to the discovery of 21 novel biologically active neuropeptides. Six of the identified Locusta peptides show sequence homologies to vertebrate neuropeptides, such as gastrin/cholecystokinin and tachykinins. Some peptides, especially the ones belonging to the FXPRL amide family display pleiotropic effects. Many more myotropic peptides remain to be isolated and sequenced. Locusta migratoria has G-protein coupled receptors, which show homology to known mammalian receptors for amine and peptide neurotransmitters and/or hormones. Myotropic peptides are a diverse and widely distributed group of regulatory molecules in the animal kingdom. They are found in neuroendocrine systems of all animal groups investigated and can be recognized as important neurotransmitters and neuromodulators in the animal nervous system. Insects seem to make use of a large variety of peptides as neurotransmitters/neuromodulators in the central nervous system, in addition to the aminergic neurotransmitters. Furthermore quite a few of the myotropic peptides seem to have a function in peripheral neuromuscular synapses. the era in which insects were considered to be “lower animals” with a simple neuroendocrine system is definitely over. Neural tissues of insects contain a large number of biologically active peptides and these peptides may provide the specificity and complexity of intercellular communications in the nervous system.  相似文献   

20.
The layout of sensory brain areas is thought to subtend perception. The principles shaping these architectures and their role in information processing are still poorly understood. We investigate mathematically and computationally the representation of orientation and spatial frequency in cat primary visual cortex. We prove that two natural principles, local exhaustivity and parsimony of representation, would constrain the orientation and spatial frequency maps to display a very specific pinwheel-dipole singularity. This is particularly interesting since recent experimental evidences show a dipolar structures of the spatial frequency map co-localized with pinwheels in cat. These structures have important properties on information processing capabilities. In particular, we show using a computational model of visual information processing that this architecture allows a trade-off in the local detection of orientation and spatial frequency, but this property occurs for spatial frequency selectivity sharper than reported in the literature. We validated this sharpening on high-resolution optical imaging experimental data. These results shed new light on the principles at play in the emergence of functional architecture of cortical maps, as well as their potential role in processing information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号