首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 134 毫秒
1.
In the last decades, due to human land management that uses fire as a tool, and due to abnormal droughts, many tropical forests have become more susceptible to recurrent wildfires with negative consequences for biodiversity. Yet, studies are usually focused on few taxa and rarely compare different fire frequencies. We examined if the effects of single and recurrent fires are consistent for leaf litter ants, dung beetles, birds (sampled with point‐counts PC and mist net‐MN), saplings, and trees. Recurrent fires had a great effect on forest structure, reducing live tree biomass and number of lianas, and increasing canopy openness and numbers of saplings alive. Recurrent fires had consistently stronger effects on species richness and composition across all sample groups than single fires, except ants. Birds and plants were more grouped in the congruence analysis. The average dissimilarities between control and recurrent‐burned forest were higher than between control and once‐burned forest for all sample groups, furthermore birds and vegetation communities in recurrent‐burned forest are almost entirely dissimilar from the unburned forest. While beta diversity of ants, birds (MN), and trees was not affected by the frequency of fire, it changed for dung beetles, birds (PC), and saplings. Effects of fire on faunal community structure were more due to indirect effects, through vegetation, than through the fire itself. These results reinforce the effect of single and recurrent fires on tropical forests, and highlight the mechanisms acting behind them. Policy‐makers need to explicitly address protection of tropical forests from wildfires in conservation planning.  相似文献   

2.
In tropical regions, fires propagate readily in grasslands but typically consume only edges of forest patches. Thus, forest patches grow due to tree propagation and shrink by fires in surrounding grasslands. The interplay between these competing edge effects is unknown, but critical in determining the shape and stability of individual forest patches, as well the landscape‐level spatial distribution and stability of forests. We analyze high‐resolution remote‐sensing data from protected Brazilian Cerrado areas and find that forest shapes obey a robust perimeter–area scaling relation across climatic zones. We explain this scaling by introducing a heterogeneous fire propagation model of tropical forest‐grassland ecotones. Deviations from this perimeter–area relation determine the stability of individual forest patches. At a larger scale, our model predicts that the relative rates of tree growth due to propagative expansion and long‐distance seed dispersal determine whether collapse of regional‐scale tree cover is continuous or discontinuous as fire frequency changes.  相似文献   

3.
Fire is extensively used in agricultural management in Mexico. There is little information on the effects of those practices on the abundance and diversity of animals that live within these forest soils. We studied the effect of slashing, burning and land use in a tropical deciduous forest on ant communities in the State of Jalisco, Mexico. The original vegetation (tropical deciduous forest) was modified into a corn field. Sampling was carried out in five stages: before slashing, after slashing, after burning, after seeding and after harvest. We found that very severe fires greatly reduced ant diversity. The most important effect of fire was the reduction of ant density, and the change of species composition and trophic guilds. These changes are relevant in the recycling process of energy in the ecosystem.  相似文献   

4.
Forest fires remain a devastating phenomenon in the tropics that not only affect forest structure and biodiversity, but also contribute significantly to atmospheric CO2. Fire used to be extremely rare in tropical forests, leaving ample time for forests to regenerate to pre-fire conditions. In recent decades, however, tropical forest fires occur more frequently and at larger spatial scales than they used to. We studied forest structure, tree species diversity, tree species composition, and aboveground biomass during the first 7 years since fire in unburned, once burned and twice burned forest of eastern Borneo to determine the rate of recovery of these forests. We paid special attention to changes in the tree species composition during burned forest regeneration because we expect the long-term recovery of aboveground biomass and ecosystem functions in burned forests to largely depend on the successful regeneration of the pre-fire, heavy-wood, species composition. We found that forest structure (canopy openness, leaf area index, herb cover, and stem density) is strongly affected by fire but shows quick recovery. However, species composition shows no or limited recovery and aboveground biomass, which is greatly reduced by fire, continues to be low or decline up to 7 years after fire. Consequently, large amounts of the C released to the atmosphere by fire will not be recaptured by the burned forest ecosystem in the near future. We also observed that repeated fire, with an inter-fire interval of 15 years, does not necessarily lead to a huge deterioration in the regeneration potential of tropical forest. We conclude that burned forests are valuable and should be conserved and that long-term monitoring programs in secondary forests are necessary to determine their recovery rates, especially in relation to aboveground biomass accumulation.  相似文献   

5.
Over the past 20 years the combined effects of El Niño-induced droughts and land-use change have dramatically increased the frequency of fire in humid tropical forests. Despite the potential for rapid ecosystem alteration and the current prevalence of wildfire disturbance, the consequences of such fires for tropical forest biodiversity remain poorly understood. We provide a pan-tropical review of the current state of knowledge of these fires, and include data from a study in a seasonally dry terra firme forest of central Brazilian Amazonia. Overall, this study supports predictions that rates of tree mortality and changes in forest structure are strongly linked to burn severity. The potential consequences for biomass loss and carbon emissions are explored. Despite the paucity of data on faunal responses to tropical forest fires, some trends are becoming apparent; for example, large canopy frugivores and understorey insectivorous birds appear to be highly sensitive to changes in forest structure and composition during the first 3 years after fires. Finally, we appraise the management implications of fires and evaluate the viability of techniques and legislation that can be used to reduce forest flammability, prevent anthropogenic ignition sources from coming into contact with flammable forests and aid the post-fire recovery process.  相似文献   

6.
Aim The historical variability of fire regimes must be understood in the context of drivers of the occurrence of fire operating at a range of spatial scales from local site conditions to broad‐scale climatic variation. In the present study we examine fire history and variations in the fire regime at multiple spatial and temporal scales for subalpine forests of Engelmann spruce–subalpine fir (Picea engelmannii, Abies lasiocarpa) and lodgepole pine (Pinus contorta) of the southern Rocky Mountains. Location The study area is the subalpine zone of spruce–fir and lodgepole pine forests in the southern sector of Rocky Mountain National Park (ROMO), Colorado, USA, which straddles the continental divide of the northern Colorado Front Range (40°20′ N and 105°40′ W). Methods We used a combination of dendroecological and Geographic Information System methods to reconstruct fire history, including fire year, severity and extent at the forest patch level, for c. 30,000 ha of subalpine forest. We aggregated fire history information at appropriate spatial scales to test for drivers of the fire regime at local, meso, and regional scales. Results The fire histories covered c. 30,000 ha of forest and were based on a total of 676 partial cross‐sections of fire‐scarred trees and 6152 tree‐core age samples. The subalpine forest fire regime of ROMO is dominated by infrequent, extensive, stand‐replacing fire events, whereas surface fires affected only 1–3% of the forested area. Main conclusions Local‐scale influences on fire regimes are reflected by differences in the relative proportions of stands of different ages between the lodgepole pine and spruce–fir forest types. Lodgepole pine stands all originated following fires in the last 400 years; in contrast, large areas of spruce–fir forests consisted of stands not affected by fire in the past 400 years. Meso‐scale influences on fire regimes are reflected by fewer but larger fires on the west vs. east side of the continental divide. These differences appear to be explained by less frequent and severe drought on the west side, and by the spread of fires from lower‐elevation mixed‐conifer montane forests on the east side. Regional‐scale climatic variation is the primary driver of infrequent, large fire events, but its effects are modulated by local‐ and meso‐scale abiotic and biotic factors. The low incidence of fire during the period of fire‐suppression policy in the twentieth century is not unique in comparison with the previous 300 years of fire history. There is no evidence that fire suppression has resulted in either the fire regime or current forest conditions being outside their historic ranges of variability during the past 400 years. Furthermore, in the context of fuel treatments to reduce fire hazard, regardless of restoration goals, the association of extremely large and severe fires with infrequent and exceptional drought calls into question the future effectiveness of tree thinning to mitigate fire hazard in the subalpine zone.  相似文献   

7.
Woody encroachment is becoming common in tropical savannas. We studied natural seed rain and performed seed addition experiments in a Brazilian savanna that had not been burned for several decades. We found greater abundance of fire‐sensitive species in the seed rain, likely contributing to woody encroachment. Flexible fire management policies that allow for natural and prescribed fires may be required to maintain savanna diversity.  相似文献   

8.
Since the 1970s the Brazilian Amazon has received over 1 million migrant farm households from other regions of the country, many of whom were attracted to government-sponsored frontier settlement programs that offered free tropical forest land. As a result, pressures on tropical forests have intensified along several settlement corridors throughout the region. Despite their importance as agents of landscape change, surprisingly little is known about the land use practices of these farmers. This paper briefly reviews the research literature on smallholder land use patterns in Amazonia, describes the recent history of one important agricultural land settlement program in the western Brazilian Amazon state of Rondônia, and, based on 240 household surveys conducted in three separate settlement locations in the state, highlights key differences in land use patterns among the rural population. Typologies of farming systems are presented on the basis of cluster analysis of land use data and ANOVA tests. The findings indicate considerable complexity and heterogeneity in smallholder farming systems. Spatial variations in farming system types may be due to geographic differences in soil regimes, the social histories of specific communities, and site-specific responses to exogenous variables.  相似文献   

9.
This paper reviews the marine living resources management practices in the ASEAN region. Lessons learned from past management of these resources are highlighted with an analysis of impacts. The lack of an appropriate management policy at national and regional levels, inefficient enforcement measures, the rapid population growth and unsustainable economic development have all contributed to the degradation of the resource base in the marine environment of many ASEAN members.The need to establish a holistic and integrated management approach as well as action plans to mitigate the accelerated deterioration of the marine environmental quality and to promote sustainable use of resources is strongly emphasized in this paper. Recent changes in government policies in ASEAN towards sustainable development could provide valuable opportunities to arrest further resource depletion. The ASEAN initiation of integrated management of marine resources is a step towards the right direction.  相似文献   

10.
Naturally regenerating and restored second growth forests account for over 70% of tropical forest cover and provide key ecosystem services. Understanding climate change impacts on successional trajectories of these ecosystems is critical for developing effective large‐scale forest landscape restoration (FLR) programs. Differences in environmental conditions, species composition, dynamics, and landscape context from old growth forests may exacerbate climate impacts on second growth stands. We compile data from 112 studies on the effects of natural climate variability, including warming, droughts, fires, and cyclonic storms, on demography and dynamics of second growth forest trees and identify variation in forest responses across biomes, regions, and landscapes. Across studies, drought decreases tree growth, survival, and recruitment, particularly during early succession, but the effects of temperature remain unexplored. Shifts in the frequency and severity of disturbance alter successional trajectories and increase the extent of second growth forests. Vulnerability to climate extremes is generally inversely related to long‐term exposure, which varies with historical climate and biogeography. The majority of studies, however, have been conducted in the Neotropics hindering generalization. Effects of fire and cyclonic storms often lead to positive feedbacks, increasing vulnerability to climate extremes and subsequent disturbance. Fragmentation increases forests’ vulnerability to fires, wind, and drought, while land use and other human activities influence the frequency and intensity of fire, potentially retarding succession. Comparative studies of climate effects on tropical forest succession across biogeographic regions are required to forecast the response of tropical forest landscapes to future climates and to implement effective FLR policies and programs in these landscapes.  相似文献   

11.
Much recent literature explores controlled burning practices used by people of different cultures to manipulate landscapes. Because humans have only recently been able to suppress fires occurring at larger scales these studies focus on activities occurring at the scale of sites as making the greatest contribution to creating cultural landscapes. In this study we examine the role of fire in the construction of Anishinaabe cultural landscapes in the boreal forest of northwestern Ontario. Through our work with elders of Pikangikum First Nation we examined Anishinaabe knowledge and relationships to fire occurring across spatial and temporal scales. Pikangikum residents perceive forest fires as beings which possesses agency and who intentionally create order in landscapes. This notion suggests that cultural landscapes are more than the physical remains of the sum of human activities. The possibility of non-human agents having a role in the creation of meaningful spaces prompts us to call for a reassessment both of the scale of inquiry and the nature of cultural landscapes. We conclude with a discussion of the benefits and potential constraints to inclusion of indigenous cultural landscapes in current co-management arrangements.  相似文献   

12.
Landscape fire is a key but poorly understood component of the global carbon cycle. Predicting biomass consumption by fire at large spatial scales is essential to understanding carbon dynamics and hence how fire management can reduce greenhouse gas emissions and increase ecosystem carbon storage. An Australia‐wide field‐based survey (at 113 locations) across large‐scale macroecological gradients (climate, productivity and fire regimes) enabled estimation of how biomass combustion by surface fire directly affects continental‐scale carbon budgets. In terms of biomass consumption, we found clear trade‐offs between the frequency and severity of surface fires. In temperate southern Australia, characterised by less frequent and more severe fires, biomass consumed per fire was typically very high. In contrast, surface fires in the tropical savannas of northern Australia were very frequent but less severe, with much lower consumption of biomass per fire (about a quarter of that in the far south). When biomass consumption was expressed on an annual basis, biomass consumed was far greater in the tropical savannas (>20 times that of the far south). This trade‐off is also apparent in the ratio of annual carbon consumption to net primary production (NPP). Across Australia's naturally vegetated land area, annual carbon consumption by surface fire is equivalent to about 11% of NPP, with a sharp contrast between temperate southern Australia (6%) and tropical northern Australia (46%). Our results emphasise that fire management to reduce greenhouse gas emissions should focus on fire prone tropical savanna landscapes, where the vast bulk of biomass consumption occurs globally. In these landscapes, grass biomass is a key driver of frequency, intensity and combustion completeness of surface fires, and management actions that increase grass biomass are likely to lead to increases in greenhouse gas emissions from savanna fires.  相似文献   

13.
Forest succession on degraded tropical lands often is slowed by impoverished seed banks and low rates of seed dispersal. Within degraded landscapes, remnant forests are potential seed sources that could enhance nearby forest succession. The spatial extent that forest can influence succession, however, remains largely unstudied. In abandoned agricultural lands in Kibale National Park, Uganda, recurrent fires have helped perpetuate the dominance of tall (2–3 m) grasses. We examined the effects of distance from forest and grassland vegetation structure on succession in a grassland having several years of fire exclusion. At 10 and 25 m from forest edge, we quantified vegetation patterns, seed predation, and survival of planted tree seedlings. Natural vegetation was similar at both distances, as was seed (eight species) and seedling (six species) survival; however, distance may be important at spatial or temporal scales not examined in this study. Our results offer insight into forest succession on degraded tropical grasslands following fire exclusion. Naturally recruited trees and tree seedlings were scarce, and seed survival was low (20% after 7 mo). While seedling survival was high (95% after 6 to 8 mo), seedling shoot growth was very slow (x?= 0.5 cm/100 d), suggesting that survivorship eventually may decline. Recurrent fires often impede forest succession in degraded tropical grasslands; however, even with fire exclusion, our study suggests that forest succession can be very slow, even in close proximity to forest.  相似文献   

14.
张恒  李慧  赵鹏武 《生态学报》2024,44(13):5669-5683
森林火灾是危害森林健康的主要灾害之一,科学预测森林火灾是预防森林火灾的重要依据。以中国新旧森林火灾政策作为分界线,将内蒙古森林历史火灾数据分为四个阶段,基于增强回归树模型建立内蒙古森林火灾发生模型,预测森林火灾发生情况,解释不同时期森林火灾和火灾风险变化的差异。预测结果表明:(1)4个时期建模精度AUC均大于0.94,表明BRT模型能够较好地预测研究区森林火灾的发生;(2)气温日较差、日最小相对湿度、上一年春防累计降水量、上一年秋防累计降水量、上一年春防最高地表气温海拔、距火点最近公路距离被确定为影响内蒙古森林火灾发生的重要驱动因素。(3)新旧《森林防火条例》实施前后森林火灾风险等级变化:1981-1988年3月14日,中、高和极高森林火灾风险区分布在呼伦贝尔的东部,而2009-2020年中、高和极高森林火灾风险区分布在呼伦贝尔南部和中部、赤峰市的西南部、锡林郭勒盟和呼和浩特市的中部、乌兰察布市和包头市的南部以及鄂尔多斯市的东部。有助于了解不同时期《森林防火条例》影响下的内蒙古森林火灾的驱动因素和火险等级的变化,为优化森林火灾管理政策及预测预报工作提供科学依据。  相似文献   

15.
We examined the composition and structure of forest communities in a 3700 ha watershed in relation to environmental gradients and changes in land management practices. We identified four mixed-conifer forest types dominated by different combinations of Abies concolor, Picea pungens, Pinus ponderosa, Populus tremuloides, and Pseudotsuga menziesii, and a spruce-fir type dominated by Picea engelmannii and Abies lasiocarpa. The forest types occur in a complex pattern related to elevation and topographicmoisture gradients and variations in past fire regimes. However, widespread regeneration of A. concolor following possible changes in the fire regime in the late 19th century and continuing with institution of a fire suppression policy early in the 20th century is producing a more homogenous mixed-conifer forest with greater horizontal and vertical continuity of fuel. This shift toward landscape homogeneity not only may adversely affect biodiversity, but also may be perpetuated as the probability of large, high-severity fires increases with continued fire suppression.  相似文献   

16.
Regulatory enforcement of forest conservation laws is often dismissed as an ineffective approach to reducing tropical forest loss. Yet, effective enforcement is often a precondition for alternative conservation measures, such as payments for environmental services, to achieve desired outcomes. Fair and efficient policies to reducing emissions from deforestation and forest degradation (REDD) will thus crucially depend on understanding the determinants and requirements of enforcement effectiveness. Among potential REDD candidate countries, Brazil is considered to possess the most advanced deforestation monitoring and enforcement infrastructure. This study explores a unique dataset of over 15 thousand point coordinates of enforcement missions in the Brazilian Amazon during 2009 and 2010, after major reductions of deforestation in the region. We study whether local deforestation patterns have been affected by field-based enforcement and to what extent these effects vary across administrative boundaries. Spatial matching and regression techniques are applied at different spatial resolutions. We find that field-based enforcement operations have not been universally effective in deterring deforestation during our observation period. Inspections have been most effective in reducing large-scale deforestation in the states of Mato Grosso and Pará, where average conservation effects were 4.0 and 9.9 hectares per inspection, respectively. Despite regional and actor-specific heterogeneity in inspection effectiveness, field-based law enforcement is highly cost-effective on average and might be enhanced by closer collaboration between national and state-level authorities.  相似文献   

17.
不同区域森林火灾对生态因子的响应及其概率模型   总被引:3,自引:0,他引:3  
李晓炜  赵刚  于秀波  于强 《生态学报》2013,33(4):1219-1229
火灾是影响森林生态系统过程的重要干扰之一,其对森林生态系统内各生态因子的响应各不相同.由于植被状况及生态环境的不同,森林火灾的时空分布特征在中国不同植被气候类型内表现不同,根据植被气候类型分类系统,将中国主要森林火灾地区划分为4个区域:东北(冷温带松林)、华北(落叶阔叶林)、东南(常绿阔叶林)和西南(热带雨林),应用遥感监测数据和地面环境数据,以时空变量、生态因子(植被生长变化指数、湿度等)为可选自变量,应用半参数化Logistic回归模型,就森林火险对不同生态影响因子的响应规律进行了分析,建立了基于生态因子的着火概率模型和大火蔓延概率模型,通过模拟及实际数据散点图、火险概率图,评估了模型应用价值.结果表明,土壤湿度及植被含水量在落叶阔叶林、常绿阔叶林、热带雨林地区对着火概率影响显著.在4个植被气候区内,土壤及凋落物湿度对大火蔓延的作用较小.在冷温带松林、落叶阔叶林、常绿阔叶林地区,植被生长的年内变化对火灾发生的影响显著,在常绿阔叶林地区,年内植被生长变化对大火蔓延的作用较小.森林火险概率与各生态因子的相关关系主要呈现出非线性.不同植被气候区内,火险概率受不同生态因子组合的影响,这与不同区域的植被状况及生态环境不同有关.在不同植被气候类型,应用时空变量、生态因子建立半参数化logistic回归模型,进行着火概率和大火蔓延概率的模拟具有可行性和实际应用能力.为进一步分析森林生态系统与火灾之间的动态关系、展开生态系统火灾干扰研究提供了理论基础.  相似文献   

18.
森林火灾是大气中气体污染物和颗粒物的重要来源,可对全球气候系统、大气环境以及生态系统产生重要影响,对全球温室气体和含碳颗粒物释放具有重要的贡献,是推动全球气候变化的重要因素。森林火灾释放污染物已成为区域乃至全球范围内重要污染源之一,这些污染物质与辐射、能见度以及温室效应等问题直接相关。准确地描述森林火灾释放的气体和颗粒污染物释放机理、释放总量、时空分布特征、不同尺度的扩散过程模拟,以及对区域大气环境的影响,对于量化森林火灾释放污染物总量及区域影响具有重要意义。基于森林火灾污染物质释放方面的国内外文献,从火灾释放的污染物质对环境的影响、森林火灾释放污染物定量化和传输路径监测的研究方法、污染物质的扩散和运输模型以及跨区域影响等几个方面进行了综述。森林火灾释放的CO、PM10和PM2.5对环境和人的生命安全造成巨大威胁,而且森林火灾释放的污染物质能够随气流长距离传输,不仅对当地的空气造成污染,污染物也能够随着气团进行长距离传输,并在传输过程与当地气溶胶混合,形成跨区域污染。森林火灾释放污染物扩散、传输模拟通过不同模型相互耦合完成,包括可燃物载量估算模型、可燃物消耗和释放模型、污染物扩散传输模型,以及污染物预测和可视化模型等。总结了国内外森林火灾释放污染物质主要研究方法,并展望了今后研究重点:目前我国关于森林火灾释放物质相关的研究尚不足以支撑我国森林火灾温室气体释放、污染物释放等方面的研究,并且我国目前还没有发展出适合于我国的森林火灾污染物释放模型,以及污染物扩散、传输系统。森林火灾排放因子库大多数引用国外研究结果,在一定程度上增加不确定性,缺乏森林火灾对区域大气环境影响的定量化研究。因此,今后我国应加强对森林火灾污染物质释放与影响的研究,尤其是污染物质扩散和传输模型的预测和可视化研究以及排放因子的测量。  相似文献   

19.
Globally, colonialism resulted in the suppression of aboriginal land management practices, abetted by the concept of terra nullius, “belonging to no one”; the belief that aboriginal people had little influence on or ownership of the land. Until recently, this ideology was entrenched in resource management and policy. Traditional ecological knowledge, historical ecology, archaeology, and palaeoecological research have shown these assumptions to be wrong. In this paper we take a multidisciplinary approach (biogeography, paleoecology, dendrochronology, and bioclimatic envelope modeling) to better understand the role of climate and fire in the formation of eco-cultural landscapes. We synthesize results from pollen and charcoal analysis in Garry oak ecosystems that indicate there were continuous and frequent prescribed burning events, with more severe fires occurring every 26–41 years in southwest British Columbia throughout the Anthropocene (~last 250 years) that substantially altered forest structure and composition. These results are consistent with stand age reconstructions in BC and Washington with Garry oak establishment beginning ~1850 AD, corresponding with modern fire exclusion, aboriginal population decline, and end of the Little Ice Age. Douglas-fir recruitment has been continuous since ~1900, with succession of oak woodland to closed conifer forest at most sites. These findings indicate that the structure of many Garry oak ecosystems have been profoundly influenced by eco-cultural practices. Overwhelming evidence indicates that in many cases these ecosystems are dependent on prescribed fire for their open structure. In the absence of aboriginal land-management practices, active management will be necessary to maintain Garry oak woodland.  相似文献   

20.
Frequent Amazonian fires over the last decade have raised the alarm about the fate of the Earth's most biodiverse forest. The increased fire frequency has been attributed to altered hydrological cycles. However, observations over the past few decades have demonstrated hydrological changes that may have opposing impacts on fire, including higher basin‐wide precipitation and increased drought frequency and severity. Here, we use multiple satellite observations and climate reanalysis datasets to demonstrate compelling evidence of increased fire susceptibility in response to climate regime shifts across Amazonia. We show that accumulated forest loss since 2000 warmed and dried the lower atmosphere, which reduced moisture recycling and resulted in increased drought extent and severity, and subsequent fire. Extremely dry and wet events accompanied with hot days have been more frequent in Amazonia due to climate shift and forest loss. Simultaneously, intensified water vapor transport from the tropical Pacific and Atlantic increased high‐altitude atmospheric humidity and heavy rainfall events, but those events did not alleviate severe and long‐lasting droughts. Amazonia fire risk is most significant in the southeastern region where tropical savannas undergo long seasonally dry periods. We also find that fires have been expanding through the wet–dry transition season and northward to savanna–forest transition and tropical seasonal forest regions in response to increased forest loss at the “Arc of Deforestation.” Tropical forests, which have adapted to historically moist conditions, are less resilient and easily tip into an alternative state. Our results imply forest conservation and fire protection options to reduce the stress from positive feedback between forest loss, climate change, and fire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号